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Fear of punishment prompts individuals to conform. However, why some people are
more inclined than others to conform despite being unaware of any obvious punishment
remains unclear, which means the dispositional determinants of individual differences
in conformity propensity are poorly understood. Here, we explored whether such
individual differences might be explained by individuals’ stable neural markers to potential
punishment. To do this, we first defined the punishment network (PN) by combining
all potential brain regions involved in punishment processing. We subsequently used a
voxel-based global brain connectivity (GBC) method based on resting-state functional
connectivity (FC) to characterize the hubs in the PN, which reflected an ongoing
readiness state (i.e., sensitivity) for potential punishment. Then, we used the within-
network connectivity (WNC) of each voxel in the PN of 264 participants to explain their
tendency to conform by using a conformity scale. We found that a stronger WNC in the
right thalamus, left insula, postcentral gyrus, and dACC was associated with a stronger
tendency to conform. Furthermore, the FC among the four hubs seemed to form a three-
phase ascending pathway, contributing to conformity propensity at every phase. Thus,
our results suggest that task-independent spontaneous connectivity in the PN could
predispose individuals to conform.

Keywords: punishment network, functional connectivity, conformity propensity, thalamus, insula, postcentral
gyrus, dACC

INTRODUCTION

‘‘The idea that men are created free and equal is both true and misleading: men are created different; they
lose their freedom and their autonomy in seeking to become like each other.’’

David Riesman, The Lonely Crowd: A Study of the Changing American Character

Conformity is a prevailing social phenomenon, which means behaving in accordance with the
common norms, social standards, attitudes, beliefs, and values of a given culture (Riesman, 1950;
Riesman et al., 2001). At an individual level, conformity refers to the act of changing one’s behavior
to match the responses of others (Cialdini and Goldstein, 2004). Marcuse (1964) defined this social
character as one-dimensionality in his book,One-Dimensional Man, describing a state of affairs that
conforms to existing thought and behavior, in which there is a lack of critical dimension.
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Individuals are prompted to conform due to a fear of
punishment (Cialdini and Goldstein, 2004; Spitzer et al., 2007;
Haun and Tomasello, 2011; Gelfand, 2012). First, from a social
psychological perspective, a minority position is aversive (Asch,
1956; Hornsey et al., 2003); it can lead to hostility, disapproval,
rejection from others, or social isolation (Heerdink et al., 2015).
To avoid such social punishment, people might be motivated
to conform to the majority position (Falk et al., 2012). Second,
from an evolutionary perspective, evolutionary game-theoretic
models (Smith, 1982) show that groups that face greater societal
threats require harsher punishment for norm deviators to avoid
a breakdown of cooperation and to survive (Gelfand, 2012).
Regarding the prominent role of such peer punishment in human
evolution (Boyd et al., 2003), humans could have developed
corresponding neural mechanisms that made them constantly
vigilant to the threat of potential punishment (Fehr and Gächter,
2002; De Quervain et al., 2004; Spitzer et al., 2007), which implies
that the dispositional determinants of individual differences in
conformity propensity (Egerton et al., 2010; Jolles et al., 2011)
might be a stable neural trait (i.e., sensitivity to punishment at a
neural level). Also, as the tendency to imitate is usually swift and
automatic (Griskevicius et al., 2006), the individual differences
in conformity propensity might be driven by differences in early
automatic perception of potential punishment (Franzen and
Brinkmann, 2015).

Therefore, in the present study, we explored whether andwhat
neural traits—dispositional brain-based characteristics—might
explain individual differences in conformity propensity. To
measure individuals’ neural markers of punishment sensitivity,
one of the best options is to use spontaneous resting-state
functional magnetic resonance imaging (rs-fMRI) to measure
the level of coactivation of functional time series [i.e., functional
connectivity (FC)] in a specific functional network [i.e., the brain
punishment network (PN; Salvador et al., 2005; Damoiseaux
et al., 2006; Van den Heuvel and Hulshoff Pol, 2010)]. Because
brain regions often have to work together to form a functional
network during rest (Damoiseaux et al., 2006; Fox and Raichle,
2007; Smith et al., 2013), this makes spontaneous rs-fMRI
oscillations a robust measure to examine ongoing functional
communication between brain regions absent of actual stimulus
(Peelen et al., 2013; Hutchison et al., 2014; Stevens et al.,
2015; Wang et al., 2016). Unlike task-based imaging, which
typically highlights brain responses associated with any given
task, rs-fMRI allows researchers to observe how a brain’s resting-
state connectivity is ready for prime time in the absence of any
explicit task (Shen, 2015). Therefore, we can measure rs-fMRI
in PN to characterize individuals’ preparation and anticipation
states for potential punishment. Hence, the resting-state FC in
the PN is an ideal neural marker of punishment sensitivity.

Here, we defined the PN by including all brain regions
potentially involved in punishment processing. According
to neuroscience studies, punishment processing may be
underpinned by several distinct brain systems (Palminteri
and Pessiglione, 2017). The first system has suggested that
punishment-avoidance processing is driven by dopamine (DA)
activity (Brooks and Berns, 2013). Specifically, some fMRI
studies have shown that the dorsal parts of the frontostriatal

circuits (dorsal striatum) could reinforce punishment avoidance
(Seymour et al., 2007; Delgado et al., 2008; Shenhav and Buckner,
2014; Pauli et al., 2015). Additionally, some studies have
emphasized that punishment processing is mediated by aversive
signals encoded in other brain areas, such as the insula, dorsal
anterior cingulate cortex (dACC), and amygdala (Gonzalez et al.,
2014; Namburi et al., 2016; Bernardi and Salzman, 2017). The
involvement of these regions in experiencing punishment has
been supported by some fMRI studies as well as meta-analyses
(Palminteri et al., 2012, 2015; Bartra et al., 2013; Garrison et al.,
2013; Hayes et al., 2014). These results demonstrate the critical
and specific role that various brain structures could play in
punishment sensitivity: first, some were implicated in the DA
system (striatum), and second, other subcortical and cortical
structures were implicated in aversive processing, such as the
insula, dACC, and amygdala. Therefore, the aforementioned
brain regions all possibly contributed to punishment sensitivity
and worked in an integrative manner, despite the absence of any
punishment stimulus, to predispose individuals to conform.

To test this hypothesis, we first combined all potential
brain regions associated with punishment processing to form
the PN using an automated meta-analysis (i.e., Neurosynth;
Palminteri and Pessiglione, 2017). Then, we characterized the
voxel-wise FC within the PN in a large sample of participants
(N = 272) with voxel-based global brain connectivity (GBC)
method using rs-fMRI (Cole et al., 2012; Wang et al., 2016).
For the brain-wide GBC analyses, a voxel’s GBC was computed
as the average connectivity of that voxel with the rest of the
brain; For the ROI GBC analyses, voxel-wise connectivity was
based on average correlations of a voxel with the rest of all
within-region voxels (Cole et al., 2010). Thus, in this study,
to focus on investigating punishment sensitivity the voxel-wise
GBC maps were computed within the PN. Specifically, the
functional integration of the PN was determined by calculating
the within-network connectivity (WNC) of each voxel in the PN
as the average FC of a voxel with the rest of the punishment-
selective voxels in the PN. Next, we examined whether the WNC
in the PN was related to conformity propensity (tendency),
measured with a conformity scale (Mehrabian and Stefl, 1995)
to explore attributes of conforming. Hence, by correlating the
WNC of each voxel in the PN with the tendency of conformity
across participants, we characterized the conformity propensity
relevance of integration (i.e., a stronger WNC) of the PN, which
could elucidate the dispositional determinant (i.e., punishment
sensitivity) of conformity behaviors. We hypothesized that the
integration (i.e., a stronger WNC) of the PN is positively
associated with conformity propensity.

MATERIALS AND METHODS

Participants
A total of 272 participants [146 female participants; 272
self-reported right-handed; mean age = 20.4 years, standard
deviation (SD) = 0.9 years] from Beijing Normal University
participated in the rs-fMRI scan and behavioral session. All
participants had a normal or corrected-to-normal vision and
reported no history of neurological or psychiatric disorders
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TABLE 1 | Demographic information for participants.

n = 272

Age 20.4 (0.9)
Gender 146 F (54%), 126 M (46%)
Left-handed 0%
History of neurological disorders N/A
History of psychiatric disorders N/A

(Table 1). All investigation protocols were approved by the
Institutional Review Board of Beijing Normal University.
Written informed consent was obtained from all the participants
before the study.

PN Map From Neurosynth Meta-analysis
To obtain an activation map relevant for punishment processing,
we used an automated meta-analysis tool called Neurosynth1

(Yarkoni et al., 2011) to generate the association test map
displaying brain regions preferentially related to the key
terms ‘‘punishment,’’ ‘‘aversive,’’ and ‘‘pain’’ (Palminteri
and Pessiglione, 2017). The meta-analysis was performed
by automatically identifying all studies in the Neurosynth
database that loaded highly on the term. Meta-analyses
were then performed to identify brain regions consistently
or preferentially reported in the tables of those studies,
including the key terms. Despite the automaticity and
potentially high noise resulting from the association between
the term frequency and coordinate tables, this approach
has been demonstrated to be robust and reliable (Yarkoni
et al., 2011; Helfinstein et al., 2014; Kong et al., 2017). The
database was accessed in February 2019. ‘‘Punishment’’ was
searched for in 92 studies with 2,881 activations, ‘‘aversive’’
was searched for in 238 studies with 8,529 activations, and
‘‘pain’’ was searched for in 516 studies with 23,295 activations.
The generated maps were corrected using a false discovery
rate (FDR) approach with an expected FDR of 0.01. We
combined all three maps to create the final map of the PN.
As expected, the resulting statistical map included the dACC,
postcentral gyrus (PG), bilateral insula, striatum, thalamus,
and amygdala, which is similar to the results obtained in
previous punishment-processing studies (Delgado et al., 2008;
Palminteri et al., 2012; Bartra et al., 2013; Garrison et al., 2013;
Eisenberger, 2015; Pauli et al., 2015; Bernardi and Salzman, 2017;
Palminteri and Pessiglione, 2017).

Image Acquisition
The images were acquired using a 3T scanner (MAGNETOM
Trio, A Tim System; Siemens) with a 12-channel phased-array
head coil at the Beijing Normal University Imaging Center
for Brain Research in Beijing, China. The rs-fMRI scanning
was conducted using a gradient-echo echo-planar imaging
(GRE-EPI) sequence [repetition time (TR) = 2,000 ms,
echo time (TE) = 30 ms, flip angle = 90◦, number of
slices = 33, voxel size = 3.125 × 3.125 × 3.6 mm3].
Scanning lasted for 8 min and consisted of 240 contiguous
EPI volumes. During the scan, the participants were

1https://github.com/neurosynth/

instructed to relax without engaging in any specific task
and remain still with their eyes closed. In addition,
high-resolution T1-weighted images were acquired
with a magnetization-prepared gradient-echo sequence
(MPRAGE: TR/TE/TI = 2,530/3.39/1,100 ms, flip angle = 7◦,
matrix = 256 × 256, number of slices = 128, and voxel
size = 1 × 1 × 1.33 mm3) for spatial registration. Earplugs
were used to attenuate scanner noise, and a foam pillow and
extendable padded head clamps were used to restrain the
participants’ head motion.

Image Preprocessing
The rs-fMRI data were preprocessed using the FMRIB Software
Library (FSL)2. Preprocessing included removal of the first four
images, correction for head motion (by aligning each volume
to the middle volume of the image with the MCFLIRT), spatial
Gaussian smoothing [with a Gaussian kernel of 6 mm full-width
at half-maximum (FWHM)], intensity normalization, and linear
trend removal. A temporal bandpass filter (0.01–0.1 Hz) was then
applied to reduce low-frequency drifts and high-frequency noise.

To further eliminate physiological noise, such as the
fluctuations caused by motion, cardiac and respiratory cycles,
nuisance signals from cerebrospinal fluid, white matter, whole-
brain average, motion correction parameters, and the first
derivatives of these signals were regressed out using the methods
described in previous studies (Fox et al., 2005; Biswal et al.,
2010). The four-dimensional residual time series obtained after
removing the nuisance covariates were used for the rs-FC
analyses. The strength of the intrinsic FC between two voxels was
estimated using Pearson’s correlation of the residual resting-state
time series for those voxels.

The rs-fMRI images of each participant to the
structural images were registered using FLIRT to
produce a six-degrees-of-freedom affine transformation
matrix. The registration of each participant’s structural
images to a common stereotaxic space [the Montreal
Neurological Institute (MNI) 152-brain template with
a resolution of 2 × 2 × 2 mm3, MNI152] was
accomplished using FLIRT to produce a 12-degrees-of-
freedom linear affine matrix (Jenkinson and Smith, 2001;
Jenkinson et al., 2002).

Behavioral Tests
The participants’ conformity propensity was measured using
an 11-items conformity scale based on Mehrabian and Stefl
(1995). Conformity was defined as involving the characteristic
willingness to identify with others and emulate them, giving in
to others to avoid conflict, and being a follower rather than
a leader in terms of ideas, values, and behaviors (Mehrabian
and Stefl, 1995). Seven items were positively scored (+),
showing a stronger tendency toward conformity, while the
remaining four items were negatively scored (−). The items
are statements such as ‘‘I often rely and act upon the advice
of others’’ (+), ‘‘Generally, I’d rather give in and go along
with the majority of others for consistency’’ (+), and ‘‘I am

2http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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more independent than conforming in my ways’’ (−). The
participants were asked to evaluate themselves on a 6-point
Likert scale ranging from 1 (never or almost never true) to 6
(always or almost always true), with higher scores indicating
a higher tendency to conform. In the current study, the
internal consistency for all items was provided by a Cronbach’s
coefficient of 0.78.

WNC Analyses in the PN
The GBC method, which is a recently developed analytical
approach for fMRI data, was used to characterize the intrinsic
WNC of each voxel within the PN (Cole et al., 2012). The GBC
of a voxel was generally defined as the averaged FC of that voxel
to the remaining voxels in the entire brain or a predefined mask
(Cole et al., 2012; Wang et al., 2016; Pan et al., 2019; Li et al.,
2020). This method enabled the characterization of a specific
region’s full-range FC with the voxel-wise resolution, allowing
us to comprehensively examine the role of each region’s FC
in punishment sensitivity. Specifically, the FC of a PN voxel
to the remaining PN voxels was computed one by one and
then averaged as the WNC of the PN voxel. Then, participant-
level WNC maps were transformed to z-score maps by using
Fisher’s z-transformation to yield normally distributed values
(Cole et al., 2012; Gotts et al., 2013). A one-sample t-test was
performed for each voxelWNC to identify the distribution of hub
regions within the PN (Song et al., 2020). The significance was
determined using the FDR correction approach with p < 0.01.
Moreover, we conducted two-sample t-tests to compare the
WNC in the PN between male and female participants to
determine whether gender differences existed in punishment
sensitivity. The significance was determined using the FDR
correction approach with p < 0.01.

WNC–Conformity Propensity Correlation
Analyses
A correlation analysis was conducted to examine the relationship
between the WNC of each voxel in the PN and the individual
differences in conformity propensity. Specifically, a Pearson’s
correlation between the WNC and conformity scores was
conducted for each voxel with a GLM tool implemented in FSL,
where the conformity scores were set as an independent variable
and the WNC in the PN was set as the dependent variable.
Multiple comparison correction was performed on the statistical
map using the 3dClustSim program implemented in AFNI3

(version 16.1.13, 2016). The voxel- and cluster-level thresholds
of p < 0.002 and p < 0.05, respectively, were set based on Monte
Carlo simulations in the PN mask.

Furthermore, control analyses were performed to rule out
other possible confounding factors such as head motion and
gender, because recent studies have shown that rs-FC is largely
affected by head motion (Satterthwaite et al., 2012; Van Dijk
et al., 2012) and gender was identified as a possible modulator of
conformity (Rosander and Eriksson, 2012). Thus, we calculated
the partial correlation between WNC and conformity propensity
while controlling for headmotion and gender. The extent of head

3http://afni.nimh.nih.gov

motion was measured by the mean framewise displacement (FD)
for each participant (Van Dijk et al., 2012).

Seed-Based FC-Conformity Correlation
Analysis
We further investigated with which specific regions the FCs of
the identified clusters in the aforementioned WNC–conformity
correlation analyses were correlated with conformity propensity.
In this regard, seed-based FC analyses were performed with
each identified cluster as the seed. For a seed identified in the
WNC–conformity correlation analysis, we calculated the FC
between themean time series in the seed (Fisher’s z-transformed)
and each PN voxel and correlated the FC with conformity scores.
Again, multiple comparison correction was performed using
the 3dClusSim program implemented in AFNI (version 16.1.13,
2016)3. A threshold of voxel-level p < 0.002 and cluster-level
p < 0.05 was set based on Monte Carlo simulations in the PN.
Furthermore, similar control analyses were performed to rule out
the confounding effects of head motion and gender.

Participant Exclusion
The exclusion criterion for fMRI data was head motion >2.0◦ in
rotation or 2.0mm in translation throughout the fMRI scan. Four
participants (three male and one female) were excluded based
on this criterion. For the behavioral tests, Tukey’s outlier filter
(Hoaglin et al., 1983) was used to identify outlier participants
with exceptionally low (3 × the interquartile range below the
first quartile) or high (3 × the interquartile range above the third
quartile) scores. Four additional participants (two male and two
female) were excluded using this method.

RESULTS

Behavior Results
Participants’ conformity propensity was measured using the
conformity scale (Mehrabian and Stefl, 1995), and the mean
score obtained by the sample (N = 264) was 3.47 (SD = 0.58).
Also, an independent sample t-test was used to examine the
difference in the conformity propensity betweenmale and female
participants. The results revealed significant differences between
male (mean = 3.29, SD = 0.56) and female (mean = 3.63,
SD = 0.55), t(262) = 5.06, p< 0.001, Cohen’s d = 0.61) participants,
which is consistent with previous studies that a gender difference
in conformity propensity might exist at the behavioral level
(Rosander and Eriksson, 2012). Therefore, we used gender as a
control variable for further analysis.

Definition of PN
To define the PN, we used the results of the Neurosynth
meta-analysis with the terms ‘‘punishment,’’ ‘‘aversive,’’ and
‘‘pain’’ (Z > 2.3, uncorrected, Figure 1A) and recreated a PN
mask combining the three association test maps (Palminteri and
Pessiglione, 2017). As a result, the PN included the dACC, PG,
bilateral insula, thalamus, amygdala, and striatum (Figure 1B).
The regions in the PN were in agreement with the punishment-
selective regions identified in studies on punishment processing
(Delgado et al., 2008; Palminteri et al., 2012; Bartra et al.,
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FIGURE 1 | (A) Maps resulting from automatized large-scale meta-analyses as implemented in Neurosynth. Three association test maps displaying brain regions
preferentially related to the key terms “punishment,” “aversive,” and “pain” created in the Neurosynth meta-analysis (Z > 2.3, uncorrected). These three maps involve
both similar (the dACC) and specific (notably the striatum, thalamus, amygdala, and insula) brain regions. (B) Global pattern of within-network connectivity (WNC) in
the punishment network (PN; combing aforementioned “punishment,” “aversive,” and “pain” maps). The group-level (one-sample t-test) WNC map is overlaid on the
cortical surface (FDR corrected p < 0.01). L, left; R, right. The visualization was provided by BrainNet Viewer (http://www.nitrc.org/projects/bnv/).

2013; Garrison et al., 2013; Eisenberger, 2015; Pauli et al., 2015;
Bernardi and Salzman, 2017; Palminteri and Pessiglione, 2017).

WNC in the PN
After identifying the PN, we computed each voxel’s WNC in the
PN by using the rs-fMRI data, where the WNC measured the
voxel-wise FC within the PN. First, a one-sample t-test was used
to identify the hubs distribution in the PN. Specifically, we used
a one-sample t-test to calculate the WNC across voxels in the
entire sample (N = 264). The results showed that almost all voxels
in the PN exhibited positive WNC (FDR-corrected p < 0.01),
suggesting that the PN is a relatively encapsulated network,
and among all the PN regions (FDR-corrected p < 0.01), the
insula, thalamus, dACC, and PG had the largest WNC values
(Figure 1B), among which theWNC values of the right thalamus,
bilateral insula, dACC, and PG was 1 SD higher than the mean
WNC value of the PN, suggesting that these regions serve as
hubs of the PN (Dai et al., 2015; Wang et al., 2016). Also, a
two-sample t-test between male and female participants across
voxels in the WNC value within the PN revealed no significant

difference between genders, which indicated that male and
female participants have similar sensitivity to punishment at the
neural level.

Correlation Between WNC and Conformity
Propensity
To investigate how the resting-state FC patterns in the PN were
related to conformity propensity, we performed a voxel-wise
correlation analysis to search for any PN voxels exhibiting a
correlation between WNC and conformity propensity across the
participants. As shown in Figures 2A,D, 3A,D and Table 2, four
clusters (voxel-level p < 0.002, cluster-level p < 0.05, corrected)
in the right thalamus (38 voxels, r = 0.217, p < 0.001, MNI
coordinates of peak: 14, −22, −2, Figures 2A,B), left insula
(44 voxels, r = 0.215, p < 0.001, MNI coordinates of peak: −38,
−10, −4, Figures 2D,E), PG (121 voxels, r = 0.252, p < 0.001,
MNI coordinates of peak: 26, −28, 58, Figures 3A,B), and dACC
(47 voxels, r = 0.217, p < 0.001, MNI coordinates of peak: −42,
24, 34, Figures 3D,E) showed significant positive correlation
between the WNC and conformity propensity, suggesting that
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FIGURE 2 | Correlation between the PN WNC and conformity. The PN WNC in the R_thalamus (38 voxels, voxel-level p < 0.002, cluster-level p < 0.05, corrected)
and L_insula (44 voxels, voxel-level p < 0.002, cluster-level p < 0.05, corrected) was positively correlated with conformity (A,D). The scatter plots are shown just for
illustration and visualization of the partial correlation (controlling for gender and head motion) between the PN WNC in the R_thalamus, L_insula, and conformity
(B,E). Correlation between seed-based functional connectivity (FC) and conformity is shown in Panels (C,F). (C) The FC between the R_thalamus seed and the
clusters in the bilateral insula was positively correlated with conformity. (F) The FC between the L_insula seed and the clusters in the bilateral insula and postcentral
gyrus (PG) was positively correlated with conformity. To better visualize the location of the significant clusters, the boundary of the clusters are shown with a red
contour. L, left; R, right; a.u., arbitrary units. The visualization was provided by BrainNet Viewer (http://www.nitrc.org/projects/bnv/).

individuals with stronger within-network integration in these
four regions during resting state were more inclined to conform.
No clusters showed a negative correlation between the WNC
and conformity propensity. In brief, these results suggested that
individuals’ conformity propensity was positively correlated with
the integration of the right thalamus, left insula, PG, and dACC
in the PN.

Control analyses were then performed to ensure that the
WNC-conformity correlation in the right thalamus, left insula,
PG, and dACC was not caused by confounding factors, such as
head motion or gender. We reanalyzed the WNC-conformity
correlation while controlling for head motion (Van Dijk et al.,
2012) and gender. We found that the correlation remained
significant (right thalamus: partial r = 0.188, p = 0.002; left
insula: partial r = 0.208, p = 0.001; PG: partial r = 0.219,
p < 0.001; dACC: partial r = 0.179, p = 0.004). These
results indicated that the WNC-conformity correlations in the
four clusters were not an artifact resulted from head motion
or gender.

To examine the reliability of the correlation, the top and
bottom 25% of the participants, according to the WNC (in

the significantly positive WNC–conformity correlation clusters:
right thalamus, left insula, PG and dACC), were labeled as
the high- and low-punishment sensitivity groups (N = 66 for
both groups), respectively. Consistent with the correlation
results, the high punishment sensitivity group (a group divided
according to the WNC in the cluster in the right thalamus:
conformity = 3.60; in the left insula: conformity = 3.58; in the
PG: conformity = 3.56; and in the dACC: conformity = 3.64)
exhibited higher conformity scores than did the low-punishment
sensitivity group (group divided according to WNC in the
cluster in the right thalamus: conformity = 3.28; in the left
insula: conformity = 3.27; in the PG: conformity = 3.24; and
in the dACC: conformity = 3.31) according to the WNC
in four clusters, respectively (the difference of conformity
scores between the top and low WNC groups in the right
thalamus: t(130) = −3.099, p = 0.002, Cohen’s d = 0.55;
in the left insula: t(130) = −2.946, p = 0.004, Cohen’s
d = 0.51; in the PG: t(130) = −3.595, p < 0.001, Cohen’s
d = 0.64; and in the dACC: t(130) = −3.351, p = 0.001,
Cohen’s d = 0.58). These results indicated that individuals with
superior punishment sensitivity (specifically reflected in the right
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thalamus, left insula, PG, and dACC integration) are more likely
to conform.

Conformity Relevance of Seed-Based FC
in the PN
After identifying the right thalamus, left insula, PG, and dACC
as the connection hubs within the PN associated with conformity
propensity, we examined with which specific regions in the
PN the FC of the identified clusters in the aforementioned
WNC–conformity correlation analysis were correlated with
conformity. For this purpose, we performed seed-based FC
analyses with the identified four clusters as seeds. We then
calculated the FC between the mean time series in the seed
(Fisher’s z-transformed) and each PN voxel and correlated the
FC with conformity scores (the results of correlation analyses
were summarized in Table 2). First, we found that the FC
between the right thalamus and two clusters were positively
correlated with conformity propensity (voxel-level p < 0.002,
cluster-level p < 0.05, corrected, Figure 2C), including the
bilateral insula (right, 655 voxels, MNI coordinates: 40, −11, −4;
left, 407 voxels, MNI coordinates: −40, −5, −4). In addition,
the correlations remained unchanged while controlling for the
participants’ head motion (Van Dijk et al., 2012) and gender
(right thalamus-right insula: partial r = 0.270, p < 0.001; right
thalamus-left insula: partial r = 0.264, p < 0.001). Second, the
FC between the left insula and three clusters were positively
correlated with conformity propensity (voxel-level p < 0.002,
cluster-level p < 0.05, corrected, Figure 2F), including the PG
(59 voxels, MNI coordinates: 60,−15, 34) and the bilateral insula
(right, 119 voxels, MNI coordinates: 34, 4, 6; left, 70 voxels,
MNI coordinates: −30, −17, 4). Additionally, the correlations
remained unchanged while controlling for the participants’
head motion and gender (left insula-PG: partial r = 0.178,
p = 0.004; left insula-right insula: partial r = 0.254, p < 0.001;
left insula-left insula: partial r = 0.239, p < 0.001). Third, the
FC between the PG and three clusters were positively correlated
with conformity propensity (voxel-level p < 0.002, cluster-level
p < 0.05, corrected, Figure 3C), including the dACC (759 voxels,
MNI coordinates: 8, 24, 20) and the bilateral parietal operculum
(PO; right, 334 voxels, MNI coordinates: 56, −29, 32; left,
161 voxels, MNI coordinates: −52, −35, 36). The correlations
remained unchanged while controlling for the participants’ head
motion and gender (PG-dACC: partial r = 0.251, p < 0.001; PG-
rPO: partial r = 0.216, p < 0.001; PG-lPO: partial r = 0.215,
p < 0.001). Finally, the FC between the dACC and two clusters
were positively correlated with conformity propensity (voxel-
level p < 0.002, cluster-level p < 0.05, corrected, Figure 3F),
including the bilateral PO (right, 241 voxels, MNI coordinates:
58, −21, 20; left, 463 voxels, MNI coordinates: −55, −21, 10). In
addition, the correlations remained unchanged while controlling
for the participants’ headmotion and gender (dACC-rPO: partial
r = 0.210, p = 0.001; dACC-lPO: partial r = 0.262, p < 0.001).
Taken together, these results suggest that from the right thalamus
to the bilateral insula to the PG to the dACC, these regions might
not only play parallel hub-like roles in punishment sensitivity but
also seem to have integrated as an ascending pathway to facilitate
conformity behaviors (Figure 4). TA
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FIGURE 3 | Correlation between the PN WNC and conformity. The PN WNC in the postcentral gyrus (121 voxels, voxel-level p < 0.002, cluster-level p < 0.05,
corrected) and dACC (47 voxels, voxel-level p < 0.002, cluster-level p < 0.05, corrected) was positively correlated with conformity (A,D). The scatter plots are shown
just for illustration and visualization of the partial correlation (controlling for gender and head motion) between the PN WNC in the postcentral gyrus (PG), dACC, and
conformity (B,E). Correlation between the seed-based FC and conformity is shown in panels (C,F). (C) The FC between the postcentral gyrus seed and the clusters
in the dACC and bilateral parietal operculum (PO) was positively correlated with conformity. (F) The FC between the dACC seed and the clusters in the bilateral PO
was positively correlated with conformity. To better visualize the location of the significant clusters, the boundary of the clusters are shown with a red contour. L, left;
R, right; a.u., arbitrary units. The visualization was provided by BrainNet Viewer (http://www.nitrc.org/projects/bnv/).

DISCUSSION

Using rs-fMRI, we demonstrated that task-independent FC
in the PN related to individual differences in conformity
propensity: higher WNC in the PN was associated with a
stronger tendency to conform. Specifically, first, we identified
the right thalamus, bilateral insula, PG, and dACC as
hubs for integrating all other regions in the PN. Then,
the correlation analysis between WNC and the conformity
scores demonstrated that individuals with stronger WNC in
the right thalamus, left insula, PG, and dACC (i.e., high
PN integration) exhibited considerably higher conformity
propensity. Furthermore, through seed-based analysis, the
results suggested that the specific connections from all four
brain regions seemed to form an ascending pathway and
that the connection of each phase in this pathway all
contribute to conformity propensity. Therefore, stronger WNC
in the PN might predispose conformity behaviors by fostering
punishment sensitivity. Every phase in this ascending pathway
for punishment sensitivity was positively correlated with
conformity propensity.

By using the GBC approach, our finding that the right
thalamus, left insula, PG, and dACC are hub areas integrating
the whole PN is consistent with previous findings that these brain
regions play a central role in punishment processing, such as the
processing of aversive, and painful stimuli (Frot et al., 2007; Chai
et al., 2010; Straube and Miltner, 2011; Kobayashi, 2012; Wiech
et al., 2014). Thus, the fact that these four hubs integrating the PN
at resting state indicate that they were in an ongoing readiness
state for priming of multiple potential punishments (Simmons
and Martin, 2011; Shen, 2015). This readiness state positively
correlated with individuals’ conformity propensity, suggesting
that this task-independent neural functioning might predispose
individuals toward conformity.

Also, seed-based FC-conformity correlation analyses were
conducted with four clusters as seeds in the right thalamus,
left insula, PG, and dACC, respectively, and the results
showed that the FCs in the four hub regions seemed to
form an ascending pathway that was positively correlated with
conformity propensity in each phase. It is also worth mentioning
that the PO was not the hubs in the PN but connected with
two hubs (i.e., the PG and dACC) in the ascending pathway
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FIGURE 4 | Illustration of the three-phase ascending pathway in the punishment network (PN). Phase 1 is the “input phase” and refers to the connectivity from the
thalamus to the insula; Phase 2 is the “affective and sensory processing phase” and refers to the connection between the insula, postcentral gyrus (PG), and parietal
operculum (PO); and Phase 3 is the “alarm phase” and refers to the connectivity within PG, PO, and dACC. The visualization was provided by BrainNet Viewer
(http://www.nitrc.org/projects/bnv/).

to contribute to the behavior tendency of conformity. This
result is consistent with previous studies that have indicated
that the function of the PO might not be the hub region to
integrate the whole PN, but that it plays an essential role in
transmitting signals within the hubs (Eickhoff et al., 2010; Garcia-
Larrea, 2012; Mano et al., 2017). More importantly, unilateral
severe physical punishment (e.g., painful stimulation) evoked
bilateral activation of PO but also activated the insula, PG, and
cingulate cortices in the contralateral hemisphere in completely
callosotomized patients (Fabri et al., 2002), which indicated that
PO could play a powerful function in transferring information
bilaterally, even in subjects with resection of the corpus callosum
and distributing signals to both hemispheric brain regions. Thus,
the major role of the PO could be facilitating connectivity
within the PG and dACC in the ascending pathway. Our
results suggested that the mechanism of punishment sensitivity
comprises multiple phases of processing (Ernst et al., 2006), and
this sensitivity could result from stronger connectivity of one or
multiple phases.

Specifically, this punishment sensitivity pathway in the PN
could be divided into three phases (Figure 4): Phase 1 is
the ‘‘input phase’’ and refers to the connectivity from the

thalamus to the insula, which is responsible for processing
early sensory input (Dum et al., 2009; Liang et al., 2012;
Cho et al., 2013). Phase 2 is the ‘‘affective and sensory
processing phase’’ and contributes to the connection between
the insula, PO, and PG (where the somatosensory cortex is
located). According to research, the insula is responsible for
processing the ‘‘affective’’ components of punishment stimulus
(Touroutoglou et al., 2012; Duerden et al., 2013; Rogers-Carter
et al., 2018), activation during aversive anticipation (Simmons
et al., 2006; Carlson and Mujica-Parodi, 2010; Haase et al.,
2014), and arousal during negative affection processing (Caria
et al., 2010; Duerden et al., 2013), whereas the somatosensory
cortex is responsible for processing ‘‘sensory-discrimination’’
and is implicated in self-awareness of a person’s own body
(Frot et al., 2007; Khalsa et al., 2009) as the perception of
bodily states playing a crucial role for affective and emotional
experiences (Straube and Miltner, 2011). Phase 3 occurs in
the ascending pathway and is the combined affective and
sensory signal projected to the dACC (i.e., accomplished by
the connectivity within the somatosensory cortex, PO, and
dACC), which acts as a neural ‘‘alarm system’’ or conflict
monitor, detecting ‘‘something is wrong’’ and preparing for a
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response (Eisenberger and Lieberman, 2004; Ullsperger et al.,
2004; Gonzalez et al., 2014; Chester and DeWall, 2015; Coste and
Kleinschmidt, 2016). The connectivity in every phase is positively
associated with conformity propensity, which means that every
phase is preparing for punishment stimulus and the sensitivity
in each phase plays a role in explaining individual differences in
conforming tendency.

Also, two regions included in our predefined PN did not
seem to play essential roles in punishment sensitivity and
did not contribute to conformity propensity. First, the dorsal
striatum is mentioned in a few previous studies to be associated
with punishment avoidance (Seymour et al., 2007; Delgado
et al., 2008; Pauli et al., 2015). While reward processing being
associated with striatum activation has been almost consistently
reported, results regarding punishment processing have been
less consistent (Rutledge et al., 2009; Jocham et al., 2011;
Eisenegger et al., 2014). The fact is that the meaning of
positive or negative outcomes always been reframed in studies
about reward- or punishment-processing tasks, which means the
absence of punishment could be perceived as a reward (Vlaev
et al., 2011; Rangel and Clithero, 2012; Palminteri et al., 2015).
Thus, the dorsal striatum might play a major role in value-
coding in these tasks, rather than being a response specific to
punishment. Second, the amygdala has not presented as a hub
area in punishment sensitivity. The possible reason is that the
amygdala is an area associated with emotional processing, such
as emotional salience, valence, and discrimination (Pessoa and
Adolphs, 2010). So in punishment relevance tasks, the function of
the amygdala is more likely to process the emotional response to
individuals’ own errors before punishment is inflicted (Jackson
et al., 2015) or to the succeeding emotional processing after
suffering punishment (Sladky et al., 2013). Thus, it is not
responsible for processing the direct experience associated with
the punishment itself; therefore, it has not played a role in
punishment sensitivity or contributed to conformity propensity
in this study.

LIMITATIONS AND FUTURE DIRECTIONS

The limitations and several unaddressed issues of the present
study need to be explored in future research. First, given
that the processing ascending pathway in the PN presented
in this study was based on seed-based analysis, future studies
are invited to investigate directed FC within PN (e.g., using
Granger causality analysis, GCA; Khazaee et al., 2017; Price
et al., 2017; Xue et al., 2019), and how the directed FC in
the PN are associated with conformity propensity. Second,
the present study used resting-state FC when participants
were not performing punishment processing tasks since the
present study aims to investigate the intrinsic FC in the PN
as an indicator for task-free, stable trait-like neural activity
in potential punishment (Tavor et al., 2016), yet future fMRI
studies measuring task-state FC during the performance of
the punishment processing relevant tasks (Palminteri et al.,
2012; Palminteri and Pessiglione, 2017) may help further
elucidate the distinct function of each region related to
punishment processing and the specific role they play in

promoting conformity behaviors. Third, the generalization of
the present finding is limited by the purely college-aged sample.
It will be interesting for future studies to investigate the
punishment sensitivity at the neural level in other age groups
and the corresponding associations with group varieties of
conformity propensity.

CONCLUSION

In summary, the present study evidences that a neural trait
marker—task-independent FC in the PN—explains individual
differences in conformity propensity. That might be the reason
why the conformity phenomenon is so prevalent in our society
today because the neural connectivity in the PN is a consistent
and automatic motivational factor in our brain. Hence, our
study revealed a paradox: we conform because of sensitivity
to punishment, but avoiding potential punishment leads us to
be a ‘‘one-dimensional man,’’ which itself is the most severe
punishment. The significance of this study is probably cautionary
at best. As American historian Wilfred M. McClay evaluated
Riesman’s The Lonely Crowd, ‘‘It warns us against the peculiar
forms of bondage to which our era is especially prone. And in
doing so, it draws us into a deeper consideration of what freedom
might be, both now and in the future,’’ (McClay, 1998). Thus,
constructing a new sensibility of being nonconforming is the
antidote to regaining one’s drive for personal liberation.
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