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MicroRNAs (miRNAs) are small non-coding RNAs which post-transcriptionally suppress
target mRNAs expression and/or translation to modulate pathophyological processes.
Expression and function of miRNAs are fine-tuned by a conserved biogenesis machinery
involves two RNase-dependent processing steps of miRNA maturation and the final step
of miRNA-induced silencing complex (miRISC)-mediated target silencing. A functional
miRISC requires Argonaute 2 (AGO2) as an essential catalytic component which
plays central roles in miRISC function. We uncovered a post-translational regulatory
mechanism of AGO2 by E-cadherin. Mechanistically, E-cadherin activates ERK to
phosphorylate AGO2, along with enhanced protein glycosylation. Consequently, the
phosphorylated AGO2 was stabilized and ultimately resulted in induced miRISC activity
on gene silencing. This study revealed a novel pathway for miRNA regulation through an
E-cadherin-mediated miRISC activation.
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INTRODUCTION

MicroRNAs (miRNAs) are small non-coding RNAs which suppress the expression of target genes.
By base pairing to target mRNA 3′ UTR, miRNAs may induce degradation or translational
inhibition of specific mRNAs and consequently results in the downregulation of target protein
expression (Winter et al., 2009). MiRNA biogenesis is a two-step RNase-dependent cleavage
process from nucleus to cytoplasm mediated by Drosha and Dicer, respectively (Winter et al.,
2009). First, primary miRNAs (pri-miRNAs) are transcribed by RNA polymerase II and cleaved
by Drosha/DGCR8 complex into precursor miRNAs (pre-miRNAs) in nucleus. Exportin-5
then transports pre-miRNAs to cytoplasm for Dicer-mediated cleavage into mature miRNA
duplexes (Winter et al., 2009). Eventually, one strand of the resulting duplexes becomes guiding
strand selectively loaded into miRNA-induced slicing complexes (miRISCs) for sequence-specific
target mRNA recognition and suppression (Winter et al., 2009). MiRNAs are evolutionarily
conserved mini-regulators expressed in animals and plants for maintaining proper biological
functions. Thus, regulation/dysregulation of miRNA biosynthesis or modulation of miRISC
activity eventually affects miRNA functions (Lin and Gregory, 2015; Gebert and MacRae,
2019). As a key component of miRISC, regulation of AGO2 results in altered miRISC activity
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GRAPHICAL ABSTRACT | Regulatory effect between E-cadherin and AGO2.

(Treiber et al., 2019). Dephosphorylation of AGO2 on Tyr393
by protein tyrosine phosphatase 1B leads to reduced miRISC
activity (Yang et al., 2014). Prolyl 4-hydroxylation of AGO2 on
proline 700 (P700) is necessary for its stability and subsequently
increases RNAi efficiency, that this phenomena is also observed
in phosphorylation of AGO2 on serine 387 by p38 mitogen-
activated protein kinase (Qi et al., 2008; Zeng et al., 2008;
Johnston and Hutvagner, 2011). In addition to AGO2, numerous
RNA-binding proteins are reported to regulate miRISC function
(Yoo et al., 2011; Santhekadur and Kumar, 2020). For example,
Tudor staphylococcal nuclease (TSN, also known as SND1) is an
evolutionarily conserved protein with repeated nuclease domain,
which has shown its function in post-transcriptional regulation.
SND1 interacts with AGO2 in miRISC and facilitate mRNA
degradation (Gutierrez-Beltran et al., 2016). PACT is an RNA-
binding protein with dsRNA-binding domain, which is originally
found as a protein activator of PKR (Redfern et al., 2013). PACT
is not required for precursor-miRNAs processing but is essential
for RNA-induced RNA interference. Interacting with both AGO2
and Dicer, PACT is a component of miRISC which facilitates its
assembly (Lee et al., 2006). Another RNA-binding protein found

Abbreviations: miRNAs, MicroRNAs; pri-miRNAs, primary miRNAs; pre-
miRNAs, precursor miRNAs; miRISC, miRNA-induced slicing complex; PTMs,
posttranslational modifications; 3′ UTR, 3′ untranslated region.

to be involved in miRISC is fragile X mental retardation protein
(FMRP). dFXR, Drosophila homolog of human FMRP, interacts
with AGO2 and affects efficiency of miRISC in Drosophila S2
cells (Caudy et al., 2002; Didiot et al., 2009). In this study, we
uncovered a novel mechanism of E-cadherin-regulated AGO2
protein phosphorylation and its impact on miRISC function.

RESULTS

E-cadherin Upregulates and Interacts
With AGO2 Protein
Since HeLa is reported as a E-cadherin-negative cell (Vessey et al.,
1995), we verified the E-cadherin expression among HeLa and
other cell lines including HEK293T and MCF-7 cells. The results
showed that HeLa cells have undetectable E-cadherin expression
level compared to MCF-7 cells and HEK293T (Supplementary
Figure 1A). Therefore, we chose HeLa as our overexpression
model for E-cadherin ectopically expressing experiments. In
E-cadherin-overexpressing HeLa cells, the levels of cytoplasmic
components including Dicer, TRBP, GW182, FMRP, SND1, and
PACT were not affected (Figure 1A). However, we observed
a slightly increased AGO2 expression in predicted molecular
weight (∼100 kDa), and notably, an obvious induction of AGO2
at higher molecular weight (∼130 kDa) was detected (Figure 1A).
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FIGURE 1 | E-cadherin interacts with AGO2 and upregulates its protein expression. Effect of E-cadherin on protein expression of cytoplasmic miRNA biogenesis
factors (A-D). (A) AGO2, GW182, Dicer, TRBP, FMRP, SND1 and PACT protein expression were determined by western blot in E-cadherin-overexpressing HeLa
cells. (B) AGO2 were determined by western blot in HeLa cells with sequential increase of E-cadherin overexpression. (C) Effects of AGO2 knockdown on protein
expression of AGO2, GW182, Dicer and TRBP in E-cadherin-overexpressing HeLa cells. AGO2 was further knocked down by specific shRNA in
E-cadherin-overexpressing HeLa cells. (D) E-cadherin was knocked down in MCF-7 cells using specific shRNAs. Protein expression of AGO2, GW182, Dicer and
TRBP were determined by western blot. Effects of E-cadherin on mRNA expression of AGO2 (E,F). (E) AGO2 mRNA expression was determined by real-time
quantitative reverse-transcription PCR (qRT-PCR) in E-cadherin-overexpressing HeLa cells. (F) E-cadherin was knocked down in MCF-7 cells using specific shRNAs.
mRNA expression of AGO2 was determined by qRT-PCR. Data were at least repeated in three independent experiments (mean ± SD) and statistically analyzed by
two-tailed Student’s t-test (E) and one-way ANOVA (F). (G) Interaction between E-cadherin and AGO2 in E-cadherin-overexpressing HeLa cells.
Immunoprecipitation were performed using anti-E-cadherin antibody. (H) Effects of AGO2 knockdown on the interaction between E-cadherin and AGO2. AGO2 was
knocked down by specific shRNA in E-cadherin-overexpressing HeLa cells. Immunoprecipitation was performed using anti-E-cadherin antibody. (I) Effects of
PLEKHA7 knockdown on the interaction between E-cadherin and AGO2. PLEKHA7 was knocked down by specific shRNA in E-cadherin-overexpressing HeLa cells.
Immunoprecipitation was performed using anti-E-cadherin antibody.
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Upon a genetic titration of E-cadherin overexpression, AGO2
at higher molecular weight was increased dose-dependently
in HeLa cells (Figure 1B). Since E-cadherin expression of
HEK293T cells are lower than MCF-7 cells, we also overexpressed
E-cadherin in different titrated genetic levels. Again, the dose-
dependently elevated AGO2 at higher molecular weight were
also observed in HEK293T cells (Supplementary Figure 1B).
The elevated AGO2 signal at higher molecular weight in
E-cadherin-overexpressing HeLa cells was decreased after genetic
knockdown by shRNA specifically targeting AGO2 (Figure 1C)
or E-cadherin (Figure 1D), indicating that the high molecular
weight AGO2 protein is upregulated by E-cadherin. Next,
we wondered whether the RNA level of AGO2 is altered
under the genetic manipulations of E-cadherin expression.
We determined the mRNA level of AGO2 in E-cadherin
overexpression (Figure 1E) or knockdown (Figure 1F) cells
and found that AGO2 mRNA level is not significantly changed
(Figures 1E,F), suggesting that E-cadherin-mediated AGO2
regulation acts through a post-transcriptional manner, which led
us to pursue the protein-protein interaction between E-cadherin
and AGO2. Thus, we immunoprecipitated (IP) E-cadherin and
observed the higher molecular weight AGO2 which was detected
in the immunoprecipitation of E-cadherin IP (Figure 1G),
the AGO2 signals were again further confirmed by shRNA
specifically targeting AGO2 (Figure 1H). Since previous studies
have reported that E-cadherin are both membranous and
cytoplasmic protein (Bi et al., 2017; Bendardaf et al., 2019),
we isolated cell membrane fraction with c-Met detection as a
positive control for plasma membrane fractions to investigate
the distribution of E-cadherin and AGO2. We found that both
E-cadherin and AGO2 proteins are abundantly expressed in the
plasma membrane fractions but also exist in cytoplasm fractions
(Supplementary Figure 2A), which were consistent with our
confocal images showing the colocalization of E-cadherin (green)
and AGO2 (red) (Supplementary Figure 2B). Abovementioned
results indicated that E-cadherin selectively upregulates and
interacts with the high molecular weight AGO2. Since PLEKHA7
has been reported to be existed in cadherin complex and is
associated with miRISC in polarized cells (Kourtidis et al.,
2015), it is possible that the E-cadherin-AGO2 binding relies
on PLEKHA7. However, the binding between E-cadherin
and AGO2 remains unchanged in PLEKHA7-knockdown cells
(Figure 1I), suggesting a PLEKHA7-independent E-cadherin
protein interaction with AGO2.

E-cadherin Enhances the
ERK-Dependent Phosphorylation of
AGO2
The molecular shift of protein mass is usually affected by
posttranslational modifications (PTMs). Numerous PTMs may
lead to increased molecular weight, such as phosphorylation,
methylation, acetylation, glycosylation, ubiquitination and
sumoylation (Jee and Lai, 2014). Currently, several types of
AGO2 PTMs have been identified, including phosphorylation
which enhances stability, modulates protein localization,
and miRISC activity (Jee and Lai, 2014); ubiquitination

(Bronevetsky et al., 2013; Smibert et al., 2013) or sumoylation
which negatively regulates AGO2 stability (Sahin et al., 2014).
Considering the level of observed molecular weight shift, we
first determined whether the E-cadherin-interacting AGO2
is sumoylated. Immunoprecipitation of E-cadherin were
performed and applied to western blot for the detection of AGO2
and sumo1 on the same gel. However, there is no detectable
sumo1 signal for AGO2 protein, indicating that E-cadherin-
interacting AGO2 is not modified by sumoylation (Figure 2A).
In addition to sumoylation, phosphorylation of AGO2 have
been discovered (Jee and Lai, 2014). Phosphorylation at S387 by
AKT pathway alters AGO2 cellular localization and promotes
miRISC activity (Bridge et al., 2017). The ERK-mediated S387
phosphorylation enhances AGO2 protein stability in neuron cells
(Paradis-Isler and Boehm, 2018) and prevents AGO2 secretion
into exosome (McKenzie et al., 2016). In addition, multi-site
phosphorylation (S824-S834) by CSNK1A1 is necessary for
efficient silencing of endogenous miRNA targets and fully
efficient miRNA-mediated silencing (Golden et al., 2017). Y529
phosphorylation reduces AGO2 p-body localization (Mazumder
et al., 2013). EGFR interacts with AGO2 under hypoxia leading
to elevated Y393 phosphorylation and inhibit miRNA biogenesis
(Shen et al., 2013). Having observed the accumulated AGO2
in E-cadherin-expressing cells, we proposed that E-cadherin
interacts with phosphorylated AGO2, even though the shift
caused by phosphorylation itself may not result in such an
obvious molecular weight change, which was also observed
by Nicolas et al. demonstrating a ∼30 kDa increase of AGO2
protein (Paradis-Isler and Boehm, 2018). Thus, we used anti-
phosphoserine antibody and observed phosphoserine signal at
the same molecular weight of E-cadherin-interacting AGO2
(Figure 2B). Supportively, the reduction of phosphorylated
AGO2 at 130 kDa was further confirmed by lambda phosphatase
treatment (Figure 2C). Usually, phosphorylation has been shown
to induce a shift of only up to a few kDa. The unexpected
shift of molecular weight (∼30 kDa) led us to study if there
is any other modification exist. One of the possible PTMs,
protein glycosylation, which may cause a more dramatic
increase of molecular weight was then investigated. After using
PNGasF glycosylase to remove the N-linked oligosaccharides,
the signal of ∼130 kDa AGO2 was significantly decreased
(Figure 2D). Together with these results suggest that both
phosphorylation and glycosylation of AGO2 are enhanced by
E-cadherin expression.

It is known that phosphorylation of AGO2 is induced by
AKT and ERK pathways (Horman et al., 2013; McKenzie et al.,
2016; Bridge et al., 2017). Therefore, we used U0126 and
wortmannin to inhibit ERK and AKT pathway, respectively. In
E-cadherin-overexpressing cells, the binding between E-cadherin
and AGO2 was almost completely abolished by U0126 treatment
(Figure 2E), suggesting that ERK dominantly contributes
to AGO2 phosphorylation and E-cadherin interaction. The
phosphoserine signal of AGO2 was decreased by U0126
treatment in E-cadherin-overexpressing cells, which confirmed
the phosphorylation of AGO2 at higher molecular weight
(Figure 2F). These results indicated a mechanism of ERK-
dependent AGO2 phosphorylation for E-cadherin interaction.
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FIGURE 2 | E-cadherin interacts with phosphorylated AGO2. Sumoylation and phosphorylation of AGO2 (A,B). Detection of AGO2 sumoylation using anti-sumo1
antibody (A) or phosphorylation using anti-phosphoserine antibody (B) in E-cadherin-overexpressing HeLa cells were performed. Effect of lambda phosphatase (C)
or PNGasF glycosylase (D) treatments on AGO2 expression in E-cadherin-overexpressing HeLa cells. Repeated data of panels (C,D) (upshifted band of AGO2) were
quantitated using image J and repeated at least in three independent experiments (mean ± SEM) and statistically analyzed by one-way ANOVA. ∗p ≤ 0.05 and
∗∗∗p ≤ 0.001. (E) Effects of ERK or AKT inhibition on E-cadherin interaction with AGO2. 50 µM of U0126 and 300 nM of wortmannin were treated for 24 h in
E-cadherin-overexpressing HeLa cells. (F) Effects of ERK inhibition on interaction between E-cadherin and phosphorylated AGO2. 50 µM of U0126 were treated for
24 h in E-cadherin-overexpressing HeLa cells. (A,B,E,F) E-cadherin was immunoprecipitated using anti-E-cadherin antibody and subjected for western blot analysis.

AGO2 Protein Is Stabilized by E-cadherin
Since E-cadherin enhanced the expression of phosphorylated
AGO2 without affecting its mRNA level (Figures 1A–D),
we sought to determine the protein stability of AGO2. We

performed cycloheximide treatment to block the de novo protein
synthesis in either E-cadherin overexpression (Figures 3A,B)
or knockdown (Figures 3C,D) cells and found that AGO2
protein exhibits enhanced stability in E-cadherin-overexpressing
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FIGURE 3 | Lysosomal degradation of AGO2 protein is alleviated by E-cadherin. Determination of AGO2 protein stability in E-cadherin-overexpression and
knockdown cells (A-D). E-cadherin-overexpressing HeLa cells (A,B) or E-cadherin knockdown MCF-7 cells (C,D) were treated with 50 µg/mL of cycloheximide to
block de novo protein synthesis and collected at indicated time points for determining AGO2 protein expression by western blot. (B,D) Degradation curves were
plotted based on the quantification results of upshifted band of AGO2 from at least three independent experiments (mean ± SEM) and statistically analyzed by
two-way ANOVA. ∗p ≤ 0.05. (E) Effect of MG132 and CQ/NH4Cl treatments on AGO2 expression in E-cadherin knockdown cells. 5 µM MG132 or 40 µM
CQ/10 mM NH4Cl were treated for 24 h in E-cadherin knockdown cells. Repeated data of panel (E) (upshifted band of AGO2) were quantitated using image J and
repeated at least in three independent experiments (mean ± SEM) and statistically analyzed by one-way ANOVA. ∗∗∗p ≤ 0.001. NS means no significance.

compared to control cells (Figures 3A,B). Similar results were
also observed that protein degradation of AGO2 is significantly
facilitated in E-cadherin knockdown cells (Figures 3C,D).
These evidence indicated that E-cadherin upregulates AGO2
through prolonging its protein stability. In previews study,
AGO2 has been found to be degraded by either selective
autophagy or proteasome pathway (Qi et al., 2008; Gibbings
et al., 2015; Paradis-Isler and Boehm, 2018). Therefore, to
investigate the mechanism of E-cadherin-mediated AGO2
stabilization, we treated E-cadherin knockdown cells with
MG132 or CQ/NH4Cl, the proteasome and lysosome inhibitors,
respectively. Our results showed that the destabilized AGO2

protein in E-cadherin knockdown cells was restored by
CQ/NH4Cl treatment, indicating that E-cadherin expression
prevents AGO2 protein degradation through lysosome
pathway (Figure 3E).

E-cadherin Enhances miRISC-Mediated
Gene Silencing
Argonaute 2 is the key factor essential for the activation
and function of miRISC (Kobayashi and Tomari, 2016).
Through miRNA-guided target mRNA recognition, miRISC
suppresses target gene translation and/or mRNA degradation
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(Winter et al., 2009). Since E-cadherin stabilized AGO2 protein
expression, we next investigated whether miRISC activity is
consequently affected. First, we performed reporter activity assays
using plasmids constructed with luciferase coding region and
3′ untranslated region (3′ UTR) of either ZEB1 (canonical
target of miR-200b; Figure 4A, left) or Aurora B (canonical
target of let-7b; Figure 4A, right) containing miRNA-binding
sites (Gregory et al., 2008; Lal et al., 2009; Liu et al., 2013;
Maki-Jouppila et al., 2015). Our results indicated that the
3′ UTR luciferase activities of both ZEB1 and Aurora B
were reduced in E-cadherin overexpression cells (Figure 4A),
suggesting that the enhanced miRISC activity induced by
E-cadherin promotes the activities of endogenous miRNAs for
target inhibition. To confirm whether these phenomenon act
in miRNA-specific manner, we further transfected the plasmids
harboring GFP coding sequence with either miR-21- (GFP-
miR-21, Figure 4B) or let-7- (GFP-let-7, Figure 4C) binding
region(s), while GFPL is a long form GFP used as transfection
controls. In E-cadherin overexpression cells, either the expression
of GFP-miR-21 (Figure 4B) or GFP-let-7 (Figure 4C) were
inhibited, which confirms the induction of miR-21- and let-
7-guided miRISC activities in gene suppression. Furthermore,
in E-cadherin overexpression cells, the expression of GFP-miR-
21 was restored after AGO2 was knocked down indicating the
reduction of miRISC activity (Figure 4D). In support of these
experiments using exogenous reporters as indicators for miRISC
activities, we also determined the expression of endogenous
miRNA-targeting genes including PTEN (canonical target of
miR-21; Figure 4E; Meng et al., 2007; Zhang et al., 2010), ZEB1
(canonical target of miR-200b; Figure 4F; Tsai et al., 2017),
and AuroraA (canonical target of let-7b; Figure 4G; Li et al.,
2017). Our results showed that introduction of each miRNA
mimics successfully inhibit the expression of corresponded
target genes, and these miRISCs-mediated suppressive effects
on endogenous gene expression were further enhanced by
E-cadherin overexpression (Figures 4E–G). Together with these
findings indicated that E-cadherin expression induces miRISC-
mediated gene silencing.

DISCUSSION

E-cadherin has been studied for decades serving as a junctional
protein which maintains cell-cell adhesion (Yu et al., 2019).
In addition, its functions beyond structure protein have also
been discovered. One of the studies related to our findings
is that E-cadherin activates PI3K-AKT, MEK-ERK pathways
and facilitates β-catenin/Wnt signaling to promote tumor
progression (Yu et al., 2019). We demonstrated another
molecular function of E-cadherin-mediated ERK activation
in regulating AGO2 protein stability and the consequential
enhanced miRISC activity (Figure 2E). On the other hand, PTMs
of AGO2 including hydroxylation, sumoylation, ubiquitination,
and phosphorylation were reported to regulate its protein
stability (Smibert et al., 2013; Sahin et al., 2014; Paradis-
Isler and Boehm, 2018). The hydroxylation of AGO2 at

P700 and phosphorylation at S387 stabilizes its protein from
proteasomal degradation, whereas sumoylation of AGO2 at
K402 accelerates its degradation (Qi et al., 2008; Sahin et al.,
2014). In addition, phosphorylation of AGO2 has been known
to be induced by EGFR, ERK, AKT, and CSNK1A1 (Horman
et al., 2013; Shen et al., 2013; McKenzie et al., 2016; Bridge
et al., 2017; Golden et al., 2017), while our results showed
that ERK plays a major role in E-cadherin-mediated AGO2
phosphorylation and the accompanied protein interaction. After
properly processed by RNAse-dependent machinery, miRISC
activity eventually controls the biological effects of mature
miRNAs. The S387 and S824-S834 phosphorylation sites of
AGO2 have been reported to regulate the landscape of protein
interactome and miRISC formation (Horman et al., 2013; Bridge
et al., 2017; Golden et al., 2017). Phosphorylation at S387
enhances GW182 and LIMD1 binding and miRISC activity
(Horman et al., 2013; Bridge et al., 2017). Highly conserved
S824-S834 residues were identified to contain phosphorylation
sites for the induction of miRISC activity (Golden et al.,
2017). There are also proteins identified for regulating miRISC
activity (Liu et al., 2009; Yoo et al., 2011). Oncogene astrocyte
elevated gene-1 (AEG-1) and staphylococcal nuclease domain
containing 1 (SND1) have been reported to optimize miRISC
gene silencing activity (Yoo et al., 2011). C3PO (component
3 promoter of RISC), a Mg2+-dependent endoribonuclease, is
also reported to promote miRISC activation through removing
siRNA passenger strand cleavage products (Liu et al., 2009).
Here, we identified a novel function of E-cadherin in modulating
miRISC activity through the interaction and stabilization
of phosphorylated and glycosylated AGO2 and prevents its
lysosomal degradation.

MATERIALS AND METHODS

Western Blot
Cells were harvested and lysed by RIPA lysis buffer. Protein
lysate were next applied to SDS-PAGE and transferred to PVDF
membranes. After blocking using 5% non-fat milk in TBST
for 60 min, membranes were washed by TBST and applied
to primary antibodies including E-cadherin (BD Biosciences,
610181), AGO2 (GTX131422), Dicer (GTX130536), GW182
(Abclonal, A6115), Sumo1 (sc-9060), Phosphoserine (NB100-
1953SS), GFP (GTX113617), ZEB1 (GTX105278), HMGA2
(GTX100519), and PTEN (GTX101025) in 4◦C overnight.
Membranes were washed 10 min for three times and applied
for secondary antibodies for 60 min. Protein expression were
visualized by ECL according to the manufacture’s protocols.
ECL (Enhanced Chemiluminescent, PerkinElmer, Waltham, MA,
United States). Image J was used for western blot quantification.
The upshifted band of AGO2 was quantified. Image files were
opened and the regions of upshifted band of AGO2 were
selected and analyzed. Intensity of selected regions were showed
in graph and the area of peaks were selected and calculated.
The quantified results the upshifted band of AGO2 were
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FIGURE 4 | E-cadherin enhances miRISC-mediated gene silencing. Effect of E-cadherin on miRISC activity. (A) HEK293T or HeLa cells were transfected with ZEB1
or Aurora B 3′UTR reporter plasmids for 24 h. The luciferase activities were determined in E-cadherin-overexpressing HEK293T (purple) or HeLa (green) cells.
E-cadherin-overexpressing HeLa cells were transfected with GFP-let-7 (B) or GFP-miR-21 (C) for 24 h to determine miRISC activity. (D) AGO2 was knocked down
in E-cadherin-overexpressing HeLa cells. The cells were then transfected with GFP-miR-21 for determining miRISC activity. Cells were transfected with GFPL for
transfection control. GFP and GFPL expression were determined by western blot using anti-GFP antibody. E-cadherin-overexpressing HEK293T or HeLa cells were
transfected with miR-21 (E), miR-200b (F), or let-7b (G) for 24 h for analysis the expression of their target genes including PTEN, ZEB1, and Aurora A by western
blot. Data are presented as mean ± SEM of at least three independent experiments and analyzed by two-tailed Student’s t-test. ∗∗p ≤ 0.01 and ∗∗∗p ≤ 0.001.
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normalized with α-tubulin. The collected data were subjected to
statistical analysis.

Immunoprecipitation
Cells were collected and lysed by NETN lysis buffer. Protein
lysate was precleared using beads (Pierce Protein A Plus Agarose
#22812) for 60 min in 4◦C and supernatant was collected and
incubated with antibodies including E-cadherin (BD Biosciences,
610181) in 4◦C overnight. Beads were washed for two times with
NETN lysis buffer and applied to western blot.

RNA Extraction and Reverse
Transcription Real-Time PCR
Total RNA was isolated using Trizol reagent according to
manufacturer’s instructions. Trizol reagent was purchased
from Invitrogen (Waltham, MA, United States). Reverse
transcription was performed using 200 ng RNA. RNA was reverse
transcribed complementary DNA (cDNA) using random primer
(ReadyMadeTM Random Hexamers, IDT), reverse transcriptase,
dNTPs and RNase inhibitors (Revert Aid First Strand cDNA
Synthesis Kit, Thermo Fisher Scientific). Real-time PCR was
performed by Applied Biosystem Step One Real-time PCR
system using sybr green. Independent experiments at least three
times were performed separately and GAPDH (Glyceraldehyde-
3-Phosphate Dehydrogenase) was used as internal control.

Transfection and Drug Treatment
Cells were seeded into dishes for attaching overnight.
Plasmids were mix with transfection reagent (HyFectTM DNA
Transfection Reagent, Leadgene) according to manufacturer’s
instruction. Plasmids sources: pcDNA3-E-cadherin was obtained
from Barry Gumbiner (Addgene plasmid # 45769) (Gottardi
et al., 2001); GFP-L, GFP-let-7 and GFP-miR-21 were kindly
provided by Dr. Hank Qi (Qi et al., 2008). pcDNA3-E-
cadherin was transiently transfected for 24 h and applied
to subsequent experiments. GFP-L and GFP-let-7 or GFP-
miR-21 were transiently co-transfected for 24 h and cell
lysates were subsequently harvested. miRNA mimics were
transfected transiently for 48 h. 50 µM of U0126 (cat.
662005, Millipore), 300 nM of wortmannin (cat. 681675,
Millipore), and 50 ug/ml of Cycloheximide (Cat.01810,
Sigma) were used for treatment for indicated periods.
Lambda phosphatase (sc-200312) was incubated with cell
lysate at 30◦C for overnight in final concentration 5 µM
according to manufacturer’s instruction. PNGasF (P0704S) was
incubated with cell lysate at 37◦C for overnight according to
manufacturer’s instruction.

Lentiviral Knockdown
Knockdown experiments were performed using lentiviral
shRNAs system from RNAi core (Academia Sinica, Taipei,
Taiwan). HEK293T cells were transfected with three plasmids:
packaging plasmid (pCMV1R8.91), envelope plasmid (pMD.G),
and shRNA plasmid (pLKO.1 shRNA) with proportion 10:10:1.
Supernatant containing viral particles was collected and
filtered with 0.22 µm filter after 24 h. Cells were infected

with virus medium and polybrene for 24 h and selected with
puromycin (1.5 µg/ml) for 48 h. shRNA sequence of AGO2:
CCGGCCAGATTTCAAACTTGGATTTCTCGAGAAATCCAA
GTTTGAAATCTGGTTTTT (RNAi core, Academia Sinica,
Taipei, Taiwan).

Luciferase Reporter Assay
Reporter plasmids were transfected into cells and cells were
harvested after 24 h. Luciferase activity were assayed using Dual-
Luciferase R© Reporter Assay System according to manufacturer’s
instruction. Plasmids source: pCI-neo-RL-ZEB1 was a gift from
Greg Goodall (Addgene plasmid # 35535) (Gregory et al., 2008);
psiCHECK2-AURKB 3′ UTR was a gift from Judy Lieberman
(Addgene plasmid #29475; Lal et al., 2009).
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