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Introduction

Influenza A virus, a negative-stranded RNA virus that belongs to the Orthomyxoviridae 

family, is responsible for annual epidemics that cause severe morbidity or death in ap-

proximately 5 million people worldwide. The constant pandemic potential of novel 

influenza subtypes remains a serious threat to public health, as illustrated by the re-

cent pandemics involving swine H1N1 and avian H7N9 [1,2]. Therefore, there is an ur-

gent need to develop effective vaccines against influenza viruses.

 The innate immune system, the first line of defense against pathogens, relies on pat-

tern recognition receptors (PRRs) to detect pathogen-associated molecular patterns 

(PAMPs) [3,4]. For example, influenza genomic RNA is recognized by Toll-like recep-

tor (TLR)-7, which is expressed in late endosomes [5,6], whereas the cytosolic sensor, 

retinoic acid inducible gene-I (RIG-I), detects 5’-triphosphates within the influenza 

viral genome in infected cells [7,8]. Signaling via these receptors activates antigen-pre-

senting cells (APCs). These cells produce type I interferons (IFNs) and proinflamma-

tory cytokines, which help to establish an antiviral state, recruit additional immune 

cells, and direct the adaptive immune response. The type I IFNs (produced mainly by 

plasmacytoid dendritic cells [DCs]) not only limit viral replication but also act as a nat-

ural mucosal adjuvant for intranasally administered influenza vaccines [9]. Many stud-

ies show that mucosal immunity induced by natural respiratory influenza infections is 

more cross-protective against subsequent infection by variant viruses than systemic 

immunity induced by parenteral immunization with inactivated vaccine [10]. There-

fore, to develop an effective vaccine, it is desirable to mimic the process of natural in-
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Inflammasomes are cytosolic multiprotein complexes that sense microbial motifs or cellular 
stress and stimulate caspase-1-dependent cytokine secretion and cell death. Recently, it has 
become increasingly evident that both DNA and RNA viruses activate inflammasomes, which 
control innate and adaptive immune responses against viral infections. In addition, recent 
studies suggest that certain microbiota induce inflammasomes-dependent adaptive immunity 
against influenza virus infections. Here, we review recent advances in research into the role 
of inflammasomes in antiviral immunity.
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fection that bridges the innate and adaptive immune respons-

es. For example, intranasally inoculated formalin-inactivated 

influenza virus vaccine induces protective immunity against 

both homologous and heterologous viruses [11,12]; this is 

probably because the vaccine retains the viral genomic RNA 

that stimulates TLR7/8 [13]. By contrast, a split influenza vac-

cine does not induce antigen-specific immunity when the 

vaccine is introduced intranasally [14]. However, synthetic 

double-stranded RNA (dsRNA) can restore the immunoge-

nicity of the vaccine by mimicking PAMPs [14].

Recognition of Viruses by Inflammasomes

Inflammasomes are cytosolic multiprotein complexes that 

stimulate the activation of caspase-1, which in turn induces 

the secretion of inflammatory cytokines such as interleukin 

(IL)-1 beta and IL-18 (Fig. 1) [15,16]. Inflammasome-mediat-

ed cytokine release requires two signals: signal 1 (transmitted 

via TLR, IL-1R, or the tumor necrosis factor receptor) upregu-

lates the expression of pro-1β, pro-IL-18, and nucleotide-bin-

ding domain and leucine-rich-repeat-containing protein 3 

(NLRP3), whereas signal 2 induces activation of caspase-1 

[17]. Thus far, three classes of inflammasome, RIG-I, NLRP3, 

and pyrin and HIN domain-containing protein (PYHIN), are 

known to be involved in viral recognition. One study reported 

that infection with vesicular stomatitis virus or transfection 

with 5’-triphosphate RNA activates the RIG-I inflammasome 

[18]. The PYHIN proteins absent in melanoma 2 (AIM2) and 

gamma IFN-inducible protein 16 (IFI16), the so-called “AIM2-

like receptors (ALRs)”, bind directly to viral DNA and engage 

the adaptor protein, apoptosis-associated speck-like protein 

containing a CARD (ASC) to form the PYHIN inflammasome. 

Fig. 1. Recognition of RNA viruses by nucleotide-binding domain and leucine-rich-repeat-containing protein 3 (NLRP3) inflammasome. The 
NLRP3 recognizes the disturbances in intracellular ionic concentrations induced by viroporins from respiratory syncytial virus (RSV), encephalo-
myocarditis virus (EMCV), poliovirus, enterovirus 71 (EV71), human rhinovirus (HRV), or influenza virus. Measles virus V protein inhibits activa-
tion of NLRP3 inflammasome by interacting with the NLRP3. The RNA helicase DHX33 binds to cytosolic double-stranded RNAs (dsRNAs) to 
trigger NLRP3 inflammasome activation. After activation of the NLRP3, it recruits apoptosis-associated speck-like protein containing a CARD 
(ASC) that, in turn, recruits pro-caspase-1, which is activated by autocatalytic cleavage. Cleaved caspase-1 catalyses proteolytic processing of 
pro-interleukin (IL)-1β and pro-IL-18 into the active forms and stimulates their secretion. ER, endoplasmic reticulum; SH, small hydrophobic.
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The AIM2 inflammasome is activated by intracellular double-

stranded DNA (dsDNA) derived from DNA viruses [19-22]. 

Experiments using AIM2-deficient mice reveal that AIM2 is 

essential for regulating caspase-1-dependent maturation of 

IL-1β and IL-18 in response to dsDNA and DNA viruses, such 

as vaccinia virus and mouse cytomegalovirus [23]. The intra-

nuclear DNA genomes of Kaposi sarcoma-associated herpes-

virus, Epstein-Barr virus, or herpes simplex virus 1, are recog-

nized by the DNA sensor, IFI16, which then activates the 

IFI16 inflammasome [24-26]. In contrast to the RIG-I and PY-

HIN (ALRs) inflammasomes, which recognize viral nucleic 

acids, the NLRP3 inflammasome is activated by a wide range 

of stimuli, including endogenous metabolites, bacterial com-

ponents, and environmental irritants, in addition to viruses 

[17]. In the case of influenza virus, the proton-selective ion 

channel protein, M2, is necessary and sufficient to stimulate 

the NLRP3 inflammasome pathway, and its localization to 

the trans-Golgi network is important for NLRP3 activation 

(Table 1, Fig. 1) [27]. Interestingly, a mutant influenza virus 

M2 protein, which has lost its proton selectivity and, there-

fore, enables the transport of other cations (Na+ and K+), me-

diated increased IL-1β secretion when compared with the 

wild-type M2 protein [27]. Encephalomyocarditis virus acti-

vates the NLRP3 inflammasome via its non-structural pro-

tein, 2B, by stimulating Ca2+ flux from intracellular storage 

sites into the cytosol (Table 1, Fig. 1) [28]. Importantly, 2B 

proteins expressed by other picornaviruses, poliovirus, and 

enterovirus 71, also activate the NLRP3 inflammasome. In 

agreement with Ito et al. [28], Triantafilou et al. [29] showed 

that the 2B protein of human rhinovirus, another member of 

the Picornaviridae family, triggers NLRP3 inflammasome ac-

tivation by inducing Ca2+ flux from the endoplasmic reticu-

lum and Golgi compartments. They also demonstrated that 

human respiratory syncytial virus (RSV) small hydrophobic 

protein, which mediates membrane permeability to ions or 

small molecules [30], is essential for activating the NLRP3 in-

flammasome (Table 1, Fig. 1) [31]. Recently, Mitoma et al. [32] 

identified a new pathway that links RNA viruses with NLRP3 

inflammasome activation. The DExD/H-box RNA helicase, 

DHX33, binds to cytosolic dsRNAs in RSV- or reovirus-infect-

ed THP-1 cells (a human acute monocytic leukemia cell line) 

to trigger NLRP3 inflammasome activation (Table 1, Fig. 1). It 

should be emphasized that the activation status of caspase-1 

is different between monocytes (constitutive activation) and 

macrophages (inducible activation) [33]. Although the cell-

type specific differences in caspase-1 activation should be 

considered in each case, these observations highlight the im-

portance of viroporins, transmembrane pore-forming viral 

proteins [34], and dsRNA in the virus-induced activation of 

the NLRP3 inflammasome.

Inflammasomes Control Antiviral Adaptive 
Immune Responses

Innate recognition of influenza virus via PRRs not only plays 

a key role in limiting viral replication at the early stages of in-

fection, but also in initiating antigen-specific adaptive im-

mune responses [3,35]. Recent studies highlight the impor-

tance of inflammasome activation for antiviral defense. NL-

RP3 plays a critical role in limiting lung damage resulting from 

influenza virus infection [36,37]; however, recognition of in-

fluenza virus by the NLRP3 inflammasome does not limit 

early viral replication in the lung [38]. Using a sub-lethal dose 

(10 pfu) of influenza virus, the NLRP3-independent inflam-

masomes activation and its downstream IL-1R signaling events 

are found to be required to mount adaptive immune respons-

es to influenza virus infection (Fig. 2) [38]. The discrepancies 

in these results may be explained by the fact that other mem-

Table 1. Molecular mechanisms underlying RNA virus-induced activation of the NLRP3 inflammasome

Family Virus Effector Mechanism Cell line Reference

Orthomyxoviridae Influenza virus M2 Imbalances in intracellular ionic concentrations Mouse BMMs or BMDCs [27]
Picornaviridae EMCV

EV71
Poliovirus
Rhinovirus

2B
2B
2B
2B

Ca2+ influx
Ca2+ influx
Ca2+ influx
Ca2+ influx

Mouse BMMs or BMDCs
Mouse BMMs or BMDCs
Mouse BMMs or BMDCs

Human primary bronchial epithelial cells

[28]
[28]
[28]
[29]

Paramyxoviridae RSV
RSV

SH
dsRNA

Imbalances in intracellular ionic concentrations
DHX33

Human primary bronchial epithelial cells
Human THP-1

[31]
[32]

Reoviridae Reovirus dsRNA DHX33 Human THP-1 [32]

NLRP3, nucleotide-binding domain and leucine-rich-repeat-containing protein 3; BMMs, bone marrow-derived macrophages; BMDCs, bone marrow-derived dendritic 
cells; EMCV, encephalomyocarditis virus; EV71, enterovirus 71; RSV, respiratory syncytial virus; SH, small hydrophobic; dsRNA, double-stranded RNA.
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bers of the NLRP family, such as NLRP6 and NLRP12, form 

an ASC-dependent caspase-1 activating complex [39,40]. So 

how do inflammasomes activation and downstream cytokine 

signaling initiate adaptive immune responses? Trans-activa-

tion of respiratory DCs via IL-1R is required for the trafficking 

of antigen-captured DCs to the draining mediastinal lymph 

nodes (mLNs) and the subsequent induction of virus-specific 

CD8+ T cell priming (Fig. 2) [41], suggesting that DCs that rec-

ognize influenza virus and activate the NLRP inflammasomes 

are infected by the virus, which renders them unable to per-

form their antigen-presenting functions in mLNs [42,43]. This 

should be considered when developing new intranasal vac-

cines for influenza virus, since heat- or ultraviolet-inactivated 

influenza virus does not activate inflammasomes [38].

DNA Vaccination and the AIM2  
Inflammasome

Because DNA vaccines induce long-lasting humoral and cel-

lular immunity, they are a powerful tool in the fight against 

infectious diseases. Genetic vaccinations comprise eukaryot-

ic expression plasmids that are inoculated into target cells, 

which then translate them and express the antigens. The effi-

cacy of this technique correlates with the inflammation in-

duced in muscle cells at the site of DNA vaccination, which 

causes the release of “danger signals” that induce local in-

flammatory responses and recruit immune cells to the site of 

vaccination. In this context, co-administration of plasmid 

DNA along with adjuvant-like cytokine genes, liposomes, or 

hyaluronidase, substantially improves the immunogenicity 

of the DNA vaccine [44-48]. The protective immunity con-

ferred by DNA vaccines has been illustrated using animal 

models, including those infected by severe acute respiratory 

syndrome, influenza virus, or human immunodeficiency vi-

rus (HIV) [49-51]. DNA vaccines have proved successful in 

pre-clinical and clinical trials [52-54]. In addition, passive im-

mune-prophylaxis using viral vectors or plasmids encoding 

neutralizing antibodies induces the long-term expression of 

antibodies at high concentrations, and provides effective pro-

tection against influenza virus or HIV infection [55-58].

 AIM2, which recognizes cytosolic dsDNAs of self- and non-

self-origin, including viral DNA, combines with the adaptor 

protein ASC to form a caspase-1-activating inflammasome 

[59]. A recent report shows that the electrotransfer of plasmid 

DNA into murine skeletal muscle augments the expression of 

genes associated with intracellular DNA sensors, including 

AIM2 [60]. This suggests that the AIM2 inflammasome path-

way is required for the immunogenicity of DNA vaccines. In 

fact, AIM2 knockout mice show a significantly reduced anti-

hemagglutinin (HA) antibody response after immunization 

with a DNA vaccine expressing the HA of influenza virus [61]. 

Interestingly, blocking IL-1 signaling did not significantly af-

fect the anti-HA antibody responses. Further studies are re-

quired to determine the mechanisms by which the AIM2 in-

flammasome pathway enhances antibody responses after 

DNA vaccination.

Regulation of Antiviral Immunity by the 
Intestinal Microbiota

Commensal bacteria are essential for shaping intestinal im-

mune responses [62]; however, the beneficial role of com-

mensal bacteria is not restricted to the intestinal mucosa. Re-

cent studies suggest a link between the intestinal microbiota 

and antiviral immunity at non-intestinal mucosal surfaces, 

such as those in the lung. We previously demonstrated that 

antibiotic-treated mice show impaired adaptive immune re-

Fig. 2. Proposed model of inflammasome-dependent induction of 
adaptive immunity against influenza virus infection. Activation of 
caspase-1 in influenza virus-infected respiratory dendritic cells (DCs) 
stimulates secretion of interleukin-1 beta (IL-1β) and triggers a form 
of cells death, known as pyroptosis. Bystander DCs activated by in-
flammatory signals capture viral antigens (vAg) and migrate from the 
lung to the mediastinal lymph nodes (mLNs) to prime naïve CD8 T 
cells. Gut-resident microbiota provides signals leading to the expres-
sion of mRNA for pro-IL-1β, pro-IL-18, and NLRP3 at steady state. 
NLRP3, nucleotide-binding domain and leucine-rich-repeat-containing 
protein 3.
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sponses to influenza virus infection when compared with 

water-fed mice [63]. Mice treated with antibiotics showed re-

duced expression of pro-IL-1β, pro-IL-18, and NLRP3 mRNA 

in the lung, resulting in reduced secretion of mature IL-1β af-

ter intranasal infection with influenza virus (Fig. 2). As a re-

sult of impaired inflammasome activation in the lungs of an-

tibiotic-treated mice, the number of DCs migrating from the 

lung to the mLNs was lower than that in water-fed mice after 

influenza virus infection. Importantly, the administration of a 

TLR ligand, lipopolysaccharide, was able to restore both the 

migration of respiratory DCs to mLNs and the virus-specific 

T cell responses in antibiotic-treated mice. Two follow-up 

studies identified the molecular mechanism that links the in-

testinal microbiota to antiviral immunity [64,65]. The induc-

ed expression of antiviral defense genes by peritoneal macro-

phages derived from antibiotic-treated mice, or by splenic 

DCs derived from germ-free mice, was diminished after stim-

ulation with influenza virus or poly(I:C). This suggests that 

the microbiota primes APCs by providing tonic type I IFN 

signals that induce efficient viral recognition and the genera-

tion of antiviral adaptive immune responses. Although the 

main rea son of antibiotic treatment to patients infected with 

influenza virus is to protect the patients from the secondary 

bacterial infection that causes sever pneumonia, these stud-

ies suggest that the administration of antibiotics to patients 

infected with influenza virus may have negative effects. Al-

though it is still unclear whether it is the species of bacteria or 

the overall composition of the microbiota that is important 

for antiviral immunity, the use of gnotobiotic animals and ge-

nomic sequencing analysis of the microbiota will highlight 

new strategies for the development of effective influenza vac-

cines.
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