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Abstract: The conventional reconstruction method of off-axis digital holographic microscopy (DHM)
relies on computational processing that involves spatial filtering of the sample spectrum and tilt
compensation between the interfering waves to accurately reconstruct the phase of a biological sample.
Additional computational procedures such as numerical focusing may be needed to reconstruct
free-of-distortion quantitative phase images based on the optical configuration of the DHM system.
Regardless of the implementation, any DHM computational processing leads to long processing times,
hampering the use of DHM for video-rate renderings of dynamic biological processes. In this study,
we report on a conditional generative adversarial network (cGAN) for robust and fast quantitative
phase imaging in DHM. The reconstructed phase images provided by the GAN model present stable
background levels, enhancing the visualization of the specimens for different experimental conditions
in which the conventional approach often fails. The proposed learning-based method was trained
and validated using human red blood cells recorded on an off-axis Mach–Zehnder DHM system.
After proper training, the proposed GAN yields a computationally efficient method, reconstructing
DHM images seven times faster than conventional computational approaches.

Keywords: phase compensation; digital holographic microscopy; learning-based method; generative
adversarial networks; video-rate performance

1. Introduction

Quantitative phase imaging (QPI) techniques quantify the phase measurements from
micrometer-sized biological and non-biological samples. Because phase measurements
encode sample’s topography and refractive index information, QPI methodologies have
been widely utilized for diagnosing diseases and refining manufacturing processes [1–4].
Among the reported QPI techniques, methods based on the transport equation [5,6], the
Hilbert transform [7–9], the diffraction of white light [10,11], and digital holographic
microscopy (DHM) [12–14] are counted among the most utilized. The DHM systems are
based on optical interferometry to reconstruct both amplitude and phase distributions of
biological and non-biological specimens, providing functional and morphological sample
information. Owing to its high sensitivity, imaged field of view, and frame rate acquisition,
DHM stands out among the QPI techniques to reconstruct high-resolution phase images
from unstained samples [13]. The robustness and sensitivity of the phase measurements
in some DHM systems within the nanometric range have allowed dynamic imaging, for
instance, three-dimensional (3D) particle tracking [15,16], cell motility studies [17–19], and
dynamic changes of surface topography [20,21].

Over the last decade, DHM has become a mature technology thanks to thousands of
research studies that have focused on investigating its optical design, phase reconstruction
algorithms, and potential applications of this modality to life and materials sciences [22–25].
Despite the successful performance of DHM systems, its applicability to in situ clinical
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research has been partially hampered by the need for a standard phase reconstruction
algorithm that provides quantitative phase distributions without any phase distortion [13].
The presence of phase aberrations may provide inaccurate results, leading to erroneous
conclusions about specimen properties. Accurate phase measurements are imperative
since variations in phase measurements are used as a diagnostic and measuring tool in life
sciences [12–14]. The DHM technology retrieves this phase distribution after applying a
computational reconstruction approach. At present, individual DHM research groups have
developed and implemented their numerical algorithms to reconstruct their phase images.
Because a standard reconstruction method does not exist, different phase values may be
measured using different reconstruction methods and implementations for the same sample
and DHM system. The off-axis image-plane DHM system operating in the telecentric
regime is considered to be the simplest DHM system, since it requires the minimum
number of numerical processes [25]. Traditionally, phase measurements are reconstructed
using the Fourier filtering approach. However, the implementation must be precisely
executed to avoid imprecise phase measurements. The numerical process in off-axis image-
plane DHM systems operating in telecentric regime involves (i) the proper selection of
the frequency components carrying the information of the sample in the Fourier domain
of the acquired DHM image and (ii) the phase compensation of the tilting angle between
the interfering waves due to the off-axis configuration. Incorrect selection of frequency
components may lead to low-resolution phase measurements (i.e., phase images that are
not limited by diffraction), and inaccurate tilting angle compensation can introduce errors
in the quantitative phase measurements. One straightforward compensation method for
precise phase extraction is manually selecting the tilt until obtaining a phase reconstruction
without sawtooth fringes. Nonetheless, choosing the best reconstructed phase image can be
challenging for the end-user in DHM, since it depends significantly on the user’s expertise.
The DHM reconstruction algorithm should be automatic and adaptable to any sample
and imaging conditions to increase its applicability in life and materials studies. Whereas
several automated DHM reconstruction approaches [26–29] have been proposed; often
these proposals yield reconstructed phase images with phase nuisances, preventing any
quantitative analysis. In addition, the computational complexity of all these methods still
restricts the proper recovery of phase maps free of aberration at video rates, providing
quasi-real time data processing [30].

As in many areas of science and engineering, deep learning strategies have been used
to improve the potential of DHM technology. Deep learning and neural networks have
enhanced the performance of traditional reconstruction algorithms. For example, deep
learning has been utilized to automatically determine the in-focus reconstruction plane
in DHM [31,32] and obtain color holographic microscope reconstructions [33]. Yin et al.
proposed a deep learning framework for a reflection digital holographic setup without a
microscopic imaging system (e.g., lensless configuration) in which the sample information
was loaded on a phase-only spatial light modulator (e.g., non-biological samples) [34]. In
2019, Rivenson et al. presented a neural network model to retrieve the amplitude and
phase reconstruction for lens-free DHM systems [35]. The same year, Wang et al. proposed
a different approach for retrieving the complex information (e.g., amplitude and phase)
of holograms using a neural network based on the Y-Net model [36] in common-path mi-
croscopy. In 2020, Vijayanagaram implemented a neural network model based on a U-Net
architecture for numerical reconstruction of artificially generated in-line holograms [37].
Recently, Di et al. proposed a powerful strategy for quantitative phase image by imple-
menting the PhaseNet convolutional neural network for reconstructing phase maps of
size 128 × 128 recorded from a common-path digital holographic microscope in times
of ~0.014 s (~71.43 fps) [38]. In [39], Moon et al. experimentally validated a conditional
generative adversarial network (cGAN) for removing superimposed noise in the Gabor
(in-line) holograms of red blood cells and elliptical cancer cells; the proposed cGAN model
required the processing of off-axis DHM holograms before training the learning-based
model. The aim of that work was not quantitative phase imaging in off-axis DHM. Ma et al.



Sensors 2021, 21, 8021 3 of 18

proposed a two-stage generative adversarial network (GAN) to provide accurate phase
maps in DHM [40]. The two-stage GAN required a preprocessing stage to remove the inter-
ference fringes of the sample that were in the DHM hologram by background segmentation.
Then, the vacancy sample area was inpainted with fringes generated by a deep learning
algorithm prior to recovering the compensated phase maps. Since the implementation
of the two-stage GAN was focused on a reflection (e.g., Michelson-based) DHM system,
the model was not validated with biological samples. Although many studies have been
reported involving deep learning models for holographic reconstruction, to the best of our
knowledge, no learning-based method has been reported in the literature for full phase
compensation in transmission off-axis DHM using biological samples. In this study, we
propose a conditional generative adversarial network (cGAN) to reconstruct quantitative
phase images free of aberration without the need for any pre- or post-numerical procedures,
reducing the computational complexity of current reconstruction methods. The proposed
learning-based model generated phase maps with stable backgrounds, immune to phase
instabilities introduced by different experimental conditions during the recording stage.
This paper is organized as follows: in Section 2, we describe the experimental setup, the
creation of the dataset, and the structure of the cGAN model; in Section 3, the experimental
results of the proposed model for static and dynamic red blood cells are discussed and we
compare the performance of the model to a traditional automatic method and the U-Net
model; finally, in Section 4, we summarize the main achievements of our research.

2. Materials and Methods
2.1. Experimental System

In this study, we used a traditional Mach–Zehnder off-axis DHM setup operating in
transmission mode (Figure 1). The collimated beam emerging from a 532 nm He-Ne laser
illuminates a beamsplitter that generates the object and reference wavefronts with the same
power. The object wavefront illuminates the sample after being reflected by a plane mirror.
Then, the light scattered by the specimen is collected by an imaging system comprising a
40X/0.65NA infinity-corrected microscope objective (MO) lens and a tube lens (TL). The
MO and TL operate in the telecentric regime (e.g., the back focal plane of the MO lens
coincides with the front focal plane of the TL) to optically compensate for the spherical
wavefront introduced by the MO lens [41,42]. A magnified image of the sample is located
at the back focal plane of the TL. The reference wave (e.g., a plane wave) propagates with
no perturbations to a second beamsplitter that recombines both the object and reference
wavefronts to generate the DHM hologram (i.e., the interference pattern produced by
the superposition of both wavefronts). A CMOS camera, comprising 1920 × 1200 square
pixels of 5.86 µm side, records this interference pattern. The sensor is located at the back
focal plane of the TL so that image-plane conditions are met (i.e., an in-focus image of the
sample is formed onto the sensor plane). In this DHM system, the off-axis configuration
is achieved by changing the angle of the plane reference wavefront via tilting the mirror
in the reference arm and the second beam splitter. The off-axis configuration ensures that
amplitude and phase images can be reconstructed from a single hologram (i.e., single-shot
DHM), making this DHM system more suitable for dynamic imaging.

The DHM hologram distribution, h(x, y), is expressed as

h(x, y) = |r(x, y)|2 + |o(x, y)|2 + o(x, y)r∗(x, y) + r(x, y)o∗(x, y), (1)

where o(x, y) is the complex amplitude distribution of the object wavefront imaged by
the telecentric imaging system, and r(x, y) is the complex amplitude distribution of the
tilted plane wave. In Equation (1), the complex sample information, o(x, y), is encoded
in the third and fourth terms of the hologram. The term o(x, y) should be isolated from
the recorded hologram (Equation (1)) to reconstruct both the amplitude and phase images.
Because the DHM system operates in an off-axis configuration, the first step in the compu-
tational processing involves the spatial filtering of the object spectrum in the spectrum of
the recorded hologram (i.e., Fourier transform of the hologram), using a circular mask to
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select the object spatial frequencies [43]. The second step involves the phase compensation
of the interfering angle introduced by the tilted reference wavefront. This compensation
can be performed in the real space by multiplying the inverse Fourier transform of the
filtered hologram spectrum, i.e., o(x, y) · r∗(x, y), and a digital replica of the reference wave,
rD(x, y), commonly called the digital reference wavefront. In 2016, Trujillo et al. proposed
a method based on a mean-thresholding-and-intensity-summation metric to generate the
most trustable digital reference wave and reconstruct phase images with minimum phase
aberrations [26]. Trujillo’s method was based on the observation that the best-reconstructed
phase image (i.e., the reconstructed phase image without distortions) generated a white
binary phase image; all pixels in the binary phase image using a fixed thresholding value
should be one. Therefore, if a residual plane tilt distorts the reconstructed phase images, its
binary image combines black and white pixels. The input parameters of the reconstruction
method used were the image-plane holograms recorded in an off-axis telecentric DHM
system, the source’s wavelength, and the sensor’s pixel size. The advantage of this method
was the reconstruction of phase images with minimum phase perturbations. Although this
and other computational methods are automatic and adaptable to different sample and
imaging conditions, their performance is often hampered by artifacts such as background
fluctuations and phase discontinuities unrelated to the specimens.
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Figure 1. Conventional off-axis Mach–Zehnder DHM setup operating in telecentric regime.

2.2. The Dataset

A microscopic slide containing normal (healthy) human red blood cells (RBCs) from
Carolina Biological Supply Company (item # C25222, https://www.carolina.com/help/
service-and-support?utm_source=homepage&utm_medium=banner&utm_campaign=
whyshop_service (accessed on 20 November 2021)) was used to create our dataset to train
and validate the proposed learning-based method. Although these RBCs present some
absorption, they can be considered phase objects when no staining is applied. Unstained
RBCs have been widely imaged in DHM, enabling the detection of malaria [44,45] and
screening of diabetes [46] and sickle cell anemia [18,47] as well as other inherited ane-
mias [48]. Our dataset was composed of raw DHM holograms and their corresponding
reconstructed phase images [26]. The procedure to create this dataset is the following:
We have recorded 30 different in-focus DHM holograms of the human RBCs in an off-
axis Mach–Zehnder DHM system (Figure 1). The main proposal behind this work is
to reconstruct DHM holograms without any computational processing, extracting the
quantitative phase distribution directly from the raw in-focus hologram regardless of the
orientation of the interference angle of the off-axis DHM system. Considering that a change
in the interfering angle yields a different set of reconstruction parameters, the recorded
30 holograms were augmented via image orientation by rotating the holograms randomly

https://www.carolina.com/help/service-and-support?utm_source=homepage&utm_medium=banner&utm_campaign=whyshop_service
https://www.carolina.com/help/service-and-support?utm_source=homepage&utm_medium=banner&utm_campaign=whyshop_service
https://www.carolina.com/help/service-and-support?utm_source=homepage&utm_medium=banner&utm_campaign=whyshop_service
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in 90 or 180 degrees (Figure 2a). After the data augmentation was applied, the number
of holograms increased to 65 RBCs holograms. We reconstructed the quantitative phase
images of these holograms (Figure 2b), using the proposed automatic method by Trujillo
et al. [26]. After reconstructing the holograms, each pair of holograms and reconstructed
phase images was cropped into patches of 256 × 256 pixels. According to the camera
specifications, each pair of holograms and reconstructed phase images was divided into
28 pairs of images (i.e., holograms and reconstructed phase images) to generate an ex-
perimental dataset of 1820 instances: 1512 pairs for the training dataset and 308 pairs for
the validation dataset. A second validation dataset consisting of 7005 pairs of images
was recorded to avoid similarities between the training and validation datasets due to the
identical experimental conditions of the one-time acquisition process. This dataset was
used to assess the effectiveness of the proposed model for different experimental conditions
and to show that no overfitting occurs during the training of our proposed cGAN model.
Finally, the cGAN model was tested to reconstruct quantitative phase images of dynamic
DHM holograms. For this study, we mimicked the flow of red blood cells in a capillary
by mounting a static microscopic sample of RBCs in a motorized translational stage. The
velocity of the motor was such that the flow of the RBCs was 2.75 µm/s. We recorded a
sequence of 300 holograms that tracked the flow of RBCs within blood plasma. It is impor-
tant to highlight that all the recorded cells were in focus (e.g., the image plane condition
was met for all cells). This experiment was completely equivalent to the experiment in
which the capillary depth was smaller than the depth of field of the objective lens, which
was approximately 0.69 µm, based on the manufacturer’s specifications.

Sensors 2021, 21, x FOR PEER REVIEW 5 of 19 
 

 

vice-and-support?utm_source=homepage&utm_medium=banner&utm_cam-
paign=whyshop_service (accessed on 20 November 2021)) was used to create our dataset 
to train and validate the proposed learning-based method. Although these RBCs present 
some absorption, they can be considered phase objects when no staining is applied. Un-
stained RBCs have been widely imaged in DHM, enabling the detection of malaria [44,45] 
and screening of diabetes [46] and sickle cell anemia [18,47] as well as other inherited ane-
mias [48]. Our dataset was composed of raw DHM holograms and their corresponding 
reconstructed phase images [26]. The procedure to create this dataset is the following: We 
have recorded 30 different in-focus DHM holograms of the human RBCs in an off-axis 
Mach–Zehnder DHM system (Figure 1). The main proposal behind this work is to recon-
struct DHM holograms without any computational processing, extracting the quantitative 
phase distribution directly from the raw in-focus hologram regardless of the orientation 
of the interference angle of the off-axis DHM system. Considering that a change in the 
interfering angle yields a different set of reconstruction parameters, the recorded 30 holo-
grams were augmented via image orientation by rotating the holograms randomly in 90 
or 180 degrees (Figure 2a). After the data augmentation was applied, the number of holo-
grams increased to 65 RBCs holograms. We reconstructed the quantitative phase images 
of these holograms (Figure 2b), using the proposed automatic method by Trujillo et al. 
[26]. After reconstructing the holograms, each pair of holograms and reconstructed phase 
images was cropped into patches of 256 × 256 pixels. According to the camera specifica-
tions, each pair of holograms and reconstructed phase images was divided into 28 pairs 
of images (i.e., holograms and reconstructed phase images) to generate an experimental 
dataset of 1820 instances: 1512 pairs for the training dataset and 308 pairs for the valida-
tion dataset. A second validation dataset consisting of 7005 pairs of images was recorded 
to avoid similarities between the training and validation datasets due to the identical ex-
perimental conditions of the one-time acquisition process. This dataset was used to assess 
the effectiveness of the proposed model for different experimental conditions and to show 
that no overfitting occurs during the training of our proposed cGAN model. Finally, the 
cGAN model was tested to reconstruct quantitative phase images of dynamic DHM hol-
ograms. For this study, we mimicked the flow of red blood cells in a capillary by mounting 
a static microscopic sample of RBCs in a motorized translational stage. The velocity of the 
motor was such that the flow of the RBCs was 2.75 μm/s. We recorded a sequence of 300 
holograms that tracked the flow of RBCs within blood plasma. It is important to highlight 
that all the recorded cells were in focus (e.g., the image plane condition was met for all 
cells). This experiment was completely equivalent to the experiment in which the capillary 
depth was smaller than the depth of field of the objective lens, which was approximately 
0.69 μm, based on the manufacturer’s specifications. 

 
Figure 2. Illustration of the RBC dataset: (a) Input holograms after image orientation; (b) their respective phase maps 
reconstruction. 

2.3. The Proposed Learning-Based Method 
We have proposed a learning-based strategy to avoid conventional computational 

processing while enabling video-rate quantitative phase imaging free of aberration. Our 
experimental RBC dataset was used to train a conditional generative adversarial network 

Figure 2. Illustration of the RBC dataset: (a) Input holograms after image orientation; (b) their respective phase
maps reconstruction.

2.3. The Proposed Learning-Based Method

We have proposed a learning-based strategy to avoid conventional computational
processing while enabling video-rate quantitative phase imaging free of aberration. Our
experimental RBC dataset was used to train a conditional generative adversarial network
for image-to-image translation (pix2pix cGAN) [49]. The structure of this model is depicted
in Figure 3. This learning-based model was comprised of two submodels: a generative
model and a discriminator model. The generative model produces free-of-aberration phase
maps, given DHM holograms as inputs. The supervised training of this submodel is
defined by a weighted sum of two loss functions. The first function is an L1 loss which
penalizes the difference between the generated reconstructed phase maps by the model
G(x), and the target reconstructed phase maps by the traditional method y. The second
function is the adversarial loss from the discriminator model. The discriminator model is
trained to determine whether the generator has built an input phase map (i.e., yielding
to a fake/artificial signal) or a target phase map (i.e., an actual signal). The factor λ is
fixed as 100 to favor the L1 loss |G(x)− y| during training [49]. This parameter encourages
the generator to produce plausible translations of the DHM holograms, not just plausible
phase maps in the target domain. The models were trained with the Adam version of the
stochastic gradient descent [50] with a small learning rate of 0.002 during 100 epochs.
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In this cGAN architecture, the discriminator model is a deep convolutional neural
network for binary classification. Each input to this model is a pair of an off-axis in-
focus DHM hologram and its corresponding phase image concatenated horizontally in
a 256 × 256 × 6 entries array. This patchGAN discriminator [51] processes 70 × 70 pixel
regions of the input images, and the results of all patches are averaged to obtain an
overall classification outcome for the input image. The model consists of six bidimensional
convolutional layers in which the stride is fixed at 2 in each dimension to downsample the
feature maps size after each convolution. The activation function of the first five layers
is the LeakyReLu [52] to avoid blockage during training due to negative values in the
input signals. In layers 2 to 5, batch normalization is also applied over every instance.
The number of feature maps increases in each of these convolutional layers up to 512
to adjust the complexity of the model according to the data. In layer 6, the number of
filters is finally reduced to synthesize the information to be learned by the model. This
network was trained following two objectives: (1) to detect generated phase maps from
DHM holograms by the generative model and (2) to detect target phase maps directly
supplied to the discriminator. These two objectives were achieved by the model using two
L1 loss functions mathematically represented by

Lreal(w) = −yi_real log(ai(w)) + (1− yi_real) log(1− ai(w)) = log(L1(real))
L f ake(w) = −yi_ f ake log(ai(w)) + (1− yi_ f ake) log(1− ai(w)) = log(L1( f ake)) . (2)

For each training step, these loss functions allow the tunning of the coefficients of
the model (w) cooperatively using batches of target phase maps (Lreal), and batches of
generated phase maps (L f ake). The output of the patchGAN discriminator ai(w) is a 16 × 16
binary classification matrix of those when a generated or target phase map is detected,
and zeros otherwise. In Equation (2), yreal and y f ake account for the labels of the data feed
to the discriminator during training. Although two loss functions were used to train the
discriminator, only the L1 loss over the real images was transferred in every training step to
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the generator model to update its coefficients. This loss value is known as the adversarial
loss of the pix2pix cGAN model [49].

A U-Net architecture [53] was used as the generative model because it accurately
reconstructs high spatial frequencies features [54]. The hallmark of the U-Net model is an
accurate reconstruction of the phase values in those regions where the sample presents
sharp jumps, such as the edges of the RBCs. The U-Net structure is based on a tradi-
tional bidimensional convolutional autoencoder for image-to-image translation with skip
connections. The additional skip connections between asymmetrical layers in the U-Net
structure guarantees that the bottleneck of the autoencoder structure can be circumvented.
In other words, the skip connections shuttle the low-level information of the input DHM
holograms directly across the network [54]. The model’s encoder part comprises eight
convolutional layers with a 2-pixel stride in each dimension to downsample their feature
size from 256 × 256 to 1 × 1. The number of filters in these convolutional layers was
increased from 64 to 512 to account for the information from the datasets. The decoder
part of the model is almost a mirrored version of the encoder. The differences between the
encoder and decoder parts are the transpose bidimensional convolutional layers and the
implemented dropout layers after its first four layers. The output in the generator model is
a 256 × 256 × 3 entries array produced with a final hyperbolic tangent activation function
which presents better results for different GAN architectures [55].

Since the composite loss functions of the GAN models do not converge, due to the
adversarial fitting of the two involved sub-models [55], customized metrics must be used
to guide the proper training of this learning-based proposal. Two metrics were selected in
every epoch of the training stage to quantify the method’s performance at reconstructing
phase maps without phase perturbations from raw DHM holograms. The first metric was
a thresholding-and-summation metric (TSM) which accounted for phase discontinuities in
every generated phase map. Whereas distorted phase images in DHM generate thresholded
phase images with a mix of black and white pixels [26], the reconstructed phase image
without phase aberrations (or minima phase perturbations in the presence of high-order
aberrations such as astigmatism and coma) is the one whose thresholded phase image is
white (i.e., all pixels in the thresholded phase image should be one) [26]. Therefore, our
customized metric (TSM) counted the number of black pixels in the binary phase image
(i.e., thresholded phase value equal to zero),

TSM[ĥnor(n, m)] = 1− 1
N ·M∑N

n=0 ∑M
m=0 Thres[ĥnor(n, m), 0.2]. (3)

In Equation (3), ĥnor stands for the normalized reconstructed phase map generated by
the method in every training step; n and m are integer numbers running from 0 to N and
M, respectively; N, and M are the number of pixels in each dimension of the output phase
image, which coincides with the dimensions of the input hologram; Thres[·] represents
a thresholding operator that converts each image pixel value larger than 0.2 into one,
otherwise zero [26]. Figure 4a shows the plot of the average TSM values measured from
reconstructed phase maps generated by the model for the full training (orange curve) and
validation (blue curve) DHM holograms. Figure 4a shows that the normalized TSM for
the validation dataset does not change considerably after the 10th epoch. Therefore, the
network has converged in terms of the number of reconstructed phase discontinuities after
the 10th epoch. Figure 4c shows a set of generated phase maps at different epochs for the
same hologram of the validation dataset. The proposed model reconstructed the phase
discontinuities correctly after the convergence has been reached.
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the validation dataset provided by the proposed cGAN model at different epochs.

The second customized metric involved measurement of the standard deviation
(STD) inside one background region of the phase maps (i.e., an area in which the phase
measurement is constant). For simplicity, we selected a region where no RBCs were present
in the reconstructed phase images. An example of the region chosen to calculate the
STD value is shown in Figure 4c; see the area enclosed by the blue square. This metric
was calculated only for 15 generated phase maps per dataset, which provided a good
representation of the STD metric for the whole dataset. Figure 4b plots the average STD
values for the selected 15 phase maps per dataset. The STD metric allows quantifying
the noise of the generated phase images, which must converge (i.e., the STD value is
as low as possible) after the proposed method is adjusted correctly. According to this
metric, the generated phase maps for the validation dataset present the minor noise level
at the 12th epoch. After this point, the STD value starts increasing again. For the training
dataset, the average STD metric also converges at the 12th epoch. Nonetheless, after this
epoch, the model appears to start overfitting. Overfitting in supervised learning occurs
when the tendency of the model’s performance on the training data diverges from the
performance of the model on the validation data. The latter implies that the model is being
fine-tuned to predict the training samples while at the same time it is failing to adequately
predict the validation samples, which are the actual targets of the learning procedure.
Therefore, considering that the model presented the least noise level at the 12th epoch,
and the normalized TSM had already converged, we concluded that the best-fitted model
coefficients for our learning-based method were found at this epoch (i.e., the 12th epoch).

3. Experimental Results

Once the generator was adjusted correctly within the GAN training, we used this
learning-based model to reconstruct free-of-aberration phase images of static and dynamic
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human RBCs from experimental holograms recorded in an off-axis telecentric DHM system.
To use our proposed learning-based method, a sample code to reconstruct quantitative
free-of-aberration phase images from RBC holograms recorded in an off-axis telecentric-
based DHM is freely available in [56]. The model in this repository contained the weights
yielded during the training stage described in Section 2.3 and used in this section to retrieve
the reported results. Therefore, any user can use this implementation to process off-axis
diffraction-limited DHM recordings with no need for further fitting stages or robust pre- or
post-processing procedures. Note that it is only required to match the field of view between
the input hologram and the one used to train the network.

3.1. Experimental Quantitative Phase Images Obtained by the Proposed Learning-Based Model
Using Static DHM Holograms

In our first experiment, we compared the performance of our learning-based cGAN
model, after proper training, to that of the traditional reconstruction method [26] to analyze
human RBCs in static conditions. Figure 5a–d shows four different holograms of the vali-
dation dataset. These holograms (Figure 5a–d) present different experimental conditions,
such as the presence of dust in the sample, some defocusing effects, and changes in the
background intensity. The latter may be related to temporal fluctuations in the experi-
mental conditions from the illumination source and/or the implementation of the system.
Whereas the panels in Figure 5e–h (second row) show the reconstructed phase images
for the conventional method, panels in Figure 5i–l are the reconstructed phases for the
proposed learning-based method (third row). According to these results (Figure 5), the
performance of our proposed cGAN model is similar to the performance of the traditional
reference method for the highest-quality reconstructed phase images performed by the
conventional method (Figure 5e,h). However, the conventional method introduces some
random phase distortions in some holograms, reconstructing low-quality phase images
(Figure 5f,g). Contrarily, the cGAN model reconstructs these quantitative phase maps
successfully without undesired phase distortions (Figure 5j,k). The colored arrows in these
panels show other differences between the reconstructed phase images. For example, the
green arrows indicate background regions in the reconstructed phase images with different
phase values. Whereas the conventional method fails to quantify the background phase
level correctly, the proposed method successfully provides a homogeneous background
level for most testing DHM holograms. The blue arrows highlight RBCs whose phase
distribution presents some distortions in the traditional method. The poor reconstruction
performance of the conventional approach is related to the reliance on the estimated pa-
rameters of the digital reference wavefront to the temporal fluctuations in the experimental
recording conditions. Although the performance of the cGAN method seems superior, the
cGAN model introduces some blurring effects when reconstructing the contour of some
RBCs, as the red arrows show.

For a better comparison of the differences between the reconstructed phase maps pro-
duced by the traditional reference method (Figure 5e–h) and the cGAN model (Figure 5i–l),
we measured the two customized metrics described in Section 3, i.e., the TSM and STD.
The values of these two metrics are reported in Figure 5. According to the reported TSM
values, the cGAN model reconstructs phase images with lower TSM values than those
obtained by the conventional method. Equation (3) shows that the best reconstructed
phase image (i.e., phase image with minimum phase aberration) provides the lowest TSM
value. Regarding the STD value, we measured this metric in the region highlighted by
the yellow rectangle in panels Figure 5e–h. According to the reported STD values, the
cGAN model reconstructs phase images with lower STD values than those obtained by
the conventional method. These results allow us to conclude that the performance of the
proposed learning-based method is better in terms of the quality of the reconstruction (i.e.,
minimum phase aberration and reduced background noise).
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Figure 5. Results of the proposed learning-based method for aberration-free phase reconstruction of RBC samples in DHM.
Panels (a–d) are the DHM holograms, illustrating different experimental conditions., marked by magenta dashed rectangles,
such as dust in the sample, some defocusing effects, and changes in the background intensity. Panels (e–h) are the results
obtained via the conventional method. Panels (i–l) show the phase map obtained by our proposal. All phase maps presented
in this figure are accompanied by their STD and TSM values. The yellow rectangle in panels (e–h) mark the region in which
we have estimated the STD value. The colored arrows in panels (e–l) show differences between the reconstructed phase
images; see text for further details.

To further validate our method performance for these static holograms, we have
compared the highest- and the lowest-quality reconstructed phase images provided by the
conventional reference method to those obtained by our cGAN model. Figure 6 shows
the unwrapped reconstructed phase maps and their corresponding 3D topographical
view. We have used the Goldstein algorithm to unwrap the reconstructed phase im-
ages [57]. The unwrapped phase values (φ) have been converted in RBC’s thickness (t)
via φ = 2π t/[λ0(ns − nm)] where λ0 = 532 nm is the illumination wavelength, ns = 1.406
is the RBC refractive index [58], and nm = 1 is the surroundings’ refractive index. As
Figure 6 shows, both methods provide similar results for the highest-quality reconstructed
phase image reconstructed by the reference method (Figure 6a–c). However, the cGAN
model achieves improved results for the lowest-quality phase map reconstructed by the
conventional method, comparing panels (g)–(i) versus panels (j)–(l) in Figure 6. Note that
the presence of phase aberrations in Figure 6g leads to reconstructing an RBC with negative
optical thickness with respect to the background phase level. Quantitatively, the optical
thickness of an RBC is around 0.8 µm, as was previously reported via a phase-shifting
DHM [59]. Whereas the cGAN method provides RBCs with optical thickness around
0.8 µm, as shown by Figure 6f,l, the optical thickness of the RBCs in Figure 6i is around
1.5 µm. Apparent morphological changes are introduced by the erroneous reconstruc-
tion of the phase image provided by the reference method. This inaccurate result could
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lead to misleading sample identification, illness screening, or other diagnostics based on
quantitative phase imaging.
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Figure 6. Quantitative comparison between the highest (a–f) and the lowest (g–l)-quality reconstructed phase images
provided by the conventional reference method (first and third rows) to those obtained by our cGAN model (second and
forth rows). The first and second column displays the wrapped and unwrapped reconstructed phase images, respectively.
The third column shows the three-dimensional (3D) pseudocolor distribution of the optical thickness.

3.2. Comparison of the Proposed Cgan Model against the U-Net Model and Validation of the
Proposal’s Generalization Ability to System’s Diversity

A straightforward comparison of the performance of our method against that of the
U-Net model is presented in this subsection to validate its appropriateness in the task of
retrieving complete phase compensated phase maps in transmission off-axis DHM. The
implemented U-net model has the same parameters as the generator model in our proposal,
depicted inside the blue rectangle in Figure 3. The details of the generator model are
described in Section 2.3. Overall, the training hyperparameters of this U-Net model are
the same employed in our cGAN model generator. The main difference is the use of a
logarithmic loss function to adjust the U-Net model weights. The U-Net model converged
after 50 epochs. For each image in the validation dataset, this convergence was estimated by
measuring the root-mean-square error (RMSE) between the reconstructed phase images of
the conventional method and the one of the U-Net model at every epoch. Considering the
same training dataset as the one for the cGAN model (1508 pairs of images), the measured
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RMSE on the validation data was 0.25. Since the input reconstructed phase images were
normalized before training and prediction, this RMSE value means that there is an error of
25% between the target phase images and the reconstructed U-Net images. To minimize
the RMSE error, we increased the training data set to 24,491 pairs of images. In this case,
the convergence of the U-Net model was reached with an RMSE value of 0.04 at epoch
28. Figure 7 compares the reconstructed phase images obtained by the traditional method,
the U-Net model (trained with 24,491 pairs of images), and our proposal (trained with
1512 pairs of images). Note that Figure 7 also shows the performance of the U-Net and
proposed cGAN models using the new validation dataset to assess the goodness of these
models for different experimental conditions and show that no overfitting occurs. The
proposed cGAN model outperforms the U-Net model based on the reported TSM values
even though the training dataset of the cGAN model is 16.2× smaller than the one used in
the U-Net model. Note that the cGAN model reconstructs phase images with lower TSM
values than those obtained by the U-Net model. In addition, the cGAN model retrieves
the edges of the RBCs with greater accuracy than the U-Net model, as pointed out by the
green circles and the orange arrows. To quantify the difference in the noise level, we have
measured the STD values in the regions encircled by the dark blue lines in Figure 7. Based
on these STD values, the U-Net model reconstructs phase images less sensitive to noise
than the reconstructed cGAN phase images (e.g., lower STD values). Nonetheless, the STD
values are approximately 2.24× lower than those provided by the conventional method.
Although the cGAN model may introduce some remaining nuisances in the reconstructed
phase images, as indicated by the red circles in Figure 7, overall, our method achieves
better results than the traditional method and the U-Net model.
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Figure 7. Comparison between the U-Net model and our cGAN model. The first column displays the
selected DHM holograms from the validation dataset (panels (a,e,i)). The reconstructed phase images
obtained by the conventional method are illustrated in the second column (panels (b,f,j)). Columns 3
(panels (c,g,k)) and 4 (panels (d,h,l)) show the reconstructed phase images achieved by the U-Net
and our cGAN model. The colored circles and arrows show differences between the reconstructed
phase images; see text for further details.
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To validate the generalization ability of our proposed method in regard to system
diversity, DHM holograms were recorded in a common-path DHM system using a Fresnel
biprism. This DHM system was comprised of a 40X/0.74 Nikon MO lens, and the camera
used had 5471× 3648 square pixels of 2.4 µm side. The Fresnel-biprism-based DHM system
still operated in the telecentric regime, and the camera was located at the microscope’s
image plane. More details on this DHM system can be found in [60]. Note that a minimum
preprocessing of the DHM holograms recorded by the Fresnel-based DHM system is
required. The preprocessing step consisted of resizing the raw holograms to reduce their
size by 40% and matching the field of view to those provided in the Mach–Zehnder-based
holograms. After this step, we evaluated the traditional method and the U-Net and cGAN
models to reconstruct these Fresnel-based DHM holograms. Figure 8 shows selected
holograms from the Fresnel-based DHM system and their corresponding reconstructed
phase images to test the generalization ability of the proposed cGAN model. As shown
in Figure 8, the reconstructed phase images obtained by the traditional method present
RBCs with a different phase value even though all cells are expected to yield the same
phase values within experimental error margins. This phase difference in the RBCs is
due to a phase difference of π introduced by the Fresnel biprism between each interfering
wave. Nonetheless, both learning-based methods reconstruct all cells with the same phase
values. The green arrow and the region enclosed by the red circle in Figure 8g,k illustrates
that the U-Net model provides distorted details of RBCs. In contrast, the cGAN model
reconstructs the specimen’s details accurately, as shown in the region inside the green
circles and pointed out by the orange arrows. The measured STD values, computed for
the region encircled by the dark blue circle, are similar for the three methods. In summary,
the cGAN model can reconstruct quantitative phase images from off-axis DHM holograms
with minima distortions, highlighted by the red circles in Figure 8, regardless of the optical
configuration of the transmission DHM system.
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Figure 8. Evaluation of the generalization of the cGAN model to a common-path DHM system. The
first column (panels (a,e,i)) shows selected DHM holograms recorded using a Fresnel-based DHM
system. Columns 2, 3, and 4 display the reconstructed phase images obtained by the conventional
method (panels (b,f,j)), the U-Net model (panels (c,g,k)), and the proposed cGAN model (panels
(d,h,l)), respectively. The dark blue circle mark the region in which we have estimated the STD value.
The colored circles and arrows show differences between the reconstructed phase images; see text for
further details.
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3.3. Validation of the Proposed Learning-Based Model Using a Sequence of Dynamic DHM
Holograms for Video-Rate Quantitative Phase Images

In this experiment, we investigate the performance and the robustness of the cGAN
model for reconstructing aberration-free phase images in time-lapse DHM imaging. For
this study, we recorded a sequence of 300 holograms that tracked the flow of RBCs within
blood plasma. These recorded holograms were used as input images of our trained cGAN
model. Figure 9 summarizes the performance of the traditional reference method [26]
and the proposed learning-based model. In this figure, we have displayed five randomly
selected phase images. The n value stands for the i-th frame in the time-lapse recording
sequence. Whereas the RBC flow is marked by the blue arrow in Figure 9b, the yellow star
is a visual aid to track the identical RBC across the time-lapse sequence. It can be seen that
the traditional reference method reconstructs phase images with phase aberrations and
varying background levels across the time-lapse sequences, see the red arrows in Figure 9a.
In addition, the poor performance of the traditional method inhibits the proper visual-
ization of inner structures in the dynamic imaged sample. In contrast, the performance
of the cGAN model is superior, providing reconstructed RBCs images with fewer phase
aberrations, homogeneous background (marked by the green arrows in Figure 9b), and
reduced noise. However, our cGAN model does not exploit one of the major advantages
of DHM, which is the reconstruction of quantitative phase images of defocused samples
(e.g., cells, bacteria, and organisms located at different depths). In future work, we will
investigate the performance of the cGAN model to reconstruct defocused holograms at
different depths for several biological samples by implementing a microscopic slide with a
flow path, enabling the recording of out-of-focus holograms.
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investigate the performance of the cGAN model to reconstruct defocused holograms at 
different depths for several biological samples by implementing a microscopic slide with 
a flow path, enabling the recording of out-of-focus holograms. 

 

Figure 9. Evaluation of the traditional reference and GAN models to reconstruct aberration-free phase images in time-lapse
DHM imaging. See Video S1 in Supplementary Materials for video rendering of the reconstructed phase images of the flow
of RBCs. The blue arrow marks the flow direction. The yellow star marks the identical RBC across the time-lapse sequence.
The red and green arrows show differences between the reconstructed phase images.
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Video S1 displays the rendering of the time-lapse reconstructed phase images for both
the conventional method and the cGAN model. This video demonstrates the superior
performance of our proposed method. Note that all the reconstructed phase images
generated by the cGAN model present a homogenous background, resulting from the
accurate compensation of the digital reference wavefront. In addition, the majority of
inner structures in the imaged RBCs are retrieved without any phase distortion. Contrarily,
the conventional method fails to reconstruct several frames in the time-lapse sequence,
resulting in an unstable reconstruction technique. In summary, we estimated the number of
frames per second (FPS) required for each method to reconstruct these phase images from
the raw DHM holograms. For simplicity, we excluded the acquisition time in the estimation
of the FPS. The processing time for each DHM reconstruction method is reported based on
a laptop powered by an Intel Core I7 6700HQ CPU running at 2.60 GHz with 8 GB of RAM
and hosting an NVIDIA Geforce GTX 960M GPU with 2 GB of RAM running at 1 GHz.
Whereas the conventional method requires approximately 115 ms to reconstruct each raw
hologram, the proposed fitted generator reconstructs each quantitative phase image in
14.8 ms on average, being 7.7× faster. According to these processing times, the video
reconstruction is equal to 9 and 67 FPS for the conventional and the proposed method,
respectively. The values of the FPS are also reported in Figure 7 and Video S1.

4. Conclusions

In this study, we report on a conditional generative adversarial network (cGAN) to
fully reconstruct quantitative phase images from human red blood cells (RBCs). To the
best of our knowledge, this is the first learning-based method to reconstruct off-axis DHM
holograms of biological samples with minimum phase distortions from raw holograms
without the need for robust pre- or post-numerical procedures. The raw RBCs holograms
were recorded using an off-axis DHM system operating at the telecentric regime. The
proposed cGAN model was trained using two customized metrics specifically designed for
tracking the imaging characteristics in DHM: (1) the number of phase discontinuities using
a thresholding-and-summation metric (TSM, Equation (3)) and (2) the noise level measured
in homogenous regions of the reconstructed phase maps using the standard deviation
(STD). Because we used two customized metrics (i.e., TSM and STD), the proposed cGAN
model converges rapidly (i.e., only 12 epochs are needed). This learning-based method
was trained using 1512 pairs of raw holograms and their reconstructed phase images
obtained by a traditional reference method [26]. Figures 5–9 show the robustness of our
cGAN method against the reference method for raw holograms with different experimental
conditions. We also compared the performance of the cGAN model to the U-Net model
in Figures 7 and 8 to validate the superior performance of the cGAN model. In summary,
the proposed cGAN method surpasses the setbacks of the reference method, resulting
in quantitative phase images with reduced noise and constant background level. These
improvements are consequences of the model used (i.e., conditional generative adversarial
networks) since these supervised models were initially designed to the specific abstraction
of low-level information. Additional advantages of the cGAN model are: (1) the retrieval
of inner structures of the RBCs’ information and (2) its training time (approximately 2 h).
The high performance of our cGAN model paves the way for video-rate quantitative
phase imaging of dynamic studies using DHM. The main disadvantages of the proposed
method are the data field of view and the cell density, which are reduced to 40 µm × 40 µm
(256 × 256 pixels) and up to 9 cells for the field of view, respectively. We will increase the
cell density and the field of view in future work by expanding the image size fed into
the model. In addition, although the cGAN model was validated using RBCs, it could
be straightforwardly extended to reconstruct quantitative phase images of any type of
dynamic biological sample. Future studies will upgrade the training dataset, including
anemic RBCs, glioblastoma cells, and diatoms. The limitation of the cGAN model is that
this method only works for off-axis DHM systems operating in the telecentric regime.
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Future studies will address this limitation by upgrading the model to ensure accurate
quantitative phase analysis applicable to any off-axis DHM system.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s21238021/s1, Video S1: HighSpeed_GAN_PhaseREC.mp4 compares the reconstructed
phase images of the dynamic RBCs for the reference and proposed cGAN methods.
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