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1COVID: interpretable deep learning framework for early
recovery-time prediction of COVID-19 patients
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Most prior studies focused on developing models for the severity or mortality prediction of COVID-19 patients. However, effective
models for recovery-time prediction are still lacking. Here, we present a deep learning solution named iCOVID that can successfully
predict the recovery-time of COVID-19 patients based on predefined treatment schemes and heterogeneous multimodal patient
information collected within 48 hours after admission. Meanwhile, an interpretable mechanism termed FSR is integrated into
iCOVID to reveal the features greatly affecting the prediction of each patient. Data from a total of 3008 patients were collected from
three hospitals in Wuhan, China, for large-scale verification. The experiments demonstrate that iCOVID can achieve a time-
dependent concordance index of 74.9% (95% Cl: 73.6-76.3%) and an average day error of 4.4 days (95% Cl: 4.2-4.6 days). Our study
reveals that treatment schemes, age, symptoms, comorbidities, and biomarkers are highly related to recovery-time predictions.
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INTRODUCTION

Since the outbreak of coronavirus disease 2019 (COVID-19), artificial
intelligence (Al) has played an essential role in the global fight
against the pandemic, including (1) contactless telehealth systems for
remote diagnosis to protect doctors and patients from the high risk
of viral exposure' and (2) computer-aided diagnosis of the infection
based on X-ray or computed tomography (CT) images to reduce the
workload of healthcare workers>™°. In clinical practice, it is routine for
COVID-19 patients to undergo various laboratory examinations, such
as blood tests, liver function tests, and CT scans. Meanwhile, patients
may suffer from different symptoms'®'" and comorbidities'?,
producing large quantities of heterogeneous multimodal clinical
data. Such heterogeneity represents a substantial challenge for
clinicians aiming to manually analyze the complicated clinical
information and provide an appropriate treatment scheme for
patients. Consequently, there is a great need for automatic data
analysis methods to aid clinical treatment planning for COVID-19,
which has also received widespread attention over the past year'>~",
Some studies have demonstrated that biomarkers, symptoms,
comorbidities, and even CT images can be applied for various
prognostic prediction tasks, including the prediction of mortality
risk'®1%, progression to a severe or critical state'’?°~22, and intensive
care unit admission?>24,

The modeling methods used in the above-mentioned studies
can be roughly classified into the following two categories: (1)
pure nonlinear methods?'?? and (2) linear and nonlinear hybrid
methods'”'®2°, The former directly construct deep learning
models using heterogeneous multimodal data for specific tasks.
For example, Ning et al.?? fused image features extracted by a
deep convolutional neural network (DCNN) with other clinical

features for severity-level prediction of patients. Deep learning
methods can build a nonlinear relationship between the model
inputs and the corresponding outputs, which can achieve
promising performance. However, deep models are black boxes
lacking the interpretability of the prediction results®. Generally,
clinicians are eager to know the clinical factors that are highly
related to the prediction result rather than simply the prediction
result. In contrast, hybrid methods are more practical. These
methods usually first use linear analysis methods (e.g., multi-
variable regression or LASSO regression) to select statistically
linear-significant clinical features and then train machine learning
or deep learning models via the preselected features. However,
these statistical analysis methods still cannot provide individual
interpretability of the model prediction of each patient.

More importantly, the disease status of COVID-19 patients
changes over time, i.e, a dynamic process of mutual influence
between treatments and patient covariates (i.e., symptoms,
comorbidities, and biomarkers)?°. However, treatment information
was not considered in the model developed in most prior studies,
and the models were only implemented as classification tasks?”-22,
e.g., severity-level classification. A more practical model should
focus on directly predicting the recovery time of patients based on
treatment information rather than only classifying patients’
severity levels. However, it is challenging to construct models
for this purpose mainly due to the following complicated
characteristics of clinical data sets: (1) data sets contain a large
proportion of patients with unknown outcomes who were
transferred to other hospitals and thus lost to follow-up (so-called
censored data in the survival analysis field). Thus, how to
reasonably utilize these data when constructing models for
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Prognostic model development and study design for recovery-time prediction. a Multimodal clinical data of a patient (i.e, CT

images, symptoms, comorbidities, and biomarkers acquired within 48 hours after admission) are fed into a deep learning model to predict
recovery probabilities in a time range. b Development and validation of the deep learning model based on multicenter cohorts.

recovery-time prediction remains problematic; and (2) there are
individual differences in recovery times among similar patients.
For example, two similar patients might have different recovery
times even if they were treated with identical treatment schemes.
It might be difficult to converge a model at the training stage
owing to this time-variant issue. To avoid the above-mentioned
issues, Cox’s proportional hazard (CPH) model, which is the most
commonly used method in the survival analysis field?°, assumes a
time-invariant linear combination of patients’ clinical features to
simplify the model construction at the cost of poor performance.

In this study, we present an end-to-end deep learning frame-
work termed iCOVID that considers treatment information for the
early prediction of COVID-19 recovery time (Fig. 1a). iCOVID can
fully use heterogeneous multimodal data (i.e, CT images,
biomarkers, symptoms, comorbidities, and treatment information)
from patients with different outcomes to learn the time-variant
nonlinear relationship between the data and predictions. Further-
more, a feature significance ranking (FSR) mechanism is proposed
to learn the nonlinear regression coefficients reflecting the
significance of each feature to the prediction outputs. Extensive
experiments based on multicenter data are performed to
demonstrate the effectiveness of the proposed method (Fig. 1b).

The main contributions of this study can be summarized as
follows: (1) we develop a deep learning method (i.e., the iCOVID) for
recovery-time prediction of COVID-19 patients based on a large
quantity of multimodal clinical data. Particularly, treatment
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information is considered an important factor in our work. (2) The
proposed iCOVID is a time-dependent regression model, rather
than a classification model, that can predict a “recovery probability
distribution” within a time range since admission (see Fig. 1a). (3)
An interpretable mechanism (i.e., the FSR) is designed to learn the
significance of clinical features in an end-to-end manner, thereby
avoiding the preselection of features.

RESULTS

Data acquisition and preparation

To develop and evaluate iCOVID, we built a relatively large-scale
data set containing retrospective data collected from a total of
2530 COVID-19 patients from Huoshenshan Hospital in Wuhan,
China. From each patient, we collected the following information:
(1) used treatment schemes, (2) primitive CT scans, (3) clinical
features, (4) severity-level, (5) patient outcome (recovered,
decreased, or censored), and (6) outcome occurring days since
admission. Each treatment scheme consisted of 19 types of drugs
or treatment tools, while the clinical features included two
demographics (age and gender), 10 types of symptoms, 7 types
of comorbidities, and 27 types of biomarkers (Supplementary
Tables 1-2). In this study, all patients were randomly divided into
subsets for fivefold cross-validation (Supplementary Fig. 1d). To
test the generalization of iCOVID, we also built two additional
cohorts as external validation sets with data collected from two
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a Number of patients Outcome-time
Dataset Age X dmissi
Total Female Male Mild Moderate Severe Critical SIHCEaCIISSION
Recovered: 14.2+8.4 days;
Huoshenshan 2530 1231 1299 1 1821 614 84 58.0+14.4 Deceased: 14.4£9.9 days
. Recovered: 15.9+6.5 days;
Taikang 398 227 171 2 306 76 14 59.5+£15.7 Deceased: 10.246.0 days
Recovered: 15.1+6.8 days;
Guanggu 80 49 31 0 32 25 23 73.1£13.8 Deceased: 12.1£8.5 days
b COVID-19 AM = = With Outcome Outcome
ID Sex Age severity (s) (mglL) " Diabetes ... Methylprednisolone cT day (1) Type (o)
0 0 57 1 47 0 0 1 8 0
1 0 48 1 39 1 0 1 6 1
2 1 54 2 33 0 1 1 16 1
3 1 61 3 30 0 1 1 24 1
4 1 58 3 26 0 1 1 7 2

Qutcome :

Severity: severe
recovery (6=1)

(s=2) Severity: critical (s=3)

-y [=S———
Patient #0 Patient #1 patient #2 Patient #3 Patient #4
c clinic;lz‘;:aiures Abbr. Normal value/range Category p-value
Age Age 58.0t14.4 Demographics <0.001
Albumin AM >35 g/L Biomarkers <0.001
Hemoglobin HG Female,2115 g/L; Male, 2130 g/L Biomarkers <0.001
Total Protein TP 60~80 g/L Biomarkers <0.001
Lactate Dehydrogenase  LDH Female,<214 u/L; Male, <225 u/L Symptoms <0.001
Expectoration EPC No Symptoms 0.05
Diarrhea DH No Symptoms 0.39
Soreness SN No Symptoms <0.001
Fever FV No Symptoms <0.001
Cough CGH No Symptoms <0.001
Poor Appetite PA No Symptoms <0.001
g:‘:;;ﬁg”gﬁ;g&'t‘f‘ CCBD No Symptoms <0.001
Diabetes DB No Comorbidities <0.001
g‘i’;treesze;s:j:g:nye ARDS No Comorbidities <0.001
Shock SK No Comorbidities 0.01

Fig.2 Data set information. a Patient information of the three cohorts. b Five samples of the patients’ tuple information. ¢ The top 15 clinical
features identified via the proposed FSR mechanism that are significant to the recovery-time prediction of COVID-19 patients. p values
calculated via a Pearson correlation analysis demonstrate that these features are indeed highly related to the recovery time.

hospitals in the epicenter of Wuhan (Taikang Tongji Wuhan
Hospital, and Hubei Maternity and Child Healthcare Guanggu
Hospital). The patient statistics are summarized in Fig. 2a and
Supplementary Fig. 1a—c. More details of the data acquisition are
provided in the Methods section.

Published in partnership with Seoul National University Bundang Hospital

Formally, each patient can be defined as a tuple
— — . . .
(r,,,l,,, X 1n,5Sn, On, t,,) representing the above-mentioned six
categories of information. Here, T',, is a 19-dimensional vector of
treatment schemes, with each element represented by a binary
value of 1 or 0, indicating whether a specific treatment or drug was
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Fig.3 Framework architecture and predictions of four patient examples. a The treatment schemes, lung CT images, and clinical features of
the patients are fed to the framework for recovery-time prediction. The FSR subnetwork is designed to learn the significance of each clinical
feature that contributes to the predictions. A multi-event loss is designed to train the model using data from patients with different outcomes.

b The information of the patients. ¢ The softmax outputs (i.e., P in a) of the four patients. The days a patient needs to recover can be
estimated by the day with the maximum probability. d The cumulative probability of the softmax outputs, which can be used to assess the risk
of patients. e The top nine clinical features that are significant for the decision made by the model (EPC expectoration, DH diarrhea, SN
soreness, DB diabetes, SK shock, ARDS acute respiratory distress syndrome, AM albumin, HG hemoglobin, TP total protein).

used for the patient. I, is an image matrix of the CT scan. X, refers
to a vector consisting of the 46 clinical feature values. s, is an
indicator of the severity-level as follows: mild|s,, = 0, moderate|s, =
1, severels,=2, and criticalls,=3. o, is an indicator of the
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outcome type as follows: censored data |0, =0, recovery|o, =1,
and death|o, = 2. t, is the day on which the outcome occurred.
Figure 2b shows some examples of the tuple information. Figure 2c
lists the top 15 clinical features identified via the FSR mechanism,
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which are highly related to the recovery-time prediction of
COVID-19 patients.

Network architecture for recovery-time prediction

Figure 3a illustrates the main architecture of iCOVID, which
incorporates treatment schemes, lung CT images, and clinical
features as inputs. Convolutional features are extracted from the
lung images using the VGG-16 network3?, which are then
combined with clinical features and treatment schemes using
fully connected layers for recovery-time prediction. The output
component is a softmax layer with T neurons estimating a
probability distribution P =[P, ... P, ... ,Pr] within a prede-
fined day range {1, 2, ..., T} for each patient. In this expression,
each element P; € [0, 1] indicates the possibility of recovery on
the t" day after admission. Considering that the number of
patients who required >30 days to recover was generally low
(see Supplementary Fig. 1c), we assumed that the recovery day
of patients who recovered after 30 days was 31 and that of
patients who died was 32. Hence, the maximum day T was set to
a value of 32.

To address the “black box” issue of the deep model, the FSR
mechanism is incorporated in the framework as a subnetwork to
estimate the significance of each clinical feature for the final
predictions. Specifically, the FSR can automatically produce a
weighting vector (denoted by @ = [w;,w,, ... ,wk],K = 46) for
each input clinical feature vector (i.e., X = [x1,Xa, ... ,Xk], K = 46),
where each element in the weighting vector represents the
significance of the corresponding clinical feature. This mechanism
allows us to determine the most significant clinical features for the
prediction of each patient. The FSR can be trained with the whole
framework end-to-end using a multi-event loss function that
comprises four losses, i.e,, the censor, recover, death, and ranking
losses in Fig. 3a. The former three losses are designed to address
censored, recovered, and decreased patients, whereas the ranking
loss®! is introduced to address the time-variant issue among
recovered patients. The relevant details are further discussed in
the Methods section.

In clinical applications, the probability distribution (i.e, the
softmax output P) produced by iCOVID can aid in visually
assessing the risk of patients. Figure 3c plots the probability
distribution of four patients as follows: patients #1-#3 recovered
on the 6™, 15™, and 20" day, and patient #4 died on the 13% day
after admission (see Fig. 3b; the black horizontal lines and the red
triangles indicate normal and abnormal biomarkers, respectively).
The predicted recovery day of each patient can be estimated by
the specific day with the maximum probability, i.e,, argmax(P)
(see the peak highlighted by the vertical dashed lines in Fig. 3c). In
addition, calculating the cumulative incidence function (CIF
measures the possibility of a patient recovering within a specific
time range, see Eqg. 4 in Methods) can assess patient risk more
reliably. For example, patient #2 can be considered to have a
higher risk than patient #1, as the CIF P(t < 10) = 25.4% of
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patient #2 is much smaller than P(t < 10) = 61.8% of patient #1
(see Fig. 3d). Figure 3e demonstrates the significance of nine
clinical features obtained via the FSR (three for symptoms,
comorbidities, and biomarkers each), revealing the important
features corresponding to each patient’s prediction (the box
length indicates the significance of the corresponding feature). It
can be observed that the biomarker albumin (AM) and
hemoglobin (HG) are important for the prediction of recovered
patients #1-#3, whereas the comorbidity shock (SK) and acute
respiratory distress syndrome (ARDS) play a more significant role
in the identification of deceased patient #4.

Impact of treatment schemes and CT images on recovery-time
prediction

We evaluated the model performance quantitatively by calculating
the time-dependent concordance index (TD-CI)3?, which is a variant
of the ordinary concordance index (Cl) that is widely used as a
discriminative index for prognostic estimation. In contrast to the Cl,
the TD-Cl considers time and thus can reflect the potential change in
outcome over time (see Eg. 8 in Methods). A larger value of TD-Cl
indicates the superior performance of the model. Furthermore, we
assume that the predicted recovery day of each patient is the day
with the maximum probability in the day range (see Fig. 3c). Then, to
further validate the performance, we calculated the mean absolute
day error (MADE) between the predicted and real recovery day of all
recovered patients. Intuitively, the smaller the MADE value, the better
the prediction of the model.

To validate the impact of treatment schemes and CT images on
the prediction, we designed ablation experiments of iCOVID
without using any treatment scheme or any CT images (clinical
features, i.e, demographics, symptoms, comorbidities, and bio-
markers were used as baseline information in all models, see
Methods). The statistical results tabulated in Table 1 reveal that
iCOVID can achieve promising performance with a TD-Cl value as
high as 74.9% (95% Cl: 73.6%-76.3%) and a MADE value as low as
4.4 days (95% Cl: 4.2-4.6 days) for all 1969 recovered patients.
However, when the treatment scheme is ignored, the perfor-
mance considerably worsens (TD-CI=69.1% and MADE =
6.0 days). This phenomenon demonstrates that the treatment
scheme is indeed an important factor in estimating how long a
patient requires to recover. In addition, the results demonstrate
that iCOVID also achieves inferior performance in both the TD-Cl
and MADE metrics when CT image information is ignored.
However, the absolute difference is only 0.3% for TD-Cl and
0.3 days for MADE, indicating that CT images are not as significant
as treatment schemes for recovery-time prediction. Alternative
DCNNs, such as ResNet-3433, MobileNet-v334, InceptionNet-v43>,
and EfficientNet-b33°, were also adopted as CNN feature
extractors. The experimental results show that the choice of
CNN model only has a trivial influence on the overall performance
(see Supplementary Table 4).

Table 1. Fivefold cross-validation results: impact of treatments and CT images.
iCOVID iCOVID w/o treatments iCOVID w/o CT images

Subsets Patients TD-CI (%) MADE (days) TD-Cl (%) MADE (days) TD-Cl (%) MADE (days)
Cohort_1 394 76.8 (74.0-79.4) 4.2 (3.9-4.4) 70.8 (66.9-74.5) 5.8 (5.3-6.3) 77.2 (74.4-80.0) 4.5 (4.1-4.9)
Cohort_2 394 78.1 (75.5-80.5) 4.1 (3.7-4.3) 69.8 (66.6-74.1) 6.1 (5.6-6.4) 77.0 (74.4-79.6) 4.3 (3.9-4.7)
Cohort_3 394 75.3 (72.3-79.0) 4.8 (4.5-5.2) 69.2 (66.0-72.8) 5.9 (5.5-6.4) 744 (71.5-77.3) 5.0 (4.7-5.3)
Cohort_4 394 76.0 (73.2-79.1) 4.3 (4.0-4.6) 70.4 (66.3-74.2) 6.2 (5.7-6.6) 76.8 (73.9-79.4) 4.3 (4.0-4.7)
Cohort_5 393 73.5 (70.3-76.6) 4.7 (4.3-5.0) 67.4 (63.3-73.3) 5.8 (5.4-6.1) 72.0 (67.9-74.9) 5.2 (4.8-5.6)
Overall 1969 74.9 (73.6-76.3) 4.4 (4.2-4.6) 69.1 (67.7-70.5) 6.0 (5.7-6.2) 74.6 (72.8-76.1) 4.7 (4.5-4.8)
w/o without; the best performance in each row is shown in bold; (-) is the 95% confidence interval.
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Fig. 4 Distribution and statistics of the day error between the average predicted and true recovery days. a—f Plots of the day error
statistics of patients corresponding to each treatment/drug group: antiviral drugs (ABD arbidol, RV ribavirin, and OV oseltamivir), antibacterial
drugs (PPL piperacillin, CPP cephalosporins, LFN levofloxacin, LZD linezolid, and MFN moxifloxacin), traditional Chinese medicine (LQC Lianhua
Qingwen Capsule and XBJ Xuebijing), immunotherapy drugs (CP convalescent plasma, /IGN immunoglobulin, and 7B tocilizumab),
apophlegmatisant (ABX ambroxol and ACN acetylcysteine), and others (HPN heparin, MPN Methylprednisolone, HFNC high-flow nasal cannula
oxygen; and VC Vitamin C). The centerline and the bounds of each box correspond to the median value and the interquartile range,
respectively, and the whiskers mark the range of the non-outlier data. g iCOVID can estimate the recovery days of high-risk patients more
accurately by considering treatment schemes. h Main prediction error for low-risk patients is derived from the patients who recovered after

24 days.

Figure 4a—f plot the day error statistics of patients corresponding
to different treatment/drug groups: antiviral drugs (ABD: arbidol;
RV: ribavirin; and OV: oseltamivir), antibacterial drugs (PPL:
piperacillin; CPP: cephalosporins; LFN: levofloxacin; LZD: linezolid;
and MFN: moxifloxacin), traditional Chinese medicine (LQC: Lianhua
Qingwen capsule and XBJ: Xuebijing), immunotherapy drugs (CP:
convalescent plasma; IGN: immunoglobulin; and TB: tocilizumab),
apophlegmatisant (ABX: ambroxol and ACN: acetylcysteine), and
others (HPN: heparin; MPN: methylprednisolone; HFNC: high-flow
nasal cannula oxygen; and VC: vitamin C). It can be observed that

npj Digital Medicine (2021) 124

the median values of most boxes are very close to zero, regardless
of whether the treatment schemes are considered (dark-blue
boxes) or not (red boxes). This phenomenon confirms the
effectiveness of iCOVID in the recovery-time prediction of COVID-
19 patients. Although the median values in most dark-blue boxes
are similar to their counterparts, the main difference is that almost
all dark-blue boxes have much smaller interquartile ranges than
the red boxes. This finding proves that iCOVID can indeed achieve
more stable predictions by considering treatment schemes. It is
recognized that different patients might be treated using various

Published in partnership with Seoul National University Bundang Hospital
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Fig. 5 Network visualization and statistics of the feature significance for the model prediction. a Feature map visualization of iCOVID
corresponding to four representative patient examples (color masks the significant regions for the prediction, with the spectrum from blue to
red associated with low-to-high significance). b Heatmap of the average significance of each feature and the recovery days, revealing that the
biomarkers AM, TP, and HG are significant for the prediction of recovered patients, whereas the comorbidities SK, ARDS, and DB are more
significant for the prediction of deceased patients (color indicates the significance of each feature for the prediction, with the spectrum from
dark purple to yellowish-white associated with low-to-high significance). ¢ The average significance of the top 15 clinical features, i.e,, AM
albumin, HG hemoglobin, EPC expectoration, TP total protein, DB diabetes, ARDS acute respiratory distress syndrome, SK shock, DH diarrhea, SN
soreness, FV fever, CGH cough, LDH lactate dehydrogenase, PA poor appetite, CCBD chest congestion/breathing difficulty. d Pearson correlation
analysis demonstrates that the above-mentioned features are indeed highly related to the recovery time of COVID-19 patients
(p value < 0.001, except for EPC, DH, and SK).

treatment schemes. For example, critically ill patients normally
received more treatments (Supplementary Fig. 2a). The number of
treatment schemes might be an implication for the model
predictions. However, our experimental results demonstrate that

Published in partnership with Seoul National University Bundang Hospital

the treatment rather than the number of treatments is more
significant on the prediction (Supplementary Fig. 2b).

We also analyzed the distribution of the average day error
between the predicted and real recovery days in the following
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Fig. 6 Value distribution of the main biomarkers among all recovered and deceased patients. a Plots of the distribution of AM (albumin),
HG (hemoglobin), TP (total protein), and LDH (lactate dehydrogenase) in recovered patients, demonstrating that the recovery day is statistically
negatively correlated with AM, HG, and TP but positively correlated with LDH (see the red lines, p value<0.001 with a Pearson correlation
analysis). b The difference in the AM, HG, TP, and LDH statistics between the recovered and deceased patients. Compared with the recovered
patients, the patients who died generally had lower levels of AM, HG, and LDH and higher levels of TP. The centerline and the bounds of each
box correspond to the median value and the interquartile range, respectively, and the whiskers mark the range of the non-outlier data.

different patient groups: high-risk (severe and critical, Fig. 4g) and
low-risk (mild and moderate, Fig. 4h) patients. The performance of
iCOVID considering treatment schemes was much better than that
without considering treatment schemes, especially for high-risk
patients (Fig. 4g). In addition, both prediction performances were
reduced for low-risk patients who recovered 24 days after admission
(Fig. 4h). We attribute this issue to the constructed data set in which
the number of collected patients who recovered after 24 days is very
limited (Supplementary Fig. 1¢), increasing the difficulty in estimating
their recovery days.

Model interpretation and significant clinical features for the
prediction

To understand the regions of the image and the types of clinical
features that are highly related to the recovery-time prediction, we
visualized convolutional feature maps using the Grad-CAM3”
technique and calculated the average significance of each clinical
feature based on the FSR mechanism. Figure 5a shows feature maps
of four representative patients and demonstrates that the proposed
model mainly focused on the lesion regions of CT images to make
decisions regarding moderate, severe, or critical patients. Among
mild patients, almost no lesion can be observed on CT images, and
the proposed model mainly relied on the whole lung region to make
predictions.

Then, we created a heatmap of the average significance of each
clinical feature and the recovery days (see Fig. 5b). The heatmap
demonstrates that the biomarkers AM, HG, and TP, the symptoms
EPC, DH, and FV, and the comorbidities DB, ARDS, and SK are
important for the predictions. However, the level of significance of
these features differs. For example, AM, HG, and TP are the top
3 significant features for the prediction of recovered patients,
whereas the biomarkers LDH, a-HBDH, and comorbidities SK, ARDS,
and DB are the most important features for the prediction of
deceased patients (recovery day 32 indicates death). To further
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illustrate the difference, we plotted the statistical significance of the
top 15 clinical features in Fig. 5¢, which reveals that biomarkers (i.e.,
AM, HG, and TP), symptoms (i.e, EPC, DH, and FV), and comorbidities
(i.e., DB, ARDS, and SK) are indeed important for the prediction. To
verify the reliability of the result, we also performed a Pearson
analysis® to calculate the correlation coefficients between each
feature and the recovery time. The Pearson coefficients (Fig. 5d)
demonstrate that the top 15 features shown in Fig. 5c indeed are
strongly correlated with the recovery time of COVID-19 patients (p
value < 0.001, except for the discrete features EPC, DH, and SK).
Finally, we also conducted a statistical analysis of the main
biomarkers among the recovered and deceased patients. The value
distribution of AM, HG, TP, and LDH is plotted in Fig. 6a, which
demonstrates that the recovery day is statistically negatively
correlated with AM, HG, and TP but positively correlated with LDH
(see the red lines). Compared with the recovered patients, patients
who died normally had lower levels of AM, HG, and LDH and higher
levels of TP (Fig. 6b).

Comparison with benchmark survival models

Subsequently, we compared the proposed iCOVID model with two
benchmark survival models that are widely used in the field of
survival analysis, including CPH?° model and the random survival
forest (RSF)** model (see Methods for the implementation details).
CPH is a linear model and assumes that the “possibility” of
experiencing an event remains constant over time (ie, the
proportional hazard assumption), whereas the RSF model does not
have this restriction by predicting a score for every time point, which
is similar to the iCOVID model (i.e., time-dependent prediction). In
this study, we utilized the time-dependent AUC* to validate the
overall performance of all models. Figure 7 demonstrates that the
iCOVID model can achieve much superior performance than both
the CPH and RSF models regardless of whether treatment or image is
considered. When both treatment and image information are
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Table 2. External validation results of fivefold cross-validation models.
Taikang Guanggu
Models Group Patients TD-Cl (%) MADE (days) Patients TD-Cl(%) MADE (days)
iCOVID
All recovered 387 69.2+2.1 50+34 60 715+1.8 48+4.0
Low-risk 306 700+ 1.7 50+34 32 704+2.7 44+35
High-risk 81 69.2+24 49+35 28 724+0.6 53+45
iCOVID w/o treatments
All recovered 387 63.0+1.5 7.0+53 60 544+34 82+6.2
Low-risk 306 63.7+£1.0 69+5.1 32 49.7£6.3 73+56
High-risk 81 625+2.7 75+59 28 547 +33 9.3+6.7
iCOVID w/o CT images
All recovered 387 69.2+2.7 54+37 60 725+1.0 52+42
Low-risk 306 69.7£3.0 54+36 32 702+23 47+3.6
High-risk 81 68.9+29 51+37 28 719+£28 58+48
w/o without, low-risk mild and moderate, high-risk severe and critical.

considered, iCOVID achieves a mean AUC score of 0.841+0.024,
whereas the mean AUC scores of CPH and RSF are only 0.770 + 0.045
and 0.799 £ 0.049, respectively (Fig. 7a). If treatment information is
ignored (Fig. 7b), the performances of all models are worse,
especially the CPH model, which obtains a mean AUC score of only
0.563 £ 0.021. However, the iCOVID and RSF models still achieve
promising performance with the mean AUC scores of 0.804 + 0.048
and 0.775 +0.053, respectively. When image information is ignored
(Fig. 7¢), the performance of the iCOVID model is slightly inferior,
with a mean AUC score of 0.837+0.027. Interestingly, the
performances of the CPH model and the RSF model are even
improved when image information is not considered.

External validation

To evaluate the generalization ability of iCOVID, we also tested
iCOVID's performance using two additional cohorts, i.e, Taikang and
Guanggu. Table 2 shows the mean and standard deviation results
achieved by the five models trained with fivefold cross-validation
using the Huoshenshan data set. The following three main
conclusions can be drawn: (1) iCOVID can still achieve promising
performance in both external data sets despite its inferior
performance compared with that using the Huoshenshan data set.
In particular, the TD-CI score and the MADE obtained in Guanggu
cohort (71.5+1.8%; 48+4.0 days) are relatively close to those
obtained in the Huoshenshan data set (76.3%; 4.4 + 3.9 days). (2) We
can observe that both TD-Cl and MADE are worse when treatment
schemes are ignored. This phenomenon further proves that
treatment schemes indeed have a significant impact on
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recovery-time predictions. (3) Once CT images are ignored, iCOVID
can achieve inferior but still comparative performance as demon-
strated by the results corresponding to iCOVID and iCOVID without
CT images.

DISCUSSION

In this paper, we proposed a deep learning-based time-to-event
analysis framework named iCOVID that can successfully achieve early
recovery-time prediction of COVID-19 patients at admission within
48 hours. Extensive experiments and statistical analysis of multicenter
data demonstrated that the average error between the predicted and
true recovery days was ~4.5 days (see Table 1). Most importantly, we
investigated a large number of clinical features as listed in
Supplementary Table 1 that might be relevant for the prediction,
including demographics (age and gender), symptoms, comorbidities,
and biomarkers. Our experimental results revealed that albumin,
hemoglobin, total protein (TP), expectoration, diarrhea, soreness,
fever, cough, diabetes, ARDS, and shock were highly related to the
recovery-time prediction (see Fig. 5b), which was consistent with prior
studies*’*2. In addition to the above-mentioned features, we also
investigated the impact of treatment schemes on the predictions,
which has not been considered in most previous studies to the best
of our knowledge. Our experimental results demonstrated that
treatment schemes were indeed significant in the prediction of the
recovery time (see Table 1 and Figs. 4, 7). Since iCOVID considers
treatment schemes, it can be integrated with a computer-aided
diagnosis system of COVID-19 to help clinicians determine the
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optimal treatment from various predefined treatment schemes, which
can reduce patients’ recovery time to the greatest extent.

The results shown in Fig. 7 demonstrate that the proposed deep
learning method can achieve much superior performance over the
benchmark CPH model and the RSF model. A previous study*®
demonstrated that the CPH model normally has limited perfor-
mance owing to the proportional hazard assumption, and the RSF
model is more suitable for complicated applications as it can
build a nonlinear relationship between the variables and out-
comes. However, RSF is a nondifferentiable model and is widely
recognized in processing discrete variables (e.g., the symptoms
and comorbidities investigated in this study). In contrast, the deep
learning method is more adaptive to both discrete and continuous
variables (e.g., biomarkers). In addition, treatment schemes and
baseline clinical features are much more significant than CT
images for the prediction, regardless of model type, further
revealing that the recovery of patients is more relative to precisely
individualized treatment schemes. Furthermore, the external
validation demonstrates that iCOVID has promising generalization
ability, even though the performance is inevitably reduced (see
Table 2) owing to the variation of data distribution across the
multi-site data sets (see Supplementary Tables 1-3).

We reviewed representative studies concerning computer-aided
COVID-19 prognosis (see Supplementary Table 5). Most stu-
dies'7192044-46 focused on developing deep learning or machine
learning classifiers for risk prediction (severity or mortality) of
COVID-19 patients. The iCOVID model developed in our study can
also be applied for risk assessment of COVID-19 patients as illustrated
in Fig. 3¢, d. For example, if a patient is predicted to recover after a
long time (e.g, 10 days), he/she should be triaged as high-risk®°. In
addition, we considered deceased patients and assumed that their
recovery day was 32 in the model development, which allowed us to
screen patients at a high risk of death. These patients can be easily
identified by observing the curve shape as illustrated by patient #4 in
Fig. 3d. These patients should have a flat curve with a peak on the
last day of the time range. To validate the performance of iCOVID in
identifying deaths, we drew ROC curves (see Supplementary Fig. 3)
and calculated the AUC scores based on the predicted probability Pr
of all patients. The AUC scores obtained using the Huoshenshan,
Taikang, and Guanggu data sets were 94.8 + 3.3%, 94.4 + 2.6%, and
73.6 £8.3%, respectively. Data imbalance damages the AUC score
obtained using the Guanggu data set, because only two deaths
suffered from shock (2 of 20 deaths), which is one of the most
important features for the identification of deaths (see Fig. 5b). Thus,
some deaths in the Guanggu data set might be treated by iCOVID as
patients who have a high probability of recovering. Promisingly,
iCOVID still considers these patients at a high-risk level, and the
average predicted recovery time of these patients is as high as 25.8 +
6.5 days. It is not informative that predicting poor outcomes for
patients suffering from shock or ARDS. However, ~50% of deceased
patients investigated in this study were shock-free and ARDS-free
within 48 hours after admission (see Supplementary Table 3). The
AUC scores demonstrate that iCOVID can also precisely identify these
high-risk patients.

We found only two studies that were related to recovery-time
prediction. Yue et al.*’ trained a random forest model to classify
patients with different hospital stay using 1218 radiomic features*®
extracted from CT images, whereas Liu et al.*® used a Kaplan-Meier
analysis>® to determine the risk factors associated with the length of
hospital stay. However, these studies had the following two main
drawbacks: (1) a shortage of data for model development (<100
patients) and (2) a modeling method that was too simplistic for
complicated clinical scenes, such as using heterogeneous multimodal
data to predict the length of hospital stay. In particular, the
Kaplan—-Meier method can only be used for univariate analysis. In
contrast, the proposed iCOVID solution is more practical. During the
training stage, iCOVID can fully use data from patients with different
outcomes (i.e, recovered, deceased, and censored) to learn the
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time-variant nonlinear relationship between multimodal information
and events. Then, during the testing stage, iCOVID can directly
estimate the length of days the patient needs to recover.
Furthermore, knowledge of clinical factors, especially biomarkers
that are highly correlated with the recovery time of COVID-19
patients, is also clinically important. For this purpose, an FSR
mechanism is designed and incorporated with the model as a
subnetwork to learn the feature significance, allowing us to screen
the most important clinical features and provide strong individual
interpretability of the prediction (see Fig. 3e) rather than simply
statistical interpretability.

Notably, the future work includes the following limitations that are
planned to be addressed. First, the model was developed and
evaluated using data collected only from three hospitals and the
number of patients for the external validation is relatively small. To
further validate the clinical application value of the iCOVID model, we
plan to perform prospective validation with cooperative hospitals.
Second, the iCOVID model uses a variety of information (ie,
treatment schemes, CT images, and clinical features) as input to
make predictions. However, it might be difficult to simultaneously
collect all information in clinical practice. Therefore, we also validated
the performance of iCOVID fed with only baseline features (all 46, top
20, top 15, top 10, and top 5 clinical features). The results
demonstrate that iCOVID can still achieve promising performance,
especially when considering only the top 20 and top 15 features,
respectively, which can be normally obtained within 48 hours after
admission (Supplementary Fig. 4). Third, the proposed FSR mechan-
ism can reveal the significance of each clinical feature but cannot
reflect the positive or negative correlation between the features and
the recovery time as demonstrated by the red lines in Fig. 6.
Therefore, the FSR mechanism should be further improved in future
work to enhance its applicability in clinical practice. Finally, our
experiments demonstrated that treatment schemes have a signifi-
cant impact on the model performance. However, a more
comprehensive investigation of the relationship between treatments
and the recovery of COVID-19 patients needs to be performed.

In conclusion, we developed a deep learning-based time-
dependent prognostic analysis framework that is applicable for the
early recovery-time prediction of COVID-19 patients. We demon-
strated that considering both treatment schemes and patient
covariates (i.e, CT scans, demographics, symptoms, comorbidities,
and biomarkers) for model development can significantly improve
the prediction performance. The proposed work is not only vital
for the study of COVID-19 pneumonia but also universally significant
for the early prognostic prediction of other respiratory infectious
diseases, especially viral pneumonia.

METHODS
Ethics

The study was approved by the Ethics Committee of the First Affiliated
Hospital of Army Medical University with approval number KY2020277, and
the study was performed according to the principles of the Declaration of
Helsinki. Since it is a retrospective study and presents no more than minimal
risk, a waiver for informed consent was granted by the Ethics Committee.

Materials

We collected the information of 2530 COVID-19 patients from Huoshenshan
Hospital, which was built temporarily for the emergency treatment of patients
in Wuhan, China. We also collected the information of 398 and 80 patients
from Taikang Tongji (Wuhan) Hospital and Maternity and Child Healthcare
Hospital (Guanggu) in Wuhan, respectively. SARS-CoV-2 infection was
confirmed by reverse transcription polymerase chain reaction (RT-PCR) among
all patients between 1 February and 31 March 2020. All specimens were
extracted from nasal and throat swabs using the same standardized protocol.
Confirmed cases of COVID-19 were defined as positive RT-PCR according to
World Health Organization interim guidance®'. Strict recovery criteria were
executed according to the diagnostic and treatment guideline for COVID-19
issued by the Chinese National Health Committee (version seventh)®. All the
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following recovery criteria had to be met for hospital discharge or
discontinuation of quarantine: (1) normal temperature lasting longer than
3 days, (2) resolved respiratory symptoms, (3) substantially improved acute
exudative lesions on chest CT images, and (4) two consecutively negative RT-
PCR test results separately by at least 1 day. As summarized in Supplementary
Table 1, the patient information included age, gender, symptoms, comorbid-
ities, and biomarkers, which were acquired within 2 days of the patients’
admission to the hospitals (average 0.58 + 1.52 days). The COVID-19 severity
level, the number of days of hospital stay, the treatment type, and the
outcome (censored data, recovery, or death) of each patient were also
collected to build the survival analysis data set. The outcome-time since
admission was as follows: recovery:14.5+82 days (minimum/maximum: 3/
61 days) and death: 13.5+£9.6 days (minimum/maximum: 3/50 days). All
patients with censored data were lost to follow-up as they were transferred to
other hospitals, and it is only known that these patients were in a remission
state on the date of transfer. Finally, many previous studies®>~¢ have reported
that CT images can provide vital clues for prognostic estimation. Therefore,
we also collected the primitive CT scan of each patient following admission
within 48 hours. However, we only selected scans that were reconstructed
with a slice thickness of <3 mm. Owing to these selection criteria and other
unknown reasons, the imaging data of a total of 1492 patients were not
considered during the data collection process. Thus, only 1516 patients
(mild and moderate: 922; severe and critical: 594) had CT scan information
in our data set.

Data preprocessing

Different features have different magnitude ranges. For example, the
lymphocytic absolute value is generally lower than 5.0/L, whereas the
value of TP is usually larger than 50g/L. We found that the framework
performance can be adversely affected if the framework is trained with inputs
of the original feature values. In particular, it is difficult for the FSR mechanism
to learn regression coefficients that precisely reflect the significance of each
feature. To reduce this impact, we normalized all features to ensure that their
values ranged between 0 and 1 before feeding them into the framework
(missing values were set to 0 by default). Regarding the CT scans, we first
resized the scans to the same voxel size of 1 mm xTmmXx1mm using
bilinear interpolation to reduce variation across different scans, especially the
slice thickness. Subsequently, we obtained the lung region mask of each scan
using 3D-Unet trained for lung region segmentation from chest CT images?.
This mask was consequently used to calculate a hull convex region for
cropping a refined lung-only CT scan intended to remove image noise outside
the lungs and reducing the cost of GPU memory. All cropped subvolumes
were downsampled to the same size of 48 x 48 x 48 before feeding to the
framework due to memory limitations and computational efficiency.

Network details

The network architecture of the framework is shown in Fig. 3a. The inputs to
the framework were the treatment scheme (a 19-dimensional vector), lung CT
images sized 48 x48x 48, and clinical features (age, gender, symptoms,
comorbidities, and biomarkers) represented by a 46-dimensional vector. The
convolutional neural network (CNN) VGG-163° was modified to a 3D version
and used to extract a 128-dimensional imaging feature vector from the lung
CT images. Subsequently, the 46-dimensional feature vector was fed to the
FSR module to generate a weighted feature vector. This vector was finally
combined with the 128-dimensional imaging feature vector and the 19-
dimensional treatment scheme vector using cascaded fully-connected layers
(.., the hidden layers in Fig. 3a) for the prognostic estimation of the number
of days a patient needs to recover. In our implementation, the hidden layers
were composed of four fully connected layers with 256, 512, 512, and 256
neurons. A rectified linear unit was empirically selected as the activation
function, and dropout®” was applied after each fully connected layer during
the training stage to avoid overfitting.

FSR mechanism

The FSR mechanism is designed as a subnetwork to learn a 46-
dimensional coefficient vector with each element representing the
significance of each feature in the 46-dimensional feature vector, which
intuitively provides interpretability to the prediction result. For example,
by sorting the learned coefficients, we can determine which features
make the greatest contribution to the prediction. Formally, let the feature
vector and coefficient vector be represented by X = [X1,X2, ... ,xk] and
w= (w1, ws, ... ,wk] (K=46), respectively, and the aim is to generate a
weighted feature vector x = [w1x1, WXy, ... ,wixk] that is finally fed to
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the hidden layers for the prediction. Each coefficient wy in the vector W is
obtained by the softmax function as follows:

_ exp{f(7|9)k}
i exp{f(?}e)i}7

where f(-) indicates a subnetwork with trainable parameters 6. Since the
weighting coefficients are calculated using the softmax function, they are
subject to Zf:1 wg = 1. Intuitively, the FSR module can be simply
implemented by cascading fully connected layers with each layer
followed by an activation layer (e.g., SeLU>®). The final fully connected
layer consists of K neurons that are connected to a softmax layer to
produce the weighting coefficients. Notably, the fully connected layer
must be initialized with 1.0 to guarantee that all features have an identical
impact at the beginning of training.

M

Wi

Multi-event loss function

The network was trained by minimizing a multi-event loss, comprising the
following five parts:

L= A1 Ecensor + A2£recover + A3Lrank + )\4£death + AS ||BH1 ) (2)

where Lcensorr Lrecovers aNd Lgeath indicate the loss for handling censored
data, recoveries, and deaths in the prognostic estimation task, respectively.
Lrank is a raking loss that is applied to the recoveries to address the time-
variant issue. The ranking loss adapts the idea of concordance®® as follows: a
patient who recovered on day t- should have a higher probability of
recovering on day t« than any patient who did not yet recover on day t«. The
last term ||@||, is the L1-norm, which helps leamn the sparse coefficient
vector. Ay, Ay, As, Ay, and A5 are hyperparameters used to control the
contribution of each term in Eqg. 2. These hyperparameters are empirically
setto 1,2, 1, 5, and 1. The details are further explained as follows:

(@) Loss Leensor is defined as follows:
N

{sgn(on = 0) -log[1 — F(ta|X'n,In, Tn)]},

['censor = - N
censor ;7

(3)
where sgn(-) denotes an indicator function. Ncensor indicates the

number of censored patients in the minibatch with size N. F(*) is the
CIF, which is defined by:

th
F(ta] Koo ) = Pt < 60Kl T) = S P(E Ko, T),
n=1

4)

where ?(*) is the estimated probability distribution. The target of
Eq. 3 minimizes all probabilities {P;, P, ... , P, } based on the prior
knowledge that each patient with censored data did not yet recover
on the last recorded day t,,.

(b) Loss Lrecover is defined as follows:

N
{Sgn(on =1)-log [P(tn‘ynalm ?n)] }7 (5)

[«recover = - N
recover 7

where Niecover is the number of recovered patients in the minibatch.
Equation 5 drives the network to learn a maximum probability on
the t, day when the nth patient recovers after admission.

(c) Ranking loss Lank is calculated as follows:

|:F(tn|7m~,lmy ?m) B F(tn|7nsln~,?n) :| }

a

Liank = Z {sgn(t,, <tm) - exp
n#m
(6)
where a denotes a hyperparameter that is empirically set to 0.2 in
this study. Since exp(*) is a convex function, minimizing Eq. 6 equals
maximizing the distance between F(ty|Xp,In, T5) and
F(ta]| X n,Im, Tm) subject to F(ta|X'n, ln, Tn)>F (ta| X'm, Im, Trm)-
(d) Loss Lgeatn is defined as follows:

i{sgn(o,, =2)-log[1—F(T - 1|7n,ln,?n)} 1,

n=1

1
Naeath

Edeath = -

@)

where Ngearh is the number of deceased patients in the minibatch,
and T is the last day in the estimation time range (T=32 in
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this study). The target of Eq. 7 minimizes all probabilities
{P1,P,, ... ,Pr_1} and maximizes Pr corresponding to each deceased
patient. We can observe that Eq. 7 is similar to Eq. 3. According to
this definition, deceased patients are treated as a special type of
patients with censored data.

Evaluation metrics

The TD-Cl and the MADE were calculated to evaluate the performance of
the recovery event. Given the CIF in Eqg. 4, the TD-CI Ctis defined as
follows:

D nem S9N (tn <tm) - SN(F (ta| X'n In, T ) >F (ta| X', ben, Tom))

c
> nem SIN(tn <tm)

, 8

which counts the number of predictions that correctly abide by the idea of
concordance®®. The MADE d™ is calculated as follows:

N

gma :%Z

n=1

t, — argmax (ﬁ) ‘, 9)

where T,: is the predicted probability distribution of the n patient. For
the internal validation, the performance was evaluated statistically in terms
of 95% confidence interval of the above-mentioned TD-CI and MADE
metrics. The 95% Cl values were calculated using the bootstrap method®®.

Fivefold cross-validation

The five subsets {Cohort_i|i =1,2,... ,5} of the Huoshenshan data set
were used to train five independent models {Mj[j =1,2,... 7S}for internal
validation. Each model M; was trained using four subsets {Cohort_i|i =
1,2,...,5andi#j} and tested using the remaining subset.

Ablation experiments

To validate the impact of treatments and CT images on the prediction
performance, we also trained iCOVID models without considering any
treatment information, i.e, setting all T in the ground-truth treatment
scheme to zero during the training stage, and iCOVID models without
using any CT image information, i.e., setting all voxel values in the image
matrix to zero during the training stage. The clinical data, i.e,
demographics, symptoms, comorbidities, and biomarkers, were used as
baseline information in all models.

Implementation of benchmark models

The fivefold CPH models and the RSF models were trained using
CoxnetSurvivalAnalysis and RandomSurvivalForeset (with 100 trees)
implemented in the python library Scikit-survival: https://scikit-survival.
readthedocs.io/en/latest/index.html. Because the CPH model and the RSF
model cannot directly process CT images, we first extracted the
convolutional feature vectors from the CT images using the CNN encoders
of the iCOVID models, and then, we used the feature vectors as the input
to the benchmark models. Similar to the aforementioned ablation study,
we also trained the benchmark models without considering any treatment
or image information for comparison.

Training details

The framework was implemented using Google TensorFlow (version 2.0
with Keras API) on an NVIDIA RTX 2080Ti GPU. During the training stage,
the networks were optimized by gradient descending with gradients
estimated by the Adam optimizer under the constraint of minimizing the
multi-event loss. The learning rate was 0.001, decaying every 100 iterations
with an exponential rate of 0.96. The total number of iterations was 2k (20
epochs multiplied by 100 iterations). At each iteration, a minibatch of
72 samples was fed to the networks. We augmented the CT scans by
randomly rotating each scan to 0, 90, 180, and 270 degrees, and randomly
flipping the scans in the X, Y, and Z axes. For those patients without CT
images, we directly input a volume of size 48 x 48 x 48 with zero values. To
avoid the overfitting issue, only the model that achieved a minimum MADE
using the subset applied for the online evaluation (i.e, Cohort_6, see
Supplementary Fig. 1d) was saved.
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Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY

The survival data sets used for modeling are not publicly available owing to privacy
concerns. However, researchers can contact the corresponding author to obtain the
de-identified data upon ethical approval from the Ethics Committee of Southwest
Hospital, Third Military Medical University, and signature of a data usage agreement.
The remaining data are available in the article and supplementary files.

CODE AVAILABILITY

The code, pre-trained models, and a total of 258 samples are available at: https://
github.com/wangjuncongyu/covid19_recovery.
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