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ABSTRACT

Single-cell RNA sequencing is revealing an unex-
pectedly large degree of heterogeneity in gene ex-
pression levels across cell populations. However, lit-
tle is known on the functional consequences of this
heterogeneity and the contribution of individual cell
fate decisions to the collective behavior of the tis-
sues these cells are part of. Here, we use mecha-
nistic modeling of signaling circuits, which reveals
a complex functional landscape at single-cell level.
Different clusters of neoplastic glioblastoma cells
have been defined according to their differences in
signaling circuit activity profiles triggering specific
cancer hallmarks, which suggest different functional
strategies with distinct degrees of aggressiveness.
Moreover, mechanistic modeling of effects of tar-
geted drug inhibitions at single-cell level revealed,
how in some cells, the substitution of VEGFA, the
target of bevacizumab, by other expressed proteins,
like PDGFD, KITLG and FGF2, keeps the VEGF path-
way active, insensitive to the VEGFA inhibition by
the drug. Here, we describe for the first time mecha-
nisms that individual cells use to avoid the effect of
a targeted therapy, providing an explanation for the
innate resistance to the treatment displayed by some
cells. Our results suggest that mechanistic modeling
could become an important asset for the definition of
personalized therapeutic interventions.

INTRODUCTION

Since the beginning of the century, transcriptomic tech-
nologies, which evolved from microarrays (1) to RNA se-
quencing (RNA-seq) (2), have provided an increasingly
accurate insight into mRNA expression (3). The techno-
logical advances of RNA-seq technologies have increased
the resolution in the quantification of transcripts until
the unprecedented level of the mRNA component of in-
dividual single cells. The possibility of studying gene ex-
pression at the single-cell level opens the door to novel
biological questions that were not possible using cur-
rent tissue-level RNA-seq approaches. For example, single-
cell RNA-seq (scRNA-seq) has allowed a high-resolution
analysis of developmental trajectories (4,5), the detailed
characterization of tissues (6,7), the identification of rare
cell types (8) or the analysis of stochastic gene expres-
sion and transcriptional kinetics (9,10), just to cite a few
cases.

The continuous publication of scRNA-seq studies is pro-
ducing an increasingly large wealth of data on cell-level gene
activity measurements under countless conditions. How-
ever, the functional consequences of such gene activity at
single-cell level remains mostly unknown. Among the many
methods and applications published for the management
of scRNA-seq data (11), only a small proportion of them
provide some functional insights on the results. For exam-
ple, MetaNeighbor (12), SCDE (13) or PAGODA (14) an-
notates cell types based on conventional gene set enrich-
ment analysis (15,16). Other algorithms, such as SCENIC
(17), PIDC (18), SCODE (19) or SINCERITIES (20), of-
fer the possibility of inferring regulatory networks as well.
However, functional profiling methods have evolved from
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the analysis of simple gene sets or inferred regulatory gene
networks to more sophisticated computational systems bi-
ology approaches that allow a mechanistic understanding
on how molecular cell signaling networks enable cells to
make cell fate decisions that ultimately define a healthy tis-
sue or organ, and how deregulation of these signaling net-
works leads to pathological conditions (21–23). Specifically,
mechanistic models have helped to understand the disease
mechanisms behind different cancers (24–27), rare diseases
(28,29), the mechanisms of action of drugs (29,30) and other
physiologically interesting scenarios such as obesity (31) or
the postmortem cell behavior of a tissue (32). Although
there are several mechanistic modeling algorithms available
that model different aspects of signaling pathway activity,
Hipathia (24) has been demonstrated to outperform other
competing algorithms in terms of sensitivity and specificity
(23).

Here, we propose the use of mechanistic models of signal-
ing activities (24,33) that trigger cell functionalities related
with cancer hallmarks (34), as well as other cancer-related
relevant cellular functions to understand the consequences
of gene expression profiles on cell functionality at single-cell
level. Such mechanistic models use gene expression data to
produce an estimation of activity profiles of signaling cir-
cuits defined within pathways (24,33). An additional advan-
tage of mechanistic models is that they can be used not only
to understand molecular mechanisms of disease or of drug
action but also to predict the potential consequences of gene
perturbations over the circuit activity in a given condition
(35). Actually, in a recent work, our group has successfully
predicted therapeutic targets in cancer cell lines with a pre-
cision of over 60% (25).

An interesting model to be studied from the viewpoint
of mechanistic models is glioblastoma, the most common
and aggressive of gliomas (36). The current treatment for
glioblastoma includes maximal safe surgical resection fol-
lowed by radiotherapy and chemotherapy (37), often com-
bined with other drugs such as bevacizumab in an at-
tempt to overcome resistances (38). Despite this intense
treatment, the mean survival of glioblastoma patients is
only 15 months and resistances to the therapy are quite
common (39–41). This high rate of treatment failure has
been attributed to the lack of specific therapies for indi-
vidual tumor types (42,43). Moreover, it is well known
that glioblastoma tumors with a common morphologi-
cal diagnosis display a high heterogeneity at the genomic
level (44).

The availability of glioblastoma single-cell gene expres-
sion data (45) provides a unique opportunity to understand
the behavior of a cancer type at the cell level. Here, we show
for the first time how mechanistic models applied at single-
cell level provide an unprecedentedly detailed dissection of
the tumor into functional profiles at the scale of individ-
ual cells that throw new light on how cells ultimately de-
termine its behavior. Moreover, since mechanistic models
allow simulating interventions on the system studied, we
show a comprehensive simulation of the potential effect of
drugs at single-cell level that discloses, for the first time, the
mechanisms and strategies used by subpopulations of cells
to evade the effect of the drug.

MATERIALS AND METHODS

Data

A large scRNA-seq dataset containing 3589 cells of dif-
ferent types obtained in four patients from a glioblastoma
study (45) was downloaded from GEO (GSE84465). Cells
corresponded to the tumor, and to the periphery of the tu-
mor.

Data imputation and primary processing

Count values for the scRNA-seq were downloaded from
GEO. Since many of these data are affected by dropout
events (13), they were subjected to the three imputation
methods, MAGIC (46), scImpute (47) and DrImpute (48),
as implemented in the corresponding software packages.
Each method has its own preprocessing pipeline explained
in the corresponding publication. The Rand index (49),
which represents the frequency of occurrence of agreements
of elements in the same cluster with respect to the random
expectation, was used as an objective criterion for clustering
comparison.

Once imputed, samples were log transformed and a trun-
cation by quantile 0.99 was applied. Finally, the values were
normalized between 0 and 1, as required by the downstream
functional analysis with Hipathia.

Hipathia mechanistic model

The Hipathia method uses KEGG pathways (50) to de-
fine circuits that connect any possible receptor protein to
specific effector proteins. Gene expression values are used
in the context of these circuits to model signaling activity,
which ultimately triggers specific cell activities, as described
in (24). A total of 98 KEGG pathways involving a total of
3057 genes that form part of 4726 nodes were used to define
a total of 1287 signaling circuits. The intensity value of sig-
nal transduced to the effector is estimated by the following
recursive formula:

Sn = υn ·
⎛
⎝1 −

∏
sa∈A

(1 − sa)

⎞
⎠ ·

∏
si∈I

(1 − si) , (1)

where Sn is the signal intensity for the current node n, vn is
its normalized gene expression value, A is the set of activa-
tion signals (sa) arriving to the current node from activation
edges and I is the set of inhibitory signals (si) arriving to the
node from inhibition edges (24).

The Hipathia algorithm (27) is implemented as an R
package available in Bioconductor (https://bioconductor.
org/packages/release/bioc/html/hipathia.html) as well as
at a web server (http://hipathia.babelomics.org/) and as
a Cytoscape application (http://apps.cytoscape.org/apps/
cypathia).

Differential signaling activity

Two groups of circuit activity profiles can be compared
and the differences in activity of any circuit can be tested
by means of different tests. Although non-parametric tests

https://bioconductor.org/packages/release/bioc/html/hipathia.html
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seem more adequate, and are suitable for small size stud-
ies, it has been noted that for larger sizes and, especially,
when data display a highly skewed distribution, which is ex-
actly this case, they tend to systematically give smaller P-
values and parametric tests are preferable (51). In partic-
ular, limma (52), which has been demonstrated to be very
efficient for gene expression data analysis, will be used.

Signaling circuits associated with cancer hallmarks

Each effector is known to be associated with one or several
cell functions. This information is extracted from both the
UniProt (53) and Gene Ontology (54) annotations corre-
sponding to the effector gene (24). However, in some cases,
the annotations are too ambiguous or refer to roles of the
gene in many different conditions, tissues, developmental
stages, etc., thus making it difficult to understand its ulti-
mate functional role. In addition, in this study the activity of
signaling circuits relevant in cancer is particularly interest-
ing. Since a number of these effector genes have been related
specifically with one or several cancer hallmarks (34) in the
scientific literature, the CHAT tool (55), a text mining-based
application to organize and evaluate scientific literature on
cancer, allows linking gene names with cancer hallmarks.

Subtyping of cancer cells

The SubtypeME tool from the GlioVis data portal (56) was
used to obtain the subtype of cancer (classical, proneural
or mesenchymal), based on the signature of 50 genes (57).
This tool provides three methods to assign subtype: single-
sample gene set enrichment analysis, K-nearest neighbors
and support vector machine. Subtype was assigned when at
least two of the methods made an identical subtype predic-
tion. The subtyping tools use gene data without imputation.

RESULTS

Selection of the optimal imputation method

Since mechanistic models consider the topology of signal-
ing circuits to estimate signal transduction activity in the
cell, the discrimination between genes with missing expres-
sion values and genes that are not expressed is crucial, given
that, depending on the location of the gene within the cir-
cuit, it can play the role of a switch. Since dropout events
(the observation of a gene at a moderate expression level in
one cell that cannot be detected in another cell) are quite
common in scRNA-seq experiments (13), and taking them
as zero values can disturb the inferred activity of the circuit,
the use of imputation methods is crucial for the application
of the mechanistic model. Among the best performer impu-
tation methods available (58), three of them were checked
to decide which one is optimal in the context of signaling
pathway activity inference: MAGIC (46), scImpute (47) and
DrImpute (48).

In order to decide which imputation method produced
the most realistic results, we used the clustering produced
by the highly expressed genes in the original single-cell
glioblastoma study (45) as ground truth. There, the au-
thors applied t-SNE (59) over the 500 most variable and
highly expressed genes and then clustered the resulting data

with k-means. They found 12 main clusters with a homo-
geneous cell composition that was further experimentally
validated, which were astrocytes, two myeloid cell clus-
ters, three neoplastic cell clusters, neurons, oligodendro-
cytes, oligodendrocyte progenitor cells and three vascular
cell clusters. Then, gene expression values were imputed
using the above-mentioned methods (MAGIC, scImpute
and DrImpute). Next, gene expression values were used
to infer signaling circuit activities with the Hipathia algo-
rithm (24) as implemented in the Bioconductor applica-
tion (https://bioconductor.org/packages/release/bioc/html/
hipathia.html). The values of circuit activity were subjected
to the same procedure (t-SNE dimensionality reduction and
k-means clustering) and the resulting clusters were com-
pared to the original ones obtained in the glioblastoma
study using the Rand index (49). Figure 1A shows the clus-
tering obtained with the genes following the procedure de-
scribed above [equivalent to Figure 2 of the original study
(45)], which can be compared with the clustering of the sam-
ples using the circuit activities obtained with the gene ex-
pression values imputed with scImpute (Figure 1B), DrIm-
pute (Figure 1C) and MAGIC (Figure 1D). The compari-
son of the clusters obtained with the three imputation meth-
ods was follows: scImpute, 0.745; DrImpute, 0.852; and
MAGIC, 0.858. Although MAGIC rendered a slightly bet-
ter Rand index, DrImpute was chosen as the imputation
method because the dispersion of the clusters obtained was
very similar to the one observed in the ground truth cluster-
ing (Figure 1A). The similarity in the clustering, which ac-
counts for cell types, suggests that the imputation method
is rendering values that result in coherent signaling circuit
estimations.

Functional characterization of cancer cells

Once verified that cell types defined by gene expression pro-
files (45) are supported by signaling profiles as well, the ob-
vious comparison is the glioblastoma cell clusters versus the
clusters composed by the different brain cells (oligodendro-
cytes, neurons, astrocytes and oligodendrocyte progenitor
cells). It is interesting to note that normal cells, no mat-
ter which patient they were sampled from, display a simi-
lar functional profile; that is, the patients are intermingled
within the clusters corresponding to any cell type. However,
in the case of the neoplastic clusters, although some among-
cluster overlap exists, their composition is mainly driven by
the patient sampling origin (see Supplementary Figure S1).
Since circuit activity bridges gene expression to signaling ac-
tivity and ultimately cell functionality, an assessment of the
differences between cell types from a functional perspective
can be achieved by means of a differential cell activity sta-
tistical contrast. The cell functional responses triggered by
the circuits differentially activated can be easily retrieved,
and among them, those related with cancer hallmarks (34)
can be identified using the CHAT tool (55), as explained in
the ‘Materials and Methods’ section.

In order to detect which of the circuits display a signifi-
cant change in activity, the three neoplastic cell clusters (1,
2 and 3 in Figure 1C) are compared to the normal brain
cells (oligodendrocytes, oligodendrocyte precursor cells, as-

https://bioconductor.org/packages/release/bioc/html/hipathia.html
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Figure 1. Clustering of the samples based on gene expression and signaling circuit activities obtained with different gene imputation methods. Data were
subjected to t-SNE dimensionality reduction and the k-means clustering of the two main components is represented. (A) The clustering obtained with
the gene expression values following the procedure described in the original glioblastoma study (45). Clustering obtained using all the circuit activities
inferred using gene expression values imputed with (B) scImpute, which imputes 48% of the genes, (C) DrImpute, which imputes 85% of the genes, and
(D) MAGIC, which makes the imputation over the whole set of genes. Cell types are labeled with colors.

trocytes and neurons, labeled as O, OPC, A and N, respec-
tively, in Figure 1C).

The comparison between the neoplastic clusters against
the brain normal cells resulted in two different patterns of
circuit activity: neoplastic clusters 1 and 3 present a higher
number of signaling circuits differentially activated (309
and 336, respectively) than neoplastic cluster 2 (only 96

circuits; see Supplementary Table S1). Figure 2 represents
the number of differentially activated signaling circuits in-
volved in cancer hallmarks observed in the three neoplastic
cell clusters. This representation provides a summary of the
strategy used by any particular neoplastic cluster in terms
of the number of signaling circuits that control cell func-
tionalities identifiable as cancer hallmarks. Figure 2A de-
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Figure 2. Circuits related to cancer hallmarks observed in the three neoplastic cell clusters. (A) Percentage of the total number of circuits with a significant
differential activity in the neoplastic cells. The most internal division is 10% and every division increases a 10%. (B) Percentage of circuits with a differential
activity with respect to the total number of circuits annotated to any of the cancer hallmarks. (C) Heat map with the signaling circuits related to the different
cancer hallmarks that have been found to be differentially activated in cells of each neoplastic cluster.

picts the absolute number of circuits with a significant dif-
ferential activity in the neoplastic cells and Figure 2B de-
picts the same results but as percentages with respect to the
total number of circuits annotated to any of the cancer hall-
marks. Table 1 summarizes the number of signaling circuits
related to cancer hallmarks common to the three clusters
(first column) and specific for each cancer type (subsequent
columns). The common functional signature of this cancer
is clearly driven by circuits related to ‘Resisting cell death’,
‘Sustaining proliferative signaling’ and ‘Enabling replicative
immortality’ hallmarks, completed with circuits related to
‘Evading growth suppressors’, ‘Inducing angiogenesis’ and
‘Tumor promoting inflammation’ hallmarks. From Table 1
it becomes apparent that neoplastic clusters 1 and 3 are us-
ing a functional strategy different from that used by neo-
plastic cluster 2. The first two display a functional signa-
ture compatible with a more aggressive behavior: they have
many extra circuits related to ‘Resisting cell death’ and ‘Sus-
taining proliferative signaling’ hallmarks but, in addition,

both clusters have circuit activity related to ‘Deregulation of
cellular energetics’, ‘Genome instability and mutation’ and
‘Invasion and metastasis’ hallmarks (see Table 1 and Fig-
ure 2C for details). It is also interesting to note from Fig-
ure 2C that the individual circuits involved in triggering the
same functions are not exactly the same across the neoplas-
tic clusters (Supplementary Table S2 lists details of the cir-
cuits involved in the figure). Conversely, neoplastic cluster 2
does not seem to have much more extra functional activity
beyond the common functional signature, which suggests a
less aggressive character, especially because of the absence
of circuit activity related to cell energetics or to invasion and
metastasis.

Function-based stratification of glioblastoma cells

Neoplastic clusters have been defined according to the in-
dividual profiles of signaling circuit activities observed for
each cell. The advantage of this way of cell stratification
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Table 1. Summary of the different functional strategies followed by the different cells in the three neoplastic clusters in terms of the circuits differentially
activated with respect to the normal tissue

Cancer hallmark Common circuits Neoplastic cluster 1 Neoplastic cluster 3 Neoplastic cluster 2

Resisting cell death 4 13 14 2
Sustaining proliferative signaling 8 14 14 2
Deregulating cellular energetics 4 8
Genome instability and mutation 5 6
Inducing angiogenesis 2 2 5
Enabling replicative immortality 5 1 3
Activating invasion and metastasis 2 3
Evading growth suppressors 3 3 2
Tumor promoting inflammation 1 1 1
Avoiding immune destruction 1

Table 2. Distribution of the different glioblastoma subtypes across the
three neoplastic cell clusters

Classical Mesenchymal Proneural Total

Neoplastic cell cluster 1 92 44 135 271
Neoplastic cell cluster 2 107 3 15 125
Neoplastic cell cluster 3 540 141 14 697

is that the functional profiles of each group are well de-
fined. Current glioblastoma classification stratifies tumors
into three subtypes, classical, proneural, and mesenchymal,
from less to more aggressive, based on the signature of 50
genes (58). The SubtypeME tool from the GlioVis data por-
tal (56) was used to assign subtype to each individual cell
using this signature. Interestingly, when cells of the three
neoplastic clusters are typed, the distribution of markers is
very coherent with their functional activity profiles. Thus,
neoplastic cluster 2 is mainly composed by cells belonging
to the classical subtype (see Table 2), in coincidence with its
functional profile being less aggressive. On the other hand,
neoplastic cluster 1 has an important component of proneu-
ral cells, as well as a smaller proportion of mesenchymal
cells, which is coherent with its more aggressive function-
ality triggered by its signaling activity, which includes mod-
ifications in circuits related to cell metabolism, genomic in-
stability and metastasis. Moreover, the functional profile of
neoplastic cluster 3 seems to be even more aggressive than
that of neoplastic cluster 1. This group of glioblastoma cells
not only has more circuits related to the same hallmarks as
neoplastic cluster 1 but also has circuits that trigger func-
tionalities for ‘Avoiding immune destruction’ (Table 2 and
Figure 1). It is interesting to note that, although the conven-
tional stratification in classical, mesenchymal and proneu-
ral classes is illustrative of the behavior of the cells, it does
not completely fit with the stratification based on whole cell
functional profiles.

Effect of a drug at single-cell level

Mechanistic models can be used to simulate the effect of
an intervention over the system studied (25,35). Specifically,
single-cell transcriptomic data offer, for the first time, the
possibility of modeling the effects of a targeted drug at the
level of individual cells.

The current indication for the treatment of glioblastoma
patients is temozolomide, which induces DNA damage, that
can be combined with other drugs such as bevacizumab to

overcome resistances (38). Moreover, bevacizumab, which
is indicated for several advanced cancer types, has recently
been suggested for glioblastoma targeted treatment (60–62).
Actually, the effect of bevacizumab, a humanized murine
monoclonal antibody targeting the vascular endothelial
growth factor ligand (VEGFA), can easily be simulated
in the mechanistic model. VEGFA gene participates in six
pathways (‘VEGF signaling pathway’, ‘Ras signaling path-
way’, ‘Rap1 signaling pathway’, ‘HIF-1 signaling pathway’,
‘PI3K–Akt signaling pathway’ and ‘Focal adhesion path-
way’) and is part of 81 circuits, 39 of them directly related
to cancer hallmarks (18 to ‘Resisting cell death’, 9 to ‘Sus-
taining proliferative signaling’, 4 to ‘Genome instability and
mutation’, 3 to ‘Evading growth suppressors’, 2 to ‘En-
abling replicative immortality’, 2 to ‘Inducing angiogene-
sis’ and 1 to ‘Deregulation of cellular energetics’). As de-
scribed in the ‘Materials and Methods’ section, the inhibi-
tion of VEGFA can be simulated by taking the gene expres-
sion profile of a single cell, creating a simulated profile by
setting the inhibited gene to a low value and comparing two
profiles (24,35).

Figure 3 shows the impact of the inhibition of VEGFA
on the different cells in terms of changes in the activities
of signaling circuits in which this protein participates. The
Y-axis depicts the magnitude of this change in the activi-
ties of signaling circuits. There are clearly two different be-
haviors in the response: most of the cells present a dras-
tic change in many signaling circuit activities (responders),
while a smaller number of them present a much lower af-
fectation on them (low responders). It is interesting to note
that the distribution of cell types between both groups is
also asymmetric: the responder group is mainly composed
of cells that have been typed as classical or mesenchymal,
while the non-responder group is predominantly composed
of proneural cells.

A close look at the consequences of the inhibition of
VEGFA in different cells provides an interesting explana-
tion for the observed differences. VEGFA is upstream in
the chain of signal transduction in several circuits of dif-
ferent pathways. In the circuits within ‘Ras signaling path-
way’, ‘Rap1 signaling pathway’ and ‘PI3K–Akt signaling
pathway’, the VEGFA protein potentially shares the role of
signal transducer with other 40 proteins. Figure 4A clearly
depicts how the balance between the expression level of
VEGFA in the responsive cells and KITLG and FGF2 pro-
teins, which can take a similar signaling role, changes. Sup-
plementary Figure S2 shows the impact of the simulation
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Figure 3. Impact of the inhibition of VEGFA by bevacizumab over the different neoplastic cells in terms of changes in the activities of signaling circuits
in which this protein participates. The Y-axis depicts the magnitude of this change in the activities of signaling circuits. In the right part, two bar plots
represent the proportion of the different cell types in the responder and non-responder groups.

of VEGFA inhibition in the ‘PI3K–Akt signaling pathway’,
where the differences in the impact of this inhibition, mea-
sured as the log fold change in signaling activity, are re-
markable between responder and low-responder cells. The
inhibition of VEGFA in the responsive cells will radically
inhibit the signal. However, the low-responder cells have
already VEGFA at low expression levels and the signal is
transmitted by KITLG and FGF2 instead, which ultimately
compromises the success of the drug. A similar scenario oc-
curs with the ‘Focal adhesion pathway’, in which VEGFA
shares the signal transduction role with other 12 proteins. In
this case, the low-responder cells are characterized by a low
level of VEGFA compensated with a high level of PDGFD,
which makes these signaling circuits in the low-responder
cells virtually insensitive to the inhibition of VEGFA (see
Figure 4B). Only in the case of six signaling circuits be-
longing to the ‘HIF signaling pathway’ and ‘VEGF signal-
ing pathway’, the protein VEGFA is the only signal trans-
ducer in the node. In this case, low-responder cells have this
circuit constitutively down and, consequently, are not af-
fected by the inhibition (Figure 4C). Actually, except for
FGF2, the genes potentially responsible for this switch pre-
sented a significant differential expression when respon-
ders were compared to low-responders [applying the limma
(52) test, the FDR-adjusted P-values for VEGFA, PGDFD,
KITLG and FGF2 were, respectively, 6.4 × 10−4, 9.2 × 10−2,
1.39 × 10−2 and 5.59 × 10−1, using the gene expression
values prior to the imputation). Supplementary Figure S3
represents the expression values of the same genes as in
Figure 4 but with no imputation, showing no significant
differences.

The same modeling strategy used with bevacizumab can
be applied to simulate the effect of other drugs. Recently,
a drug repurposing in silico experiment that combines hu-

man genomic data with mouse phenotypes has suggested
the possible utility of a number of drugs with different in-
dications (see Table 3) for potential glioblastoma treatment
(63). The intensity and the degree of heterogeneity in the re-
sponse are very variable across the eight drugs tested here.
At the scale we tested the drugs, there are no correlations
either between the number of genes targeted by the drug
and the intensity of the effect or between the number of
circuits potentially affected and the intensity of the effect.
For example, pentoxifylline targets four proteins (PDE4B,
ADORA1, PDE4A and ADORA2A) that participate in a
total of 111 circuits and the fold change caused in the cir-
cuit activity after simulating its effect is comparatively low
(log fold change <0.05 for all the cell types; see Supplemen-
tary Figure S4), while the simulation of the effect of fenofi-
brate, which targets only one protein PPARA that partici-
pates in only 32 circuits, renders a comparatively high effect
(log fold change >2 for all the cell types; see Supplementary
Figure S4). It is interesting to note that, depending on the
case, the different drug effects simulated can affect a larger
or a smaller number of cells with distinct intensity in their
impacts on the activity of the signaling circuits affected, but
always, no matter which drug is simulated, there are some
cells that manage to escape from the inhibitory effect of the
drug.

DISCUSSION

The goal of most scRNA-seq publications revolves around
the characterization of cell populations, which can be accu-
rately achieved using only a subset of the total number of
genes (those displaying the highest variability across cells).
However, the use of mechanistic models to estimate global
signaling circuit activity profiles for individual cells requires



8 NAR Cancer, 2020, Vol. 2, No. 2

Figure 4. Distribution of the values of imputed and normalized gene expression values of the genes located within the effector node of the different signaling
circuits affected by the bevacizumab inhibition. The distribution of observed expression levels in responder cells appears in red and in the low-responder
cells in blue. (A) In the receptor node of the circuits within ‘Ras signaling pathway’, ‘Rap1 signaling pathway’ and ‘PI3K–Akt signaling pathway’, the
VEGFA protein potentially shares the role of signal transducer with other 40 proteins (CSF1, EFNA1, PDGFA, FGF1, HGF, FGF12, VEGFB, FGF11,
PDGFC, FGF14, KITLG, FGF2, ANGPT1, EGF, PDGFD, EFNA5, ANGPT2, PGF, VEGFC, FGF18, EFNA3, FGF5, EFNA4, IGF1, EFNA2,
FGF9, FGF13, FGF17, PDGFB, NGF, ANGPT4, FGF7, FGF22, FGF16, FGF23, FGF19, FGF20, FGF8 and VEGFD). (B) In the receptor node of
the circuits within ‘Focal adhesion pathway’, the VEGFA potentially shares the signal transduction role with other 12 proteins (PDGFA, HGF, VEGFB,
PDGFC, EGF, PDGFD, PGF, VEGFC, IGF1, PDGFB and VEGFD). (C) In the six signaling circuits belonging to the ‘HIF signaling pathway’ and
‘VEGF signaling pathway,’ the protein VEGFA is the only signal transducer in the node.
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reasonably accurate measures of the expression levels of all
the genes involved in the signaling circuits. Dropout events,
quite common in scRNA-seq experiments (13), are partic-
ularly problematic given that taking by mistake a missing
value by a real zero value can cause erroneous determina-
tions of the inferred activity of the circuits. Thus, we ex-
plored the performance of three different imputation meth-
ods in producing cell-specific profiles of signaling circuit
activity whose clustering resulted in a grouping similar to
that observed and validated in the original glioblastoma
study. Here, two machine learning-based methods, DrIm-
pute and MAGIC, produced a clustering compatible with
the original validated clustering, and specifically, DrImpute,
the method of choice, rendered clusters with a similar shape
as well (see Figure 1).

Focusing on neoplastic cells, the existence of three differ-
ent clusters is also apparent at the level of functional pro-
files, which suggests the existence of different functional be-
haviors. Several attempts to stratify glioblastoma patients
have been proposed by discriminating different subtypes ac-
cording to different properties, such as patient survival (64),
mutational status of some genes (65) or the tumor microen-
vironment (66). In the most used classification, glioblas-
toma tumors were divided into three subtypes (from less
to more aggressive: classical, proneural and mesenchymal)
based on the signature of 50 genes (57). Although this con-
ventional subtyping provides an approximate descriptor of
tumor aggressiveness, subtyping based on functional pro-
files related to cancer hallmarks provides an interesting al-
ternative for the stratification of glioblastoma that offers, in
addition, a mechanistic description on the functional activ-
ity of the tumor. Actually, it has been reported in neurob-
lastoma that signaling pathway models used as biomarkers
outperform traditional biomarkers as predictors of patient
survival (26). Supplementary Figure S5 provides an inter-
active view of the circuits activated and deactivated within
the different pathways.

Among pathways that are commonly altered in all three
clusters, we find well-known factors contributing to car-
cinogenesis, such as those related to hypoxia (HIF-1,
SOD2), cancer stem cells (CSCs), cell cycle proteins, like
CDK family, signal transduction pathways and hormone
signaling (67–69). Moreover, these are mainly related to
‘Sustaining proliferative signaling’, ‘Enabling replicative
immortality’ and ‘Resisting cell death’ hallmarks that can
be defined as the core cell functions involved in glioblas-
toma initiation and proliferation.

Each cluster exhibits a characteristic deregulation of
pathways; however, cluster 2 barely has four unique sub-
pathways, all related to common hallmarks ‘Resisting cell
death’ and ‘Sustaining proliferative signaling’. Neoplastic
clusters 1 and 3, but not cluster 2, exhibit ‘Genome instabil-
ity’, a hallmark observed in almost all sporadic human can-
cers, including glioblastoma (70,71). Besides, clusters 1 and
3 show deregulated ‘Cellular energetics’, a process that has
been suggested as a suitable target for tumor cell elimination
(72). Furthermore, both clusters show pathways associated
with matrix metalloproteins and Snail family that have been
linked to cancer invasion and metastasis also in glioblas-
toma (73–75). Interestingly, only cluster 3 may be avoid-
ing immune destruction due to the deregulation of ‘Toll-
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like receptor signaling pathway’. Glioblastoma is known
to have a strongly immunosuppressive microenvironment;
thus, blocking these cells by activating downstream TLR
signaling pathways can reduce tumor growth and disrupt
CSC self-renewal (76,77).

We have demonstrated that not all the cells in a tumor
are driven by the same cancer processes, and that those
alterations can define subpopulations that may confer tu-
mors different aggressiveness and invasion abilities, high-
lighting the relevance of heterogeneity, beyond the widely
accepted stratification of glioblastoma in three/four sub-
types (78,79).

The emergence of mechanisms of resistance in targeted
therapies has been attributed to either the selection of rare
pre-existing genetic alterations upon drug treatment (80)
or the transient acquisition of a drug-refractory phenotype
by a small proportion of cancer cells through epigenetic
modifications (81). In both cases, these alterations would
be detectable in the expression of the corresponding genes.
An interesting property of mechanistic models is that they
can be used to model the effect of an intervention over
the system studied (25,35). Thus, the use of mechanistic
models on single-cell transcriptomic data offers for the first
time the possibility of modeling the effects of a targeted
drug in individual cells. From Figure 4 it becomes apparent
that low-responder cells have a constitutive level of VEGFA
lower than high-responder cells. However, these cells main-
tain active the same VEGFA-activated pathways by the up-
regulation of others alternative TRK receptor ligands (i.e.
FGF2, PDGFD and KITLG) that have been implicated in
the development and drug resistance in other cancer types
(82–84). Interestingly, the switch in the expression levels of
FGF1 and FGF2 (downregulated and upregulated in low-
responder cells, respectively) as well as the upregulation of
one member of the PDGF family (i.e. PDGFD) might be po-
tentially driving the tumor progression in these GBM low-
responder cells. Specifically, FGF2 is the main member of
the FGF family implicated in cancer development and drug
resistance (85), and PDGFD and its receptor (PDGFRB)
have been recently defined as key drivers of tumor progres-
sion since a PDGFRB downregulation impairs immediately
GBM progression (A.C.V.-B. Fuentes-Fayos et al., submit-
ted for publication). Moreover, although the relevance of
KITLG has not been defined in GBM, the upregulation
found in GBM low-responder cells might be linked to the
drug resistance of these cells as has been reported in other
tumor pathologies (84). In fact, this particular expression
phenotype found in low-responder cells could be similar
to that previously described in neural stem cell progenitors
that are directly associated with the development and drug
resistance in GBMs (86,87). Thus, the mechanistic model
provides a simple potential interpretation of the molecular
mechanisms behind the differential effect of drugs over cells
with different signaling profiles that ultimately cause dif-
ferent functional strategies. Obviously, in order to gain in-
sights into the true mechanisms driving cell resistance, fur-
ther studies are needed in line with these findings. Never-
theless, we have proven that functional single-cell analyses,
and the methodology here presented, are a helpful tool for
discovering tumor heterogeneity, and the results can be ap-

plied by clinical community to forward tailored treatment,
therefore improving patient’s prognosis.

Supplementary Figure S4 depicts the simulated response
of individual cells to the treatment with different targeted
drugs. Despite the variety of effects in the cells, it is worth
noting that there is always a group of cells that manages
to escape from the inhibition of the drug. The heterogene-
ity observed in the cell population in terms of use of dif-
ferent strategies to activate the essential cancer hallmark
through different signaling circuits produces a consequent
diversity in the response to drugs. Although the number
of drugs simulated is relatively low, given that drug repur-
posing was beyond the scope of this paper, the results ob-
tained here suggest that the escape of a relatively small
number of cells from the effect of the drug could be a
relatively frequent event that occurs as a natural conse-
quence of the heterogeneity in the signaling strategies fol-
lowed by the cell population. When this subpopulation be-
comes dominant some time later, it becomes resistant to
the drug.

CONCLUSIONS

The use of mechanistic models provides a detailed insight
into the functional strategies used by tumors to proliferate
and open new avenues for the design of interventions à la
carte. The extension of this analytical approach to single-
cell transcriptomic data allows an unprecedented detail on
how cancer cells display different functional strategies to
proliferate that have consequences in their respective vul-
nerabilities to targeted therapies.

Although the existence of resistant clones in a tumoral
cell population is well known, the specific mechanisms used
by resistant cells to escape from the inhibitory effects of tar-
geted therapies remain unknown yet. Mechanistic models
offer for the first time a plausible and contrastable hypothe-
sis on how and why some cells are insensitive to treatments,
illustrated here with bevacizumab in the case of glioblas-
toma. Mechanistic modeling of effects of bevacizumab in-
hibitions at single-cell level revealed, how in some cells, with
low VEGFA expression, the VEGF pathway remains ac-
tive because the initial signaling was assumed by other pro-
teins like PDGFD, KITLG and FGF2, thus making the
signaling circuit insensitive to the VEGFA inhibition by
the drug.

The use of this modeling strategy offers a systematic way
for detecting tumoral cells that may be resistant to specific
targeted treatments. Conversely, the same models could be
used to find an alternative treatment for resistant drugs. In
fact, our results suggest that the search for new, more effi-
cient therapeutic targets would be benefited by the use of
mechanistic models that guide to the intervention points
with more likelihood of success in inhibiting the prolifer-
ation of the largest possible part of the spectrum of func-
tional strategies in the tumor cell ecosystem.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Cancer Online.
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