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Abstract
Background: The genome of Arthrobacter sp. strain FB24 contains a chromate resistance
determinant (CRD), consisting of a cluster of 8 genes located on a 10.6 kb fragment of a 96 kb
plasmid. The CRD includes chrA, which encodes a putative chromate efflux protein, and three genes
with amino acid similarities to the amino and carboxy termini of ChrB, a putative regulatory
protein. There are also three novel genes that have not been previously associated with chromate
resistance in other bacteria; they encode an oxidoreductase (most similar to malate:quinone
oxidoreductase), a functionally unknown protein with a WD40 repeat domain and a lipoprotein.
To delineate the contribution of the CRD genes to the FB24 chromate [Cr(VI)] response, we
evaluated the growth of mutant strains bearing regions of the CRD and transcript expression levels
in response to Cr(VI) challenge.

Results: A chromate-sensitive mutant (strain D11) was generated by curing FB24 of its 96-kb
plasmid. Elemental analysis indicated that chromate-exposed cells of strain D11 accumulated three
times more chromium than strain FB24. Introduction of the CRD into strain D11 conferred
chromate resistance comparable to wild-type levels, whereas deletion of specific regions of the
CRD led to decreased resistance. Using real-time reverse transcriptase PCR, we show that
expression of each gene within the CRD is specifically induced in response to chromate but not by
lead, hydrogen peroxide or arsenate. Higher levels of chrA expression were achieved when the chrB
orthologs and the WD40 repeat domain genes were present, suggesting their possible regulatory
roles.

Conclusion: Our findings indicate that chromate resistance in Arthrobacter sp. strain FB24 is due
to chromate efflux through the ChrA transport protein. More importantly, new genes have been
identified as having significant roles in chromate resistance. Collectively, the functional predictions
of these additional genes suggest the involvement of a signal transduction system in the regulation
of chromate efflux and warrants further study.
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Background
Arthrobacter species are high G+C Gram positive bacteria
that are prevalent in both pristine and polluted soils [1-3].
Although Arthrobacter spp. have been noted for their high
levels of resistance to a variety of toxic metals [4,5], very
little is known about the genetic basis or regulatory mech-
anisms underlying metal resistance in this genus. Arthro-
bacter sp. FB24 was isolated from soils contaminated with
lead-chromate salts and was selected for detailed study
based on its high tolerance to a wide assortment of toxic
heavy metals [6-8]. Most notably, this strain can survive in
the presence of 200 mM potassium chromate in dilute
nutrient broth [6]. Reported resistance levels for other
Arthrobacter species range from 2 to 48 mM chromate
[9,10].

The mechanism of chromium resistance in Arthrobacter
strains remains enigmatic. Although some strains can
reduce toxic Cr(VI) to less toxic Cr(III) [11,12], chromate
reduction is not typically considered a resistance mecha-
nism [13]. However, chromate efflux has only been bio-
chemically identified as a resistance mechanism in
Proteobacteria [14-17]. The earliest analyses of efflux-medi-
ated chromate resistance have been performed in
Cupravidus metallidurans and Pseudomonas aeruginosa, and
until recently, these two organisms have served as the
model organisms for chromate efflux. As a structural ana-
log of sulfate (SO4

2-), chromate enters cells through sul-
fate uptake systems [18]. Chromate efflux occurs via the
ChrA protein in P. aeruginosa and C. metallidurans and
resulted in resistance levels of 4 and 0.3 mM, respectively
[19-21]. It is important to note that the number and
arrangement of chromate resistance genes differs between
these two strains [13,15,20,21]. In addition, in 2007 at
least 135 ChrA orthologs were noted in other bacteria as
members of the CHR superfamily of chromate transport-
ers [22,23]. There is considerable variation in the genomic
context surrounding ChrA orthologs [22], which raises the
question as to whether functional or regulatory differ-
ences in chromate efflux among organisms bearing ChrA
orthologs also exist. Although the CHR superfamily
includes representatives from all domains of life, at the
time of its construction, the phylogeny was largely domi-
nated by Proteobacteria (35 out of 72 organisms). More-
over, given the high levels of chromate resistance among
Actinomycetales such as Arthrobacter [2-5], the 135 ChrA
orthologs (which includes only three representatives
within the order Actinomycetales, Corynebacterium
glutamicum, C. efficiens and Kineococcus radiotolerans)
reported by Ramirez-Diaz et al [22] is very likely an under-
estimate of the range of this protein family and warrants
further investigation.

Chromate resistance levels reported for bacterial strains
with ChrA orthologs are also highly variable, ranging

from 0.3 to 200 mM Cr(VI). It is apparent that the mere
presence of a chrA gene cannot explain this vast difference
in resistance levels. Thus, further study of ChrA orthologs
and their genomic neighborhoods in a greater diversity of
chromate-resistant organisms will undoubtedly yield
additional functional and regulatory elements that are rel-
evant to different levels of chromium resistance found in
diverse taxa. In this work, we examine such a chromate
resistance determinant found in Arthrobacter sp. FB24.

Results
Identification of a chromate resistance determinant (CRD) 
in Arthrobacter sp. strain FB24
Arthrobacter sp. strain FB24 genome analysis deduced a
450 amino acid (aa) sequence Arth_4248 with similarity
to chromate ion transporters. Phylogenetic analysis of the
sequence with 512 other characterized and putative ChrA
sequences (see Figure 1 and Additional files 1 and 2) sug-
gests that it forms a new branch in the CHR superfamily
[22] that is composed of Actinobacteria. This group likely
has unique evolutionary features since the majority (70%)
of ChrA ortholog sequences used in the comparison is
from Proteobacteria yet it formed its own branch. In fact,
most of the clades are composed of specific phyla/classes
of biota (Additional file 1).

The genome neighborhood of Arth_4248 consists of a
10.6-kb region of five putative chromate resistance genes
and three proximal genes of unknown function located
on a 96-kb plasmid (Figure 2). Of five genes similar to
ones associated with Cr(VI) resistance in other organisms,
two encode ChrA efflux protein orthologs (Arth_4248
and 4251) and three are similar to different regions of a
putative regulatory protein, ChrB (Arth_4249, 4253 and
4254). The remaining three genes (Arth_4247, 4252 and
4255) have not been previously shown to be associated
with chromate resistance. The region between Arth_4251
and Arth_4249 is an approximate 1.3 kb region of low
complexity. Currently, there is no strong indication of
functional genes within this region.

The chromate resistance determinant in Arthrobacter sp.
strain FB24 has a similar genetic arrangement to that
found in chromate-resistant Arthrobacter sp. CHR15, but is
markedly different than in the two well-studied Proteo-
bacteria, P. aeruginosa and C. metallidurans (Figure 2).
More recently, a transposable element conferring chro-
mate resistance in Ochrobactrum tritic was found to have a
similar genetic makeup to the chr1 determinant in C. met-
allidurans [17], while a chromate resistance operon con-
taining chrA, chrB and chrC was found in Shewanella sp.
strain ANA-3 [16]. Additional genes involved in chromate
resistance in C. metallidurans, such as the superoxide dis-
mutase gene chrC, chrI and rpoH [21] are not present
within the CRD of strain FB24. This could point to func-
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Phylogenetic Tree of ChrA OrthologsFigure 1
Phylogenetic Tree of ChrA Orthologs. Phylogenetic tree of LCHR proteins generated from a subset of the alignment of 
513 putative chromate ion transport sequences using ClustalX and default setting for Gonnet series for protein weight matrix 
(34). Neighbor Joining tree graphically viewed using the FigTree program http://tree.bio.ed.ac.uk/software/figtree/. Branched 
tips labeled with Uniprot protein accession number, sequence name and species name. Sequences with function supported 
with experimental data marked with asterisk. Scale bar indicates 0.06 amino acid substitutions per site. Branch ends labeled 
with bootstrap values >50%. Full tree available in the figure in Additional file 1 and all sequences used are listed in the table 
provided in Additional file 2.

http://tree.bio.ed.ac.uk/software/figtree/
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Comparison of genetic determinants of chromate resistance as studied in other bacterial strains versus Arthrobacter spFigure 2
Comparison of genetic determinants of chromate resistance as studied in other bacterial strains versus Arthro-
bacter sp. strain FB24. R. sp. RHA1, Rhodococcus sp. RHA1 [GenBank: NC_008268]; N. sp. JS614, Nocardiodes sp. JS614 
[GenBank: NC_008699]; A. CHR15, Arthrobacter sp. CHR15 plasmid pCHR15 [6,35]; C. met. chr1 and chr2, C. metallidurans chro-
mate resistance determinants 1 (plasmid pMOL28) and 2 (chromosomal) [21]; P. aer., Pseudomonas aeruginosa plasmid pUM505 
[20]; TnOtChr, transposable element from Ochrobactrum tritici 5bv11 [58]; S. ANA-3, Shewanella sp. strain chrBAC operon, plas-
mid 1 [GenBank: CP000470]. Drawing not to scale.

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_008268
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_008699
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CP000470
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tional and regulatory differences in chromate resistance
between these distantly related taxa. Thus, we were led to
investigate Arth_4247, 4252 and 4255, as well as previ-
ously characterized chrA and chrB sequences. Due to the
potential involvement of Arth_4247, 4252 and 4255 in
chromate resistance, we have named these genes chrL,
chrK and chrJ, respectively (Figures 2 and 3).

Sequence analysis of the CRD
Arth_4248, the putative 450 amino acid (aa) chromate
ion transporter, is most similar to ChrA from Rhodococcus
sp. RHA1 (79%). The protein is predicted to have 12
transmembrane helices and two CHR domains defined by
a conserved GGX12VX4WX16PGPX10GX7G motif, placing it
within the LCHR family of chromate ion transporters
[22,24]. However, there is little sequence similarity (35%
similarity across 106 of 225 amino acids) between the
amino and carboxy halves of Arth_4248; hence, it does
not appear to have arisen by direct tandem duplication of
the same CHR domain-containing open reading frame.
Because of the topological diversity of the CHR super-
family proteins [22,25] and the observed preponderance
of conserved residues in the N-terminal half of the P. aer-
uginosa ChrA protein [26], it is expected that the amino
and carboxy termini may carry out different functional
roles in chromate efflux. Alignment of the amino acid
sequence of Arth_4248 with that of P. aeruginosa ChrA
indicated that residues which resulted in Cr(VI) sensitivity
following mutation in P. aeruginosa [26] are also con-
served in Arth_4248.

The other chrA ortholog Arth_4251 is predicted to be 137-
aa protein with sequence similarity to known ChrA trans-
porters. The protein sequence aligns to the N-terminus of
C. metallidurans ChrA1 with 71% similarity across 49
amino acids. In comparison, Arth_4251 is only 52% sim-
ilar to the N-terminus of Arth_4248 across 44 amino
acids. The CHR domain in Arth_4251 contains the
GGX12VX4W motif, but lacks the PGPX10GX7G motif. In
addition, no definitive transmembrane helices were pre-
dicted for Arth_4251. Small (<200 aa) proteins contain-
ing a single CHR domain have been recognized as a
separate group of proteins within the CHR family.
Recently, Bacillus subtilis SCHR orthologs ywrA and ywrB
were shown to confer chromate resistance in E. coli; how-
ever, both genes were required for the resistant phenotype
[27]. Genes encoding SCHR proteins are usually present
as pairs within a genome [22]. In FB24, though, there does
not appear to be a partner SCHR gene for Arth_4251 and
the aa sequence is more closely related to CHR domains
from LCHR proteins than to those of the SCHR family
[23].

Three open reading frames (ORFs) designated Arth_4253,
Arth_4254 and Arth_4249 in the putative CRD region
share sequence similarity to the C. metallidurans ChrB pro-

teins. Arth_4253, which encodes a 171 aa protein, aligns
with the N-terminal portion of the C. metallidurans ChrB1
protein [GenPept: YP_582012] (42% similarity across
133 aa). Arth_4254 is a predicted 143 aa protein that
exhibits 53% similarity across 132 aa of the C-terminal
portion of the C. metallidurans ChrB1 protein. Together,
Arth_4253 and Arth_4254 appear to encode the complete
sequence for a full-length ChrB gene, but the gene
sequences overlap by 4 nucleotides and a potential Shine-
Dalgarno sequence is present upstream of the predicted
start codon of Arth_4254. Repeated sequencing of this
region did not reveal any potential sequencing errors that
could explain this observation. RT-PCR analysis revealed
that Arth_4253 and Arth_4254 can form a dicistronic
mRNA (operon structure analysis provided in Additional
file 3). Arth_4249 contains 430 nucleotides, but does not
yield any hits to known genes at the nucleotide level. A
BLASTx search of the translated nucleotide sequence ver-
sus the protein database shows that the predicted amino
acid sequence is 76% similar to Arth_4254 across 77 aa.

Arth_4252 encodes a 344 aa protein containing a 40-resi-
due YVTN family beta-propeller repeat and a WD40
repeat domain (with 81% sequence similarity to ORF18
in Arthrobacter sp. strain CHR15) with an N-terminal sig-
nal sequence. The function of Arth_4252 is presently
unknown, but other proteins within the WD40 repeat
domain family are associated with the regulation of signal
transduction and sensing membrane stress [28,29].
Arth_4252 also shares 62% sequence similarity to
Rmet_6194, which is located approximately 4 kb down-
stream of the C. metallidurans chrA1 gene, Rmet_6202.
However, a functional role for Rmet_6194 in chromate
resistance in this organism has not been established.
Orthologs of Arth_4252 were also found in close proxim-
ity to chrA genes in Arthrobacter sp. strain CHR15 and sev-
eral species of Burkholderia as revealed by a gene ortholog
neighborhood search in the Integrated Microbial
Genomes database http://img.jgi.doe.gov.

Arth_4247 has an expected protein sequence of 337 aa
with a putative overlapping signal sequence and trans-
membrane helix at the N-terminus, which suggests that it
is a membrane-anchored protein. The protein sequence
shares 75% aa similarity with lipoproteins of the LppY/
LpqO family, which were first described in Mycobacterium
tuberculosis but have not been functionally characterized.
Other mycobacterial lipoproteins have been shown to
perform such diverse roles as binding solutes in ABC
transporter complexes, sensing environmental stressors
and participating in signal transduction mechanisms [30].
M. tuberculosis, like strain FB24, is a high GC% Gram pos-
itive bacterium of the order Actinomycetales. The role of
lipoproteins in the response to Cr(VI) has not been estab-
lished in other organisms. Other lipoproteins have been
shown to participate in the response to divalent metals
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Schematic of constructs used in complementation experiments with strain D11Figure 3
Schematic of constructs used in complementation experiments with strain D11. Panel A: 10.6 kb region of FB24 
plasmid 3. Numbers correspond to the following genes: Arth_4255 (chrJ), Arth_4254 (ChrB-Cterm), Arth_4253 (ChrB-Nterm), 
Arth_4252 (chrK), Arth_4251 (SCHR), Arth_4249 (ChrB-Cterm2), Arth_4248 (ChrA6), Arth_4247 (chrL). Genes present in each 
of the constructs and chromate resistance levels on 0.1X NA plates. NG = No growth. D11 transformed with vector pART2 
only did not grow on Cr. Panel B: Designated gene names and corresponding gene numbers used within text.
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such as copper and lead [31,32]. In the case of copper,
NlpE stimulated the CpxAR envelope stress response
pathway in copper-exposed E. coli cells [32]; however, it is
not known if an analogous function exists for LppY/LpqO
proteins. As in the case for Arth_4252, orthologs of
Arth_4247 are also present near chrA orthologs in Arthro-
bacter sp. strain CHR15 (81% similarity to ORF 27) and C.
metallidurans (52% similarity to Rmet_6195).

Arth_4255 encodes a putative malate:quinone oxidore-
ductase of 517 aa with 77% similarity to Arthrobacter
aurescens TC1 Mqo. This class of proteins generally func-
tions in energy production, but the biochemical role of
Arth_4255 in the context of Cr(VI) resistance is not
known. In Agrobacterium tumefaciens, insertional inactiva-
tion of an operon specifying NADH:quinone oxidore-
ductases similar to malate:quinone oxidoreductases
(MrpA, MrpC and MrpD) resulted in the loss of arsenite
oxidation. The phenotype was recovered via complemen-
tation with the intact Mrp operon [33]. In other bacteria,
NADH-dependent oxidoreductases have been shown to
reduce Cr(VI) [34]; however, there is no conclusive evi-
dence of Cr(VI) reduction in FB24, and it is unlikely that
Arth_4255 is a Cr(VI) reductase.

Loss of plasmid DNA from strain FB24 results in metal 
sensitivity and increased intracellular chromium 
accumulation
A chromate-sensitive mutant (D11) was obtained after
successive culturing of FB24 for 90 generations in the
absence of chromate. Loss of plasmid DNA was assessed
by Southern hybridization using a 10.6-kb probe for the
CRD, and the results were validated by a PCR screen using
gene-specific primers (data not shown). Strain D11 was
hypersensitive to low levels (0.5 mM), whereas the wild
type grew prolifically on 0.1X nutrient agar (NA) plates
amended with 5 mM chromate. Strain D11 was also very
sensitive to lead, zinc and cadmium. Jerke et al (2008) had
shown that FB24 contained 3 plasmids, each with genes
that confer resistance to lead, zinc and cadmium [35].
Whereas FB24 attained maximal cell densities in 200 μM
lead, zinc and cadmium in mXBM, growth of strain D11
was strongly inhibited by 10 μM lead, 50 μM zinc and 1
μM cadmium (data not shown).

Total intracellular chromium content was measured in
chromate-exposed cells of FB24 and D11 to determine if
the loss of chromate resistance in strain D11 correlated
with increased intracellular accumulation of chromium.
There was a significant difference (p = 0.015) in chro-
mium content between strain D11 (2.8 × 10-7 mol mg pro-
tein-1) and FB24 (9.2 × 10-8 mol mg protein-1). Chromium
was undetectable in FB24 and D11 cells that were not
exposed to chromate. Similar decreases in chromium
accumulation were found between chromate-resistant
and -sensitive strains of P. aeruginosa and C. metallidurans

which contain ChrA efflux pumps [15,36]. The compara-
ble change in chromium accumulation between resistant
and sensitive strains of Arthrobacter sp. FB24 and the two
organisms in which the operation of an efflux pump has
been biochemically demonstrated supports the hypothe-
sis that plasmid-encoded Cr(VI) resistance in strain FB24
results from the function of a ChrA-like efflux pump.

Complementation of strain D11 with CRD
To localize the essential determinants for chromate resist-
ance within the CRD, a series of plasmids were designed
and tested for their capacity to confer chromate resistance
in the chromate-sensitive strain D11 (Figure 3). Only D11
transformed with pKH12 (the complete 10.6 kb region)
was able to grow comparably to FB24 on 0.1X (NA) plates
containing 5 mM chromate (Figure 3). The other trans-
formants, in which regions of the CRD were deleted, were
able to grow only at lower levels of chromate (0.5 to 2
mM). In particular, chrA produced a resistance level of 0.5
mM Cr(VI) regardless of the presence of chrB-Nterm and
chrB-Cterm.

Expression of chromate resistance genes in strain FB24 
under chromate stress
Quantitative RT-PCR was employed to determine if
expression of the chromate resistance genes was inducible
by and specific to Cr(VI). Transcription from each of the
eight genes of the CRD was induced by increasing concen-
trations of chromate (Table 1). Five μM chromate was suf-
ficient to detect enhanced expression of each gene. For
most genes in the CRD, maximal expression was achieved
at 0.1 mM Cr(VI). In the case of chrB-Nterm, Arth_4253,
maximum transcript abundance occurred at 5 μM chro-
mate and was maintained up to 20 mM Cr(VI). ChrB-
Cterm2, Arth_4249, exhibited low (2-fold) induction at 5,
25 and 50 μM Cr, followed by a sharp increase in tran-
script levels at 0.1 mM Cr(VI). Specificity of induction of
the CRD genes was assessed with lead, arsenate and
hydrogen peroxide, all of which induced little or no
expression (Table 2).

Potential regulatory element within the CRD
ChrB has been proposed to function as an activator of the
chromate resistance determinants in C. metallidurans [21].
A bioinformatics analysis using protein function predic-
tion software [37] suggested possible DNA-binding and
kinase activities for ChrB-Cterm and ChrB-Nterm, respec-
tively. In addition, proteins containing WD40 repeats,
such as Arth_4252, have been associated with signal trans-
duction and regulatory mechanisms [29,38]. To deter-
mine if chrK, chrB-Nterm and chrB-Cterm influence
expression of chrA, strain D11 bearing plasmids pKH22
and pKH32 was grown in the presence and absence of
chromate, and qRT-PCR was used to quantify chrA expres-
sion under these conditions. Expression of chrA was
induced to higher levels by chromate in strain D11 bear-
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ing pKH22 than when the putative regulatory genes were
absent (pKH32) (Figure 4). This difference is not likely to
be attributable to differences in plasmid copy number

provided that chrA expression in both strains without
chromate was similar.

Discussion
We have described a cluster of eight genes that confers
chromate resistance in Arthrobacter sp. strain FB24 and
appears to specifically respond to chromate. In other
organisms, proteomic and genomic analyses revealed that
chromate induces a variety of generalized stress-respon-
sive systems, including those involved in the SOS
response, DNA repair and protection against oxidative
stress [39,40]. However, evidence suggests that induction
of the FB24 CRD genes does not represent a general stress
response. The concentrations of chromate (5 μM) that
induced elevated levels of transcripts from CRD genes are
1000-fold lower than those that affect the growth rate of
FB24, and the CRD genes were specifically induced in a
dose-dependent manner in response to chromate expo-
sure. Other classes of stressors (lead, arsenate or hydrogen
peroxide) resulted in little or no induction of CRD genes.
Furthermore, whereas other metal efflux systems, such as
those in the cation diffusion facilitator (CDF) family,
exhibit broad metal specificity [41,42], the lack of induc-
tion of the CRD genes by lead and arsenate supports the
contention that this is a chromate-specific system.

Expression of the CRD in response to chromate was also
verified at the proteomic level using tandem liquid chro-

Table 1: Expression of CRD genes under various levels of chromate stressa.

CRD Gene Basal Expression
In 0 mM Cr(VI)b × 102

Relative Fold Differencec

Cr(VI)/0 mM Cr(VI)

0.005 0.025 0.05 0.1 5 20 100

chrL 4.20
(0.45)

36.7*
(9.3)

95.2
(8.7)

69.8
(12.1)

95.1
(42.9)

63.4
(29.7)

45.1*
(14.3)

15.3*
(3.5)

chrA6 2.25
(0.36)

8.5*
(1.3)

16.2*
(3.9)

27.4*
(2.5)

42.1
(4.2)

50.7
(14.5)

37.6
(9.8)

22.9
(8.2)

chrB-Cterm2 15.6
(4.95)

2.0*
(0.3)

2.2*
(0.5)

2.5*
(0.5)

7.1
(2.6)

6.3
(1.8)

8.0
(3.2)

2.0*
(0.8)

SCHR 8.50
(2.06)

1.9*
(0.5)

4.7*
(0.6)

5.1*
(0.7)

7.8
(0.7)

6.8
(1.9)

5.1
(1.2)

2.1*
(0.9)

chrK 21.9
(2.89)

3.7*
(0.5)

6.1*
(0.7)

7.5
(1.9)

10.1
(1.9)

7.2
(1.6)

6.9
(1.6)

4.4
(1.4)

chrB-Nterm 249
(86.4)

8.0
(2.6)

12.5
(4.0)

13.8
(5.6)

18.0
(8.0)

16.9
(7.1)

14.0
(6.5)

4.2
(1.5)

chrB-Cterm 0.51
(0.04)

4.3*
(0.7)

8.4*
(2.1)

16.0*
(1.5)

21.3
(2.0)

25.4
(4.4)

30.9
(6.0)

15.3
(5.5)

chrJ 1.23
(0.40)

7.2*
(1.5)

14.3*
(2.8)

19.0*
(2.5)

37.0
(15.0)

92.4
(47.2)

47.6
(13.2)

19.2
(6.7)

a The basal (0 mM Cr(VI)) transcript levels are given in copy number/ng total RNA. For the remaining concentrations of Cr(VI), the average fold 
difference relative to the 0 mM Cr(VI) basal state is given. Bold values indicate the concentration at which maximum expression was observed. *, 
significantly different than the maximum expression level.
b Mean transcript copy number/ng total RNA. SE is given in parentheses (n = 6).
c Mean Fold Difference calculated by dividing the average transcript copy number in each Cr(VI) condition by the average transcript copy number in 
0 mM Cr(VI). SE is given in parentheses (n = 6).

Table 2: Specificity of Induction of Chromate Resistance Genesa.

Gene Cr(VI)
5 mM

Lead
5 μMb

Arsenate
5 mMc

H2O2
5 mMc

chrL 63.4
(29.7)

0.3
(0.02)

0.6
(0.05)

12.5
(3.50)

chrA6 50.7
(14.5)

0.2
(0.02)

0.8
(0.15)

3.2
(0.87)

chrB-Cterm2 6.3
(1.9)

0.1
(0.01)

0.3
(0.03)

0.1
(0.01)

SCHR 6.8
(1.9)

0.1
(0.01)

0.3
(0.03)

0.9
(0.12)

chrK 7.2
(1.6)

0.1
(0.01)

0.2
(0.04)

1.0
(0.21)

chrB-Nterm 16.9
(7.1)

0.1
(0.01)

0.4
(0.08)

0.5
(0.12)

chrB-Cterm 25.4
(4.4)

2.6
(0.12)

5.3
(0.97)

4.9
(0.70)

chrJ 92.4
(47.2)

0.7
(0.05)

1.7
(0.10)

6.6
(0.58)

a Values shown for lead, arsenate and H2O2 represent the transcript 
copy number ng-1 total RNA in each experimental condition relative 
to transcript levels in 0.2X NB and the SE (parentheses, n = 6 qRT-
PCR reactions per treatment). The relative expression of each gene in 
5 mM Cr(VI) is shown for comparison.
b 0.5 and 50 μM lead also tested with similar results
c 0.5 and 50 mM Arsenate and H2O2 also tested with similar results
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matography-mass spectrometry [43]. In a global pro-
teomic study, ORF-specific peptides were confirmed for
all genes, with the exception of Arth_4249 and
Arth_4250. Note that protein products were detected for
the truncated genes of ChrA and ChrB (Arth_4253, 4254
and 4251). This is the first report that a SCHR gene prod-
uct is synthesized in response to chromate. Although its
exact function requires further experimentation, chro-
mate-specific increases in transcript and protein abun-
dance levels of Arth_4251 indicate that this gene, and
perhaps its orthologs, plays a significant role in chromate
resistance, as was seen recently with the ywrA and ywrB
SCHR genes in B. subtilis [27]. It is important to note that
SCHR in FB24 has greater sequence similarity to LCHR
sequences than other SCHR sequences possibly explain-
ing its maintenance of a chromate response. Arth_4251
may be an integral link to elucidate the evolution of chro-
mate resistance mechanisms. It may represent a remnant
precursor to the evolution of LCHR from gene duplication
or the next step in evolution essential for the high chro-
mate-resistance phenotype.

Our investigation of Arthrobacter sp. strain FB24 further
suggests roles for three new genes (chrJ, chrK and chrL) in
addition to catalytic and regulatory proteins found in
those Proteobacteria and may help to explain the variabil-
ity in chromate resistance levels across bacterial species.
Whereas genetic studies in Proteobacteria [14,17,20,21]
have pointed to the primacy of the chrA gene in conferring
Cr(VI) resistance, the introduction of chrA alone into
Cr(VI) sensitive strain D11 produced resistance levels that
were only one-tenth of those found when the entire CRD

was introduced. As of late, the chrA gene has only been
intensively studied in two Proteobacteria, P. aeruginosa
and C. metallidurans, and thus far, these systems have been
the paradigm for understanding bacterial chromium
resistance [13,23,44]. Recent studies with chrA orthologs
from two additional Proteobacteria, Shewanella sp. strain
ANA-3 [16] and Ochrobactrum tritici 5bvl1 [17], have also
demonstrated that chrA and neighboring genes (Figure 2)
confer resistance in Cr(VI)-sensitive strains. Aguilar-Bara-
jas et al [16] were able to recover Cr(VI)-resistance in
Cr(VI)-sensitive E. coli and P. aeruginosa strains by express-
ing the chr operon from Shewanella sp. strain ANA-3 on a
low-copy plasmid. Similar to what was shown for Arthro-
bacter FB24, though, expression of chrA alone resulted in
lower resistance levels in E. coli than strains bearing the
entire ANA-3 chrBAC operon. The ANA-3 chrA gene con-
ferred chromate resistance in P. aeruginosa, and this phe-
notype was enhanced by the presence of the host chrR
regulatory gene [16], thus emphasizing the importance of
accessory genes in achieving higher levels of chromate
resistance.

In the case of Ochrobactrum, Cr(VI)-sensitive strains trans-
formed with a plasmid carrying the chrA and chrB genes
from TnOtChr showed similar growth in chromate as the
wild-type O. tritici strain. However, no additional growth
advantage was provided by the presence of chrC and chrF
[17]. In C. metallidurans, deletion of chrC resulted in a
slight decrease in chromate resistance compared to the
wild-type strain (0.3 mM chromate minimal inhibitory
concentration versus 0.35 mM, respectively). In the same
study, deletion of chrF2 did not affect chromate resistance
levels [21]. In these organisms, it appears that chrB makes
a significant contribution to chromate resistance, but the
exact contributions made by chrC and chrF are not so
apparent and may vary depending on the host strain. This
is in stark contrast to the chrJ, chrK and chrL accessory
genes in strain FB24, whose deletion results in a noticea-
ble decrease in chromate resistance. A conclusion that can
be drawn from these observations is that, although chro-
mate efflux appears to be the overarching mode for resist-
ance, the intricacies of the exact biochemical and
regulatory mechanisms controlling efflux differ among
bacterial strains, and these differences await full character-
ization.

Since most work regarding chromate efflux has been done
in Proteobacteria, we were interested in whether CRD
orthologs were present in strains more closely related to
Arthrobacter sp. strain FB24. In searching for organisms
with gene neighborhoods similar to the Arthrobacter FB24
CRD, it was discovered that other actinomycetes share a
similar genetic makeup (Figure 2). Rhodococcus sp. RHA1
and Nocardiodes sp. JS614 both contain chrK, chrB-Nterm
and chrB-Cterm orthologs in the near vicinity of chrA,
while the chromate-resistant Arthrobacter sp. CHR15 har-

Induction of chrA in D11 transformed with pKH22, pKH32Figure 4
Induction of chrA in D11 transformed with pKH22, 
pKH32. Error bars show the standard error (n = 6 qRT-
PCR reactions per treatment)
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bors chrJ, chrK and chrL orthologs near chrA and chrB. The
chromate resistance status of Nocardiodes sp. JS614 and
Rhodococcus sp. RHA1 is not known; however, both spe-
cies are known PCB degraders and are considered impor-
tant environmental Actinobacteria [45-47]. The distinct
genomic context between Proteobacteria and Actinobac-
teria suggests that functional and regulatory differences in
efflux-mediated chromate resistance likely exist in dis-
tantly related taxa. This demands genetic and biochemical
studies in a greater diversity of organisms in order to fully
understand the breadth of physiological strategies that
have evolved to confer chromium resistance.

Conclusion
This study increases our knowledge of the genetics of
chromate resistance by identifying three novel genes that
play a significant role in chromate resistance in Arthro-
bacter sp. strain FB24: chrJ, chrK, and chrL. Future work
should focus on elucidating the exact physiological func-
tion of these genes. However, our research is an important
first step in characterizing potential regulatory networks
controlling efflux-mediated chromate resistance. We fur-
ther illustrate the value of examining the genomic context
of already characterized metal resistance genes in identify-
ing new players in metal resistance mechanisms.

Methods
Bacterial strains and growth conditions
Bacterial strains and plasmids used in this study are listed
in Table 3. Arthrobacter strains were cultured in 0.1X or
0.2X nutrient broth (NB) [Difco, Sparks, MD], Luria-Ber-
tani (LB) medium pH 7.0, or modified Xenobiotic Basal
Medium (mXBM). Modified XBM contained 10 mM glyc-
erol phosphate, 10 mM KNO3, 6.0 mM NH4NO3, 0.01
mM CaCl2, 2 ml L-1 of EDTA Fe Citrate Solution [7.4 mM
FeCl3, 11.4 mM Na2EDTA, 12.8 mM sodium citrate
(C6H5O7Na3), 100 mM MgSO4, 5% NH4Cl2, 0.05 M
CaCl2, 1.0 M NaCl, 1 M NaHCO3], 10 ml L-1 of vitamin
solution (see Jerke [48] and Additional file 4 for compo-
nents), 1 ml L-1 SL-7 trace elements [49], with glucose (1.7
mM) as a carbon and energy source.

Induction of Cr(VI) resistance genes was assessed in
Arthrobacter sp. strain FB24 cells by culturing in 150 ml NB
to early mid-log phase (OD600, 0.3) at 30°C with shaking
at 200 rpm. Cells were harvested by centrifugation,
washed once with 0.2X NB and suspended in 15 ml 0.2X
NB. Chromate (K2CrO4) was added to final concentra-
tions of 0, 0.005, 0.025, 0.05, 0.1, 5, 20 or 100 mM. To
test for specificity of induction, additional cultures were
incubated in the presence of 0, 0.5, 5 and 50 μM PbNO3
in mXBM; 0, 0.5, 5 and 50 mM Na2HAsO4·7 H2O in 0.2X
NB; and 0, 0.5, 5, 50 mM hydrogen peroxide (H2O2) in
0.2X NB. Cells were incubated for 2.5 hours at 30°C with
agitation. Induction experiments with Cr(VI)-sensitive
strain D11 transformed with pKH22, pKH23 and pKH24

were carried out in the same manner with the following
exceptions: kanamycin was added to a concentration of
30 μg ml-1 and chromate was added to one culture at a
concentration of 0.025 mM.

Generation of chromate-sensitive FB24 derivative
The lead- and chromate-sensitive mutant, D11, was gener-
ated from the resistant wild-type strain FB24 by growing
cells in LB without chromate. Cultures were transferred
daily by diluting cells 1:1000 into fresh media. Transfers
were maintained for approximately 90 generations at
30°C with shaking at 200 rpm and then screened for cells
sensitive to 75 μM lead on mXBM agar plates. Lead-sensi-
tive colonies were then tested for Cr(VI) sensitivity on
0.1X nutrient agar (NA) plates supplemented with 0.5, 1,
2 and 5 mM K2CrO4. Loss of plasmid DNA in strain D11
was assessed by Southern hybridization and rep-PCR.
Loss of the CRD genes was confirmed by PCR using gene-
specific primers.

Total genomic DNA was extracted from cultures grown
overnight in NB with appropriate selection. Cells were
harvested by centrifugation, suspended in TE buffer, and
treated with lysozyme (1 mg ml-1) for one hour followed
by treatment with proteinase K (10 mg ml-1). Cells were
lysed using a FastPrep instrument (Qbiogene, Carlsbad,
CA) at a setting of 4 for 30 s with 0.64 cm ceramic beads.
Genomic DNA was purified by phenol: chloroform: iso-
amyl alcohol extraction and precipitated with isopropa-
nol [50]. DNA was digested with restriction enzymes (SacI
and XcmI) and separated on a 0.7% agarose gel and trans-
ferred to Hybond-N+ membrane (Amersham Pharmacia,
Pisscataway, NJ) using a Trans-blot semi dry transfer cell
(Bio-Rad, Hercules, CA) following the manufacturer's rec-
ommendations for voltage and transfer time. A digoxi-
genin-labeled probe targeting the 10.6-kb CRD on
Arthrobacter sp. strain FB24 pFB24-104 [GenBank:
NC_008539] was generated by PCR with primers C42/F
and C42/R (Table 4) using the TripleMaster PCR system
(Eppendorf North America, Inc., Westbury, NY) according
to the manufacturer's reaction mixture and cycling speci-
fications for long-range PCR. Hybridization and chro-
mogenic detection was carried out under high stringency
conditions as described in the DIG Application Manual for
Filter Hybridization (Roche Applied Science, Indianapolis,
IN).

Chromate resistance determination
Starter cultures were grown overnight at 30°C in 0.2X NB
with appropriate selection. Cultures for minimal inhibi-
tory concentration (MIC) determination were diluted
1:1000 in 3 ml of 0.1X NB for chromate cultures or mXBM
plus glucose for divalent cationic metals in borosilicate
glass tubes and maintained at 30°C with shaking at 200
rpm. The OD600 was measured daily for a period of 3 days
until growth stabilized. Divalent cationic metals used in
Page 10 of 14
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MIC experiments were added as lead nitrate (Pb(NO3)2,
zinc chloride (ZnCl2), or cadmium sulfate (CdSO4) at
concentrations ranging from 0 to 200 μM. Cultures were
prepared in triplicate for each growth or MIC experiment.
D11 transformants were screened for chromate resistance
by streaking single colonies onto 0.1X nutrient agar plates
containing 0, 0.5, 1, 2, or 5 mM chromate.

Sequence analysis of putative chromate efflux gene
The genome sequence is available in the GenBank data-
base under accession numbers NC_008537 to
NC_008539 and NC_008541. The genome was
sequenced by the Department of Energy Joint Genome
Initiative (DOE-JGI) and can be accessed at http://
genome.jgi-psf.org/finished_microbes/art_f/
art_f.home.html. The annotated sequence at this site was
used for locating the CRD and construction of primer
sequences. Multiple sequence alignment of Arth_4248
(ChrA) with other described and putative members of the
CHR family of chromate efflux proteins [24] was per-
formed using the ClustalX program and default setting for
Gonnet series for protein weight matrix [51] and boot-
strap Neighbor Joining tree options with 1000 resam-
plings. Output trees were visualized in Fig Tree http://
tree.bio.ed.ac.uk/software/figtree/. Sequences were
retrieved from the UniProt database [52] by conducting a
search for ChrA sequences according to Diaz-Perez et al
[22]. Some additional eukaryotic sequences were found
by conducting a similar search of the GenBank database
[53]. All short ChrA (SCHR) sequences (<350 amino
acids) were excluded from the alignment. A total of 513
sequences (Additional files 1 and 2) were retrieved and
aligned. Transmembrane helices were predicted using the
TMHMM 2.0 server [54].

Cloning of chromate resistance determinant
A series of constructs were created to test expression of
chromate resistance in strain D11. All constructs, except
for pKH62 and pKH72, were prepared by subcloning into
pBluescript SK+ (Stragene, La Jolla, CA) prior to cloning
into pART2 [55]. Recombinant plasmid DNA was trans-
formed into strain D11 by electroporation as described
elsewhere [56]. Ampicillin was used for selection at a con-
centration of 100 μg ml-1 for pBluescript-derived trans-
formants, and kanamycin was used at a concentration of
40 μg ml-1 for pART2-derived transformants. Plasmids
were submitted to the Purdue University Core Genomics
Center for validation of insert sequences.

Plasmid pKH11 was generated by amplifying a 10.6 kb
fragment bearing bases 72880 to 83464 of pFB24-104
using the TripleMaster PCR system (Eppendorf North
America, Inc., Westbury, NY) according to the manufac-
turer's specifications and primers C42/F and C42/R. The
PCR product was digested with HindIII and XbaI and
ligated into pBluescript SK+ to give pKH11. Plasmid
pKH21 contains a 7.3 kb insert bearing bases 74642 to
81771 from FB24-104; the insert was isolated by digesting
pAOWA10128 (obtained from DOE-JGI) with XbaI and
HindIII. The remaining constructs (Table 3) were gener-
ated by restriction digestion of either pKH11 or pKH21
using standard cloning procedures [50].

Expression analysis by quantitative reverse transcriptase 
PCR (qRT-PCR)
Primer sequences for qRT-PCR are listed in Table 4. Total
RNA was extracted from Arthrobacter cell pellets using the
FastRNA PRO Blue Kit (MP Biomedical, Solon, OH) and
treated with Turbo DNA-Free DNAse (Ambion, Austin,

Table 3: Bacterial strains and plasmids used in this study.

Strain or plasmid Description Reference

Arthrobacter
FB24 CrR [6]
D11 CrS derivative of FB24 This work

E. coli
JM110 dam-dcm- Stratagene

Plasmids
pAOWA10128 7.3 kb insert in pMCL200 obtained from DOE-JGI. Contains Arth_4248-Arth_4254. DOE-JGI
pBluescript II SK+ 3.0 kb, ApR, lacZ, used for sublconing inserts prior to ligation into pART2. Promega
pART2 4.6 kb, KmR, pCG100 ori, ColE1 ori, vector for expression in Arthrobacter [55]
pKH11 10.6 kb PCR product from FB24 plasmid 3 (CP000457) containing Arth_4247-4255 in pBluescript II SK+ This worka

pKH12 Insert from pKH11 cloned into pART2 This work
pKH21 7.3 kb insert from pAOWA10128 in pBluescript II SK+ This work
pKH22 Insert from pKH21 cloned into pART2 This work
pKH32 3.7 kb EcoRI-KpnI fragment from pKH21 cloned into pART2. Contains Arth_4248-4249. This work
pKH42 3.8 kb XhoI-BglII fragment from pKH21 cloned into pART2. Contains Arth_4251-Arth_4254. This work
pKH52 8.3 kb insert from MluI-BglII digest of pKH11 to delete Arth_4252 and Arth_4252 cloned into pART2 This work
pKH62 pKH22 digested with SfiI to delete Arth_4249-Arth_4252. This work
pKH72 pKH12 digested with ScaI and XbaI to delete Arth_4247. This work

aA schematic of each construct is presented in Figure 3.
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TX) to remove contaminating DNA. RNA concentrations
were quantified by measuring the A260 on a Smart Spec
3000 spectrophotometer (Bio-Rad, Hercules, CA). cDNA
was synthesized from 100 ng total RNA using ImProm II
reverse transcriptase (RT) (Promega, Madison, WI) fol-
lowing the manufacturer's reaction conditions. PCR was
performed using the following conditions: 98°C for 5
min, followed by 30 cycles of 94°C for 30 s, 56-58°C
(depending on the primer pair) for 30 s, 72°C for 1 min,
with a final extension step at 72°C for 10 min.

For real-time PCR, 1 μl of the reverse transcription reac-
tion mixtures prepared as described above was used as the
template. The PCR mixture contained 1 U of HotMaster
Taq (Eppendorf North America, Inc., Westbury, NY), 1×
HotMaster Taq PCR buffer with 25 mM MgCl2, 1% bovine
serum albumin, 0.2 mM each of dNTPs, 0.25 mM each of
a forward and reverse primer, SYBR Green (1:30,000;
Molecular Probes, Eugene, OR) and 10 nM FITC (Sigma,
St. Louis, MO) in a final volume of 25 μl. Reactions were
carried out using a Bio-Rad MyIQ single-color real time
PCR detection system, and data were analyzed using the
MyIQ Optical System software version 2.0. Transcript
copy numbers were calculated from a standard curve
using known concentrations of pKH11. Plots of transcript
copy number ng-1 total RNA versus chromate concentra-
tion were prepared in GraphPad Prism 4 (GraphPad Soft-
ware, San Diego, CA). The mean and standard errors were
determined from 6 qRT-PCR reactions per chromate treat-
ment (3 independent cultures × 2 reactions per culture).
Significant differences among chromate treatments for
each gene were determined by generating least square
means in PROC GLIMMIX with the LS MEANS option in

SAS version 9.1. Multiple comparisons were adjusted
using Tukey's test. To normalize the variance of the model
residuals, a negative binomial distribution was used for
each set of gene expression data.

Chromium content in chromate-exposed cells
Arthrobacter strains FB24 and D11 were grown to mid-log
phase (OD600, ~0.2) in 50 ml 0.2X NB at which time four
replicate cultures were amended with 2 mM chromate
(final concentration). One culture per strain was incu-
bated without chromate. All cultures were incubated for
an additional 2 h. Aliquots of 40 ml of cells were har-
vested by centrifugation and washed 4 times with ddH2O.
Cell pellets were solubilized in concentrated nitric acid
(cHNO3) and heated at 95°C for 2 h. Samples were
adjusted to a final concentration of 2% HNO3 with dou-
ble distilled water and analyzed for total chromium con-
tent at the Purdue University Mass Spectrometry Center.
The 52Cr inductively coupled argon plasma mass spec-
trometry (ICPMS) results were obtained using an ELE-
MENT-2 (ThermoFinnigan, Bremen, Germany) mass
spectrometer in the medium resolution mode. The sam-
ples were introduced into the plasma using an Aridus des-
olvating system with a T1H nebulizer (Cetac
Technologies, Omaha NE), which is used to enhance sen-
sitivity and reduce oxide and hydride interferences. The
argon sweep gas and nitrogen of the Aridus is adjusted for
maximum peak height and stability using 7Li, 115In and
238Upeaks obtained from a multi-element standard (1 ng/
ml, Merck & Co.). Chromium concentration was normal-
ized per mg protein. Total soluble cell protein concentra-
tion was determined using the Lowry method [57] after
collecting cells by centrifugation and extracting protein

Table 4: PCR and qRT-PCR primers used in this study.

Primer Sequence (5'→3') Description

C42/F CCCAAAGCTTGGGTCCTGCTCATCACCAGAAACTCCA HindIII site, used to construct pKH11
CF2/R GCTCTAGAGCAACCGCTTTCAGGCACTGTTGTTC XbaI site, used to construct pKH11

Primers for RT-PCR--asterisk denotes primer for cDNA synthesis
Primer Sequence (5'→3') Gene
MQO RT/A* AGGCCTGCCCGTAGACTTTC Arth_4255
MQO RT/B TCTTCACCGCCGGTATGAG Arth_4255
ChrB RT/A* CGAGGATGAGGGATCGTTTG Arth_4254
ChrB RT/B TGATCCGCAGGAACATCG Arth_4254
SP RT/F CCCGGGAGCACTTCGACTGGA Arth_4253
SP RT/R* CCTGGCGCGTTCGGTTGCAT Arth_4253
Cog4RT/F AAGGCCTACGTCTCCAACGAACA Arth_4252
Cog4RT/R* ATTCTGTCGGTGACCGTGTCAGT Arth_4252
ChrAP RT/A GCTTCATCCTGTGCTTCTTG Arth_4251
ChrAP RT/B* TGTTCATGATGCCGGTACTG Arth_4251
BP RT/F CCTGCGCCGCTACGAACTCACCGAT Arth_4249
BP RT/R* GCGCTGGTGTTCGTACAGCCCGTC' Arth_4249
ChrAC RT/A* AAGTACAGGGCCAGGTTC Arth_4248
ChrAC RT/B TGCGGTCCTGTCCTATATC' Arth_4248
Lppy RT/F AGTGACCACGGCCATCAATTTCCA Arth_4247
Lppy RT/R* TCAGGGAATGATTGTGCACGGAGA Arth_4247
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with 1N NaOH at 100°C. Student's t-test was used to
determine statistically significant differences in the aver-
age chromium content between strains D11 and FB24 at
the 95% confidence level.
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Additional file 1
Supplemental Figure S1. Radial phylogenetic tree of LCHR proteins gen-
erated from an alignment of 513 putative ChrA, chromate ion transport 
sequences (see Supplemental Table S1) using ClustalX. Neighbor Joining 
tree graphically viewed using the FigTree program http://tree.bio.ed.ac.uk/
software/figtree/. Branched tips labeled with protein accession number fol-
lowed by species name. Scale bar indicates 0.06 amino acid substitutions 
per site. Branches colors are fungi-brown, algae-green, Archaea-red, Pro-
teobacteria (alpha-pink, beta-magenta, delta-blue, gamma-purple), 
Cyanobacteria-torquoise, Firmicutes-yellow, Actinobacteria-red and all 
other Bacteria-black.
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Supplemental Table S1. Sequence accession numbers, taxa name and 
sequence length of putative ChrA sequences used in phylogenetic analysis.
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Additional file 3
Supplemental Figure S2. Operon structure analysis of the Arthrobacter 
sp. strain FB24 CRD. RT-PCR was used to determine co-transcription of 
the genes within the chromate resistance determinant. A: Location of 
primer pairs. Primer sequences are listed in table 4. Primer numbers cor-
respond to the following primers: 1-MQO RT/A, 2-BC RT/A, 3-SP RT/F, 
4-SP RT/R, 5-COG4RT/F, 6-COG4RT/R, 7-ChrAP RT/A, 8-ChrAP RT/
B, 9-BP RT/R. B: RT-PCR results with listed primer pairs. C: RT-PCR 
products of reactions performed with primer pair 2 + 4 (lanes 2 and 3) 
and primer pair 5 + 8 (lanes 8 and 9). Lanes 1 and 7-100 bp PCR ruler, 
dark band is 1 kb; Lanes 4 and 10-no template controls; Lanes 5 and 11-
No RT controls; Lanes 6 and 12 positive PCR control using pKH12 as 
template.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2180-9-199-S3.JPEG]

Additional file 4
Supplemental Table S2. Recipe for vitamin solution added to mXBM.
Click here for file
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