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Abstract: Micro-scale Cyber-Physical Systems (MCPSs) can be automatically and formally estimated
by probabilistic model checking, on the level of system model MDPs (Markov Decision Processes)
against desired requirements in PCTL (Probabilistic Computation Tree Logic). The counterexamples
in probabilistic model checking are witnesses of requirements violation, which can provide the
meaningful information for debugging, control, and synthesis of MCPSs. Solving the smallest coun-
terexample for probabilistic model checking MDP has been proven to be an NPC (Non-deterministic
Polynomial complete) problem. Although some heuristic methods are designed for this, it is usually
difficult to fix the heuristic functions. In this paper, the Genetic algorithm optimized with heuris-
tic, i.e., the heuristic Genetic algorithm, is firstly proposed to generate a counterexample for the
probabilistic model checking MDP model of MCPSs. The diagnostic subgraph serves as a compact
counterexample, and diagnostic paths of MDP constitute an AND/OR tree for constructing a diag-
nostic subgraph. Indirect path coding of the Genetic algorithm is used to extend the search range
of the state space, and a heuristic crossover operator is used to generate more effective diagnostic
paths. A prototype tool based on the probabilistic model checker PAT is developed, and some cases
(dynamic power management and some communication protocols) are used to illustrate its feasibility
and efficiency.

Keywords: probabilistic model checking; micro-scale cyber-physical systems; counterexample;
genetic algorithm

1. Introduction

Micro-scale Cyber-Physical Systems (MCPSs) are a special kind of CPS in micro-
machines, which are composed of micro/nanoscale components, and the integration of
computation with physical processes in micro-/nano-assembly operations. MCPSs are
about the intersections, not the union, of the physical and the cyber, and the behaviors
of them are defined by both cyber and physical parts of the system [1–3]. Most of con-
stituent elements of MCPSs or MCPSs themselves are usually accompanied with stochastic
behaviors. The reasons for this can be classified as three aspects: (1) MCPSs contain the
randomized algorithms, e.g., leader election algorithm, consensus algorithms; (2) unreliable
and unpredictable system behaviors incurred by execution environment, e.g., message loss,
processor failure; (3) performance evaluation by random variables assigned artificially, e.g.,
reliability, availability [4,5]. As an automated and complete formal verification technique at
the level of system models, probabilistic model checking can be used to estimate whether
the MCPSs satisfy a desired requirement property, or avoid an undesired outcome. As
shown in Figure 1, MCPSs are modeled as DTMCs (Discrete-time Markov Chains), MDPs
(Markov Decision Processes), PTA (Probabilistic tic Timed Automata), etc. [5]. The achieved
requirement properties, e.g., function, reliability, robust, etc., are specified by PCTL (Prob-
abilistic Computation Tree Logic), LTL (Liner Temporal logic) with probability bounds,
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PTCTL (Probabilistic Timed Computation Tree Logic) [5–7]. In this way, we can express
the requirement property such as “in the MCPSs, the maximum probability to reach a
set of bad states is not more than 0.001”. Some probabilistic model checking tools, such
as PRISM [6] and PAT [7], have been developed and applied to quantitatively estimate,
control, and synthesize the MCPSs, e.g., the mobile service robot [8], unmanned undersea
vehicle [9], peacemaker [10–12]. As shown in Figure 1, verifying or evaluating MCPSs is a
huge challenge, which involves hardware, software, communication protocols, and so on.
Probabilistic model checking has the potential to address this. At present, there are two
dimensions to adapt the probabilistic model checking to estimate MCPSs: (1) horizontal,
extending system models, temporal logics, and corresponding algorithms to verify more
complex behaviors of MCPSs; (2) vertical, optimizing the probabilistic model checking
algorithm to provide more functions and better performance for verifying a certain part of
MCPSs deeply.
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This work belongs to the vertical dimension, which propose a counterexample genera-
tion method for probabilistic model checking MCPSs with nondeterministic and discrete-
time stochastic behaviors. Up to now, existing probabilistic model checking tools cannot
provide a counterexample directly. Counterexamples play a very important role in esti-
mating or verifying MCPSs: (1) Counterexamples can feedback which parts of the system
violate the requirements and provide diagnostic information; (2) Counterexamples are
very effective in model-based testing, which can provide a reference for the design of test
cases; (3) In the process of abstract refinement, counterexamples can provide guidance
information for the refinement of rough abstract models [13,14]; (4) Counterexamples can
be used to obtain the core of feasible plans in planning, such as task scheduling [15]; (5)
Counterexamples are recently used to synthesize attacks for showing how confidentiality
of systems can be broken, and the quality assurance of multi-agent systems [16].

1.1. Related Works

The counterexample in probabilistic model checking may be a set of diagnostic paths
that satisfy a given property, and the cumulative probability mass does not satisfy a
given bound. It cannot be generated during the process of probabilistic model checking
and needs the dedicated algorithm [17]. We divide the existing works into two kinds of
methods for generating a counterexample in probabilistic model checking: the accurate
and approximate approach.
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1.1.1. Accurate Approach

Han, Katoen, et al. [18] provide the theoretical and algorithmic foundations for coun-
terexample generation in probabilistic model checking, which is the earliest research on
the counterexample in probabilistic model checking. They define the counterexample for
DTMC and translate the counterexample solving problem into the shortest path problem
in the corresponding directed weight graph. Thus, the counterexample generation can ex-
plicitly enumerate the paths according to the probability they carry. To obtain the smallest
counterexample, the enumeration stops when the cumulative probability of all generated
paths exceeds the probability bound set in advance. Algorithmically, this can be done
efficiently by translating this problem into a k-Shortest-Paths problem, where k is not fixed
in advanced and is determined during the calculation. Eppstein and REA algorithms are
applied to generate a counterexample for DTMC. On the basis of [19], the approach of
calculating and representing a counterexample in a succinct way using a regular expression
is presented in [20]. According to [20], the regular expressions that represent a counterex-
ample can be calculated by the state elimination method of the automaton theory, which is
guided by the k shortest paths search. The counterexample can also be compacted based
on the strongly connected components (SCCs), and the obtained acyclic model is helpful in
reducing efforts to determine the counterexample.

A hierarchical counterexample generated by performing SCC reduction is presented
in [21]. Considering the unbounded-until property formula P≤p

(
ΦU≤hΨ

)
, where h = ∞,

counterexample generation can be carried out by applying k shortest paths algorithms
such as Epstein algorithm, and the time complexity of which is O(a + blogb + c), where
a is the number of states and b is the number of transitions of DTMC. For bound-until
property P≤p

(
ΦU≤hΨ

)
, where h ∈ N, a recursive enumeration algorithm to generate

counterexample is presented in [20]. Reference [22] defines the counterexample of MDP as
the general DTMC. Lal and Prabhakar [14] use a counterexample generated by this method
to guide the abstraction-refinement for the polyhedral probabilistic hybrid systems.

Taking PCTL path formula Φ1UΦ2 as an example, the process of generating a coun-
terexample for MDP by the Eppstein algorithm can be summarized as follows: (1) make
Φ2-states and all ¬Φ1 ∧ ¬Φ2-states absorbing, (2) insert a sink state and redirect all outgo-
ing edges of Φ2-states to it, (3) turn it into a weighted digraph, (4) implicit representation
of paths, (5) represent paths by a heap, (6) find the k shortest paths as the counterexample.

1.1.2. Approximate Approach

A critical subsystem, as a subsystem of DTMC, can represent a counterexample for
probabilistic model checking. It is called a minimal critical subsystem if the number of
states and transitions included is minimal compared to other subsystems, and the smallest
subsystem if it is minimal and carries a maximal probability to reach a target state. Chadha
et al. [23] further define the counterexample as the general MDP and give the corresponding
algorithm for solving the minimal counterexample. This is the first work of counterexample
generation for MDP.

Generating the smallest critical subsystems to represent the counterexample is an
NP-complete problem which has been proved in [23,24], and it is hard to solve with exact
and complete algorithms. A heuristic search method like best first search to obtain a
counterexample is presented in [25,26]. However, it may not be a smallest, or even a
minimal counterexample. Symbolic methods like bounded model checking (BMC) for
finding a small critical subsystem have been developed in [25,26]; it uses a symbolic
representation to reduce the size of the counterexample. Another option to determine
the smallest critical subsystem is to use mixed integer linear programming techniques
in [27,28]. Aljzzar et al. [29] propose a directed state space search method called XBF (XZ,
XUZ) to generate a counterexample, which is the first work of counterexample generation
with a heuristic. There are some works in this direction, such as [13,30,31], which optimizes
the heuristics to generate a counterexample for DTMC.
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XBF extends the search strategy BF (Best-First) to generate a counterexample for MDP.
In the framework of generating a counterexample for MDP by the Eppstein algorithm, XBF
makes the following three modifications: (1) XBF records all parent states for each state; (2)
XBF maintains a graph which contains, at any point in the search, the currently selected
diagnostic subgraph; (3) when XBF finds the first target state, it continues the search for
further target states until the whole state space has been processed, or termination is
explicitly requested.

1.2. Our Contribution

This paper deals with counterexample generation for probabilistic model checking
MCPSs with nondeterministic and discrete-time stochastic behaviors, in which MCPSs
are modeled as MDP, and the requirements are specified as PCTL. Solving the smallest
counterexample for probabilistic model checking MDP has been proven to be an NPC
problem. Although some heuristic methods are designed to generate the counterexample
for MDP, it is usually difficult to fix the global heuristic functions. Instead, we design
the local heuristic function integrated into the Genetic algorithm (heuristic Genetic algo-
rithm, HGA) to explore the state space, and propose a counterexample generation method
for probabilistic model checking MDP against requirement property in PCTL. We use
a diagnostic subgraph to represent the compact counterexample for MDP, and exploit
diagnostic paths to constitute an AND/OR tree for constructing the diagnostic subgraph.
We adopt the indirect path coding of the Genetic algorithm to extend the search range of
state space, and the heuristic crossover operator to generate more effective diagnostic paths.
A corresponding prototype tool is implemented based on PAT [16], and some MCPSs cases
are used to illustrate its feasibility and efficiency.

1.3. Outline of the Paper

The rest of this paper is organized as follows. In Section 2, we introduce some
preliminaries and definitions. Section 3 describes how to optimize the Genetic algorithm
with a heuristic to generate a counterexample for MCPSs model MDPs. In Section 4, we
show an experimental evaluation of some MCPSs cases, in order to illustrate the feasibility
and efficiency. Conclusion and future work are in Section 5.

2. Preliminaries
2.1. MDP

An MDP can be viewed as an extension of DTMC, which permits both probabilistic
and non-deterministic choices. In an MDP, each transition includes a non-deterministic
choice of actions in state s. Formally, an MDP is defined as follows.

Definition 1 (MDP). Let AP be a set of atomic propositions. A Markov decision process M is
a tuple (S, sinit, A, P, L), where S is a finite set of states, sinit ∈ S is the initial state, A is a set
of actions, P : S× A× S→ [0, 1] is a probability transition function such that for every state,
s ∈ S and an action α ∈ A: ∑ s

′ ∈ S, P(s, α, s′) ∈ {0, 1}, and L : S→ 2AP is a labeling
function of atomic propositions.

For a state s ∈ S, the probability of s to its successor state s′ by action a is given by
P(s, α, s′). If and only if ∑s′∈S P(s, α, s′) = 1, we call the action α enabled in the state s,
otherwise, the action α is disabled. We use A(s) to represent a set of actions that are enabled
at state s.

A path represents the execution of the system modeled by MDP; that is, the possible
event behavior of the system, which can be described as an infinite sequence of states.

Definition 2 (Path). An (infinite) path of MDP M is an infinite sequence σ = s0
α0→ s1

α1→ s2 . . .
with αi ∈ A(si) such that P(si, αi, si+1) > 0 for all i ≥ 0.
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We use len(σ) to denote the length of σ, which is determined by the number of states.
For an infinite path σ, len(σ) is ∞. For a natural number i such that 0 ≤ i < len(σ),
σ[i] refers to the ith state of σ, i.e., si. Using σ(i) to indicate the ith prefix of σ, formally,

σ(i) = s0
α0→ . . .

αi−1→ si, which represents the i + 1 state of the path σ. For 0 ≤ i ≤ len(σ),
Aσ(i) denotes the ith action in σ, namely αi. For a finite path, last(σ) denotes the last
state of σ. PathsM and PathsM

f in represent the set of infinite paths and the set of all finite

paths in M, respectively. PathsM(s) denotes the set of infinite paths which start at s and
PathsM

f in(s) denotes the set of finite paths starting from s. Non-determinism in an MDP
is resolved by schedulers (also called adversary, policy, or strategy). A scheduler for
an MDP M = (S, sinit, A, P, L) is a function mapping every finite path σ in M onto an
action d(σ) ∈ A(last(σ)). According to [32], we consider the deterministic scheduler that
can deterministically select actions, which induces the maximal and minimal probability
measures. The scheduler converts MDP into DTMC for which the probability of paths is
measurable. We refer to the set of infinite paths under this schedule as Pathsd(s0). Paths in
an MDP are called valid if the paths are allowed under a given scheduler d. We give the
definition of the valid path as follows.

Definition 3 (Valid path). A finite or an infinite path σ in an MDP is valid under a scheduler
d, if and only if for all i, 0 ≤ i ≤ l(σ)− 1, it holds that Aσ(i) = d

(
σ(i)
)

and Aσ(i)(si+1) > 0.
Otherwise, the path σ is invalid under scheduler d.

The underlying σ-algebra is formed by the cylinder sets which are induced by finite
paths under the scheduler denoted FinitePathsd(s0). The probability of this cylinder set is
computed by using the following equation:

Prd(σ ∈ FinitePathsd(s0)
∣∣∣σ = s0

α0→ . . .
αi−1→ si) = Π0≤i≤nP(si, αi, si+1) (1)

Example 1. Figure 2 is an illustrative example for MDP, which models a simple communication
protocol in MCPSs. In this MDP, state set S = {s0 , s1, s2, s3}, A = {start, wait, send, restart,
stop}, atomic propositions set AP = {try, succ, fail}, L(s0) = ∅, L(s1) = {try}, L(s2) = {fail},
L(s3) = {succ}. s0 is the initial state; it starts trying to send a message after one step. Then,
there is a nondeterministic choice between: (1) waiting a step as the channel is busy, i.e., path

σ = s0
start→ s1

wait→ s1, (2) sending the message. If the latter, it is to send successfully with

probability 0.99 and stop, i.e., path σ = s0
start→ s1

send→ s3
stop→ s3; and it is failed to send with

probability 0.01 and restart, i.e., path σ = s0
start→ s1

send→ s2
restart→ s0.
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2.2. Probabilistic Computation Tree Logic

We consider the calculation of the (constrained) reachability probability in MDP. Let
a finite MDP M = (S, sinit, A, P, L) and B ⊆ S a set of a target. The maximal probabil-
ity of reaching a state in B from the initial state of MDP is equivalent to determining
Prmax(s �M ♦B) = supDPr(s � ♦B). Note that the supremum ranges over all, potentially
infinitely many, schedulers for M. Probabilistic computation tree logic (PCTL) is a proba-
bilistic branching-time temporal logic. PCTL state formulae over the atomic propositions
set AP are formed according to the following grammar:

Φ ::= true | a | Φ1 ∧Φ2 | ¬Φ | P∼p(φ)

where a ∈ AP, φ is a path formula, ∼∈ {< ,≤, >,≥}, and p ∈ [0, 1]. PCTL path formula
is formed according to the following grammar:

φ ::= Φ1UΦ2

∣∣∣ Φ1U≤nΦ2

where Φ1 and Φ2 are state formulae, and n ∈ IN≥0U{∞}. The formula Φ1UΦ2 means
that Φ2 is satisfied and all preceding states satisfy Φ1. The path formula Φ1U≤nΦ2 is the
step-bounded variant of Φ1UΦ2. n = ∞ in a path formula means that it is unbounded until
formula.

Let s ∈ S be a state and σ be an infinite path under D, where D denotes the set of all
schedulers in MDP; the semantics of PCTL formulas over MDP are defined by satisfaction
relation �D:

s �D P∼p(φ) iff PrD
s (
{

σ ∈ PathD(s)
∣∣∣σ �D φ

}
) ∼ p

σ �D ΦU≤hΨ iff ∃i ≤ h, such that σ[i] �D Ψ and ∃∀j < i : σ[j] �D Φ.
We abbreviate PrD

s (
{

σ ∈ PathD(s)
∣∣σ �D φ

}
) as PrD

s (φ) for convenience. It needs
to calculate the probability of each path under D starting from s and satisfying φ, and
determine which state satisfies the formula P∼p(φ). We use the set Sat

(
P∼p(φ)

)
to rep-

resent all states that satisfy P∼p(φ). For MDP M = (S, sinit, A, P, L), a formula P∼p(φ)
is satisfied if and only if for every d ∈ D : Prd(φ) ∼ p, where Prd(φ) denotes the prob-
ability of the set of all finite paths satisfying φ under scheduler d. The probability of
paths in MDP is only defined in a given scheduler d. Probabilistic model checking
MDP should consider the maximizing or minimizing probability values incurred by
the different schedulers. Let Prmax(φ) denote the maximal probability mass at which
a MDP M satisfies φ, Prmax(φ) = max(Prd(φ)|d ∈ D) , and dually, the minimal probabil-
ity Prmin(φ) = min(Prd(φ)

∣∣∣d ∈ D) . For properties in the upper bound, it is obvious that
M � P≤p(φ)⇔ Prmax(φ) > p .

2.3. Genetic Algorithm

The Genetic algorithm is a heuristic search, inspired by Charles Darwin’s theory
of natural evolution. This algorithm reflects the process of natural selection where the
fittest individuals are selected for reproduction in order to produce offspring of the next
generation. The Genetic algorithm has been applied to a board range of learning and
optimization problems [33]. It begins with a set of a random population of coded candidate
solutions which are called the chromosome. Then, the fitness is evaluated, measured by
the fitness function of each candidate solution in the current population, and the fittest
candidate solution is selected as parent of the next generation. The next step is to generate
a second-generation population of solutions from those selected through crossover and
mutation. The fittest parents and the new offspring form a new population. We give the
standard Genetic algorithm in pseudocode, as shown in Algorithm 1.
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Algorithm 1. Standard Genetic algorithm.

START
Generate the initial population
Compute fitness
REPEAT

Selection
Crossover
Mutation
Compute fitness

UNTIL population has converged
STOP

3. Counterexample Generation with Heuristic Genetic Algorithm

In this section, we adopt a diagnostic subgraph to represent the counterexample,
and optimize the Genetic algorithm with heuristic (heuristic Genetic algorithm, HGA) to
generate a counterexample for probabilistic model checking MCPSs. The system model of
MCPSs is MDP, and the requirement property is expressed by PCTL, i.e., P∼p(φ). We will
focus on the formula P≤p(φ) in PCTL; the lower bounded formulas P>p(φ) and P≥p(φ)
can be converted to upper bound formulas.

3.1. Counterexample Represented by Diagnostic Subgraph

In classical model checking, the checked property will determine the shape of a
counterexample. For linear temporal logic such as LTL, a failure path serves as a coun-
terexample; and for CTL, the path as a counterexample is only for a subclass of global
quantifier formulas. In probabilistic model checking, the situation is very complex. Let
φ = Φ1U≤nΦ2, s 2D P≤p(φ), if and only if PrD

s (φ) > p holds. Consequently, if P≤p(φ)
does not satisfy at state s, then the probability sum of all paths which satisfy formula φ with
initial state s exceeds the probability bound p. It is obvious that the counterexample can be
represented by finite paths. For a low-bounded property formula P≥p(φ), the definition
of the counterexample does not make sense, since the empty set satisfies this condition;
diagnostic path PrD

s (φ) < P does not carry useful information. Therefore, in the following,
we only consider the upper bound.

The PCTL property P≤p(φ) is refused in an MDP, if there exists at least one scheduler
d such that the probability mass of the paths FinitePathsd(s0) satisfying φ under d exceeds
p, where FinitePathsd(s0) means a set of paths starting from state s0 and satisfying φ under
a scheduler d. We denote this set by FinitePathsd(s0 � ϕ). These finite paths are also called
diagnostic path.

Definition 4 (Diagnostic paths). Let M be an MDP model of a MCPS, and upper bounded
formula P≤p(φ) be a requirement property under consideration. A counterexample of the property
P≤p(φ) for MDP M is a set X of diagnostic paths in M such that Prmax(φ) > p holds.

Example 2. Let us consider the example of MDP shown in Figure 3 and the property P≤0.4(aUb).
This property is violated in this model since there exists a scheduler that induces a set of diagnostic
paths that satisfy formula aUb and their probability mass greater than 0.4. We have the following
diagnostic paths: σ1 = s0

α0→ s2
α2→ s3, σ2 = s0

α0→ s4
α4→ s3, σ3 = s0

α0→ s2
α2→ s4

α4→ s3 and their
respective probabilities are 0.2, 0.15, 0.09. The set of three diagnostic paths is C = {σ1σ2σ3} , and
the probability is 0.44, which is greater than the given probability bound of 0.4. Thus, set C is a
counterexample of the property of model violation.
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Figure 3. A Markov decision process.

We argue that a counterexample in probabilistic model checking should satisfy the
following three conditions: (1) explain why the probabilistic system does not satisfy the
property; (2) represent violation of a class of requirement properties; (3) identify errors in
the system simply and specifically. A set X of diagnostic paths can show the violation of a
property, but it contains too much redundancy information. Thus, we define the diagnostic
subgraph to represent a counterexample for MDP.

An MDP can be regarded as a weighted directed graph where the vertices of graph
represent states of MDP and the edges of graph represent transitions of MDP. Thus, the
transition probability between states in the MDP can be converted into the weight between
the vertices in the graph.

Definition 5 (Subgraph of MDP). Let G = (V, E, W) be a weighted digraph generated by an
MDP M = (S, sinit, A, P, L); a subgraph of M is G′ =

(
V
′
, E
′
, W ′

)
, where G’ is a part of G with

V
′ ⊆ V, E

′ ⊆ E, W ′ ⊆W such that
{
(s, s′) ⊆ E

′
∣∣∣∀s, s

′ ⊆ V
′

,
(

s, s
′
)
⊆ E

}
.

The subgraph of MDP not only contains states and transitions of paths, but also all
transitions connecting them in the original MDP.

Definition 6 (Diagnostic subgraph). Let M = (S, sinit, A, P, L) be an MDP; the counterexample
for s 2D P≤p(φ) (s 2D P<p(φ)) is a diagnostic subgraph such that PrD

s (φ) > p (s 2D P≥p(φ))
does not hold.

Theorem 1. For MDPs, a Counterexample represented by the diagnostic sub-graph, has less than
or equal to the state space of the counterexample represented by diagnostic paths.

Proof of Theorem 1. If a counterexample for MDP is one diagnostic path, it also can be
represented with a diagnostic subgraph with this diagnostic path. If a counterexample for
MDP is a measurable subset X = {X1, X2 . . . Xn,} ⊆ {π ∈ FinitePathsd(s)|π �D φ} such
that PrD

s (φ) > p (s 2D P≥p(φ)), each path in the measurable subset can be derived from a
diagnostic loop path. We can get that the probability of a diagnostic loop path is greater than
or equal to the diagnostic path. Thus, the state space of the counterexample represented
by a diagnostic subgraph is less than or equal to the counterexample represented by the
diagnostic paths. �
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3.2. Genetic Algorithm with Heuristic (HGA)

The most critical issue of counterexample generation with HGA is how to code paths
in the weighted directed graph for MDP as a chromosome. In order to represent all possible
paths in the graph, we adopt a priority-based coding method. Then, we use heuristic
crossover operators to generate better individuals than the parents, which can improve the
search speed. We calculate the shortest path by the fitness function.

3.2.1. Coding the Path

According to [34,35], there are two main coding schemas of the Genetic algorithm for
solving the shortest path, namely, direct and indirect coding. Direct coding is based on
the identification number of the node. The disadvantage of this coding is that an invalid
path is generated because the random sequence of node identification numbers may not
correspond to a valid path. Therefore, direct coding is not a good choice. We choose
priority-based indirect coding, which is used in [35,36].

Indirect coding has significant advantages in generating finite paths compared to
direct coding schemes. The indirect coding scheme used in the Genetic algorithm is shown
in Figure 4. The initial node identification number appears directly on the path; it is
different from the path that uses the instruction information about forming the path node.
The guidance information is the priority of each node in a weighted directed graph. In the
initialization phase, the priorities are randomly distributed. The path starting from the
initial node and terminating at the target node is generated by a sequential node attach
procedure. In each step of the path construction, if there are several successor nodes to
consider, then the node with the highest path priority is selected. Repeat the above process
until reaching the target node.
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3.2.2. Fitness Function

The path quality is measured by the fitness function. In order to make the counterex-
ample as small as possible, the goal of the fitness function is to minimize the search for the
candidate path. The fitness function is described as follows:

f = (∑
e∈C

ω(e))−1 (2)



Micromachines 2021, 12, 1059 10 of 19

where C is the path set in the graph, that is, each chromosome in the Genetic algorithm. e is
an edge of path C, and ω(e) is the weight of the edge.

The construction process of diagnostic paths is selecting individuals with higher fitness
from the current population and eliminating individuals with lower fitness. Assuming that
the population size is N and fitness of the ith chromosome is pi, then the probability of
which the ith chromosome is selected is

pi =
fi

∑N
i=1 fi

(3)

3.2.3. Heuristic Crossover Operator

The crossover operation replaces the reorganization of the partial structure of two
parent individuals to generate a new individual. This paper uses a heuristic crossover
approach. For the cross of individuals c1 and c2, we firstly generate a cross break-point K
randomly, then copy the Kth to Nth gene string c11 in c1 to the back of c2 and delete the
same gene in c2 as in c11; the same process is performed to c2, the Kth to Nth gene string
c22 of c2 is copied to the back of c1, and the same gene in c11 as in gene string c22 is deleted.
This produces two legal intermediate individuals c3, c4 then selects two individuals with
high fitness as crossover offspring from c1, c2, c3, c4 and puts the selected descendants into
the mating pool for the next crossover.

3.2.4. Mutation Operator

The mutation operation is to change the gene values of certain gene spots on chro-
mosome individuals in the population. Its purpose is to enable Genetic algorithms to
have local random search capabilities and maintain group diversity. Suppose we perform
mutation operations on individual A: [s a1 a2 a3 a4 a5 t]; select a gene block Y: [a2 a3 a4 a5]
on A first, and then randomly generate a path X: [a2 R a5] from a2 to a5 in graph, where
R represents all genes on the path X, i.e., diagnostic paths. Then, individual A after the
mutation operation is [s a1 a2 R a5 t].

3.3. Generating Counterexample with HGA

The diagnostic paths are added in the set R, and we need to filter out the invalid paths
in R. We call the set of all diagnostic paths from R which are valid under d the maximum of
R. The goal is to provide a counterexample that contains only valid paths.

Definition 7 (Maximum of R). Let d be a maximizing scheduler of R, and the set of all diagnostic
paths which are valid under d is called a maximum of R.

If R is a counterexample, then each maximum of R only contains the valid paths. Now,
we need to compute a maximum X of R and to compute its probability Prmax(X). To this
end, we define the compatible paths as follows.

Definition 8 (Compatible paths set). A set of paths C is called compatible, if and only if there
exists a scheduler d such that all paths in C are valid under d.

We proposed this concept because each scheduler compatible subset X of R with
maximal probability is a maximum of R. For diagnostic paths, the first prefix after the
common prefix is decisive for scheduler compatibility. When a branch exists in a state, the
diagnostic path is not compatible. We can always define a scheduler that allows a set of
diagnostic paths to branch in an action. Therefore, the diagnostic path of the branch in
the action is compatible. Checking the scheduler compatibility can be done as follows. R
can be implemented as an AND/OR tree in order to check scheduler compatibility. Each
diagnostic path is stored in R by mapping its states and actions to nodes. The OR nodes
map to the state nodes, in which the scheduler makes a decision. The AND nodes map to
the probability decisions after an action has been chosen by the scheduler. For a searched
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diagnostic path σ = s0
α0→ . . .

αk−1→ sk, we interpret σ as an alternating sequence of OR and
AND nodes, i.e., Sσ = (s0, α0 . . . αk−1, sk). If R is empty, we add all nodes and edges in
diagnostic path σ directly to R. If R is not empty, determine whether the longest prefix of Sσ

is already included in R, which starts from root s0, i.e., whether the longest prefix is shared
by any path in Sσ and R. When the longest prefix is included in the tree, insert diagnostic
path σ into the tree. The remainder of diagnostic path σ becomes a new subtree, with the
node ending with the longest prefix as root. Then, assign a probability to each node of
this diagnostic path σ in a bottom-up manner. For AND root node in diagnostic path σ, its
probability value is the sum of the values of its child nodes. The value marked on the leaf is
the probability of the path from the root to it. The value marked in the internal AND node
is the sum of values of its child nodes, and the value of the OR node is the maximum value
of all child node values. Algorithm 2 illustrates the flows to a counterexample generation
for MDP with HGA.

Algorithm 2. Counterexample generation for MDP with HGA.

Step1: Initialize R and X as an empty set, respectively, that is, without edges and nodes.
Step2: Generate a diagnostic path σ by HGA in Section 3.2
Step3: Replace diagnostic path σ with the sequence Sσ = < s0, α0 . . . siαi > in the AND/OR tree
Step4: If R is empty, then directly add the nodes and edges in the σ and go to step 8.
Step5: Determine whether the longest prefix in Sσ already exists in R, starting from the initial
node s0.
Step6: Add the remainder of Sσ to the last node in the longest prefix.
Step7: Assign mark Mp to each node in R from the bottom up, where Mp is the probability of
each node
Step8: If a node n in Sσ is an AND node, then its probability value Mp is the sum of the
child-nodes’ value.
Step9: If a node n in Sσ is an OR node, then its probability value Mp is the maximum of the
child-nodes’ value.
Step10: If Prmax(X) > p holds, return the counterexample.
Step11: Go to Step2

Theorem 2. The Algorithm 2 will terminate after generating a counterexample.

Proof of Theorem 2. Assume that Algorithm 2 does not terminate, only an infinite coun-
terexample for s

∣∣ 6=D P≤p(φ) is generated, i.e., the counterexample consists of an infi-
nite path. Let C = {σ1, σ2 . . .} be an infinite counterexample; we have ∑∞

i=1 Pr(σi) =

lim
j→∞

∑
j
i=1 Pr(σi) > p, where ∑∞

i=1 Pr(σi) = L and ∑
j
i=1 Pr(σi) = aj. According to the

characteristics of the limit, this means that:

∀ε > 0. ∃N ∈ IN. ∀n ≥ N. |an−L| < ε (4)

Let 0 < ε < L− p. According to (3), for some n ≥ N, |an − L|< ε⇒|an − L|< L− p ;
but the finite set C′ = {σ1, σ2 . . . σn} is also a counterexample as Pr(C′) > p. This is a
contradiction. Therefore, the algorithm will terminate after generating a counterexample.
�

3.4. An Example

We consider the MDP as shown in Figure 3 and the property P≤0.5(aUb). The
AND/OR tree of it is shown in Figure 5. Searching the state space by HGA and gen-
erating the most probable diagnostic paths, then add it to the AND/OR tree, which is
the implementation of R. s2 is the AND node, the probability of which is the sum of its
child-nodes’ value, i.e., 0.35. s4 is the OR node, the probability of which is the maximum of
child-nodes’ value, i.e., 0.25. The diagnostic paths we are interested in are marked with
thick lines. The number identified next to each node is based on the probability calcu-
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lated in Algorithm 2, the probability of the root node is 0.6, which means the maximum
probability of identification is 0.6. Since 0.6 > 0.5, the maximum that was obtained is a
counterexample, as shown in Figure 5.
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4. Experimentation

We develop a prototype tool CX-HGA for counterexample generation with HGA,
based on PAT [7,16]. It is developed in the Java language with explicit-state data structures
(sparse matrices, bit-sets, etc.). MDPs are described with PAT language, and the probability
of the diagnostic subgraph is calculated by the PAT engine. All experiments are performed
on a machine with Intel Pentium CPU 3.2 GHz speed and 1 GB memory. In our algorithms,
population size is set to 100 and the evolution generation is 3000. Crossover probability
is 0.90 and mutation probability is 0.10. By some PRISM Benchmark cases, we compare
HGA with the XBF-based (XZ and XUZ) algorithm and Eppstein algorithm (Eppstein) for
counterexample generation, which are implemented in DIPRO [37]. We also compare HGA
and Genetic algorithm (GA) with directed coding. Note that DTMCs are a proper subset of
MDPs. Any Markov chain is an MDP in which, for any state s, A (s) is just a singleton set.
Thus, the experiments also include two DTMC cases for comparing with the existing works.
We select 4 cases for demonstrating the effectiveness of the proposed method, which are
either a typical MCPS or some important constituent protocols of MCPSs.

4.1. Dynamic Power Management

This case is the power dynamics management of the IBM disk drive [38,39]. It is
a typical MCPS, and can be used for various areas, e.g., multi-robot collaboration. Its
purpose is to minimize the power consumption while minimizing the impact on perfor-
mance. It is modeled as a DTMC in PAT with approximately 140,000 states and transitions.
We are interested in the event that is 100 or more requests getting lost within 400 mil-
liseconds. The time consumption of transition in DTMC is 0.5 milliseconds, and the step
number of property is 800. Therefore, the state formula corresponding to this event is(
true U ≤800lost = 100

)
. The probability calculated by PAT is 0.014725297, if the time-

bound property of P<0.014725297
(
true U≤800 lost = 100

)
is violated, which is a time-bound

property of DTMC. We generate the counterexample for it by HGA, GA, XZ, XUZ, and
Eppstein algorithms.

As shown in Figure 6, it is obvious that the Eppstein algorithm is almost parallel to the
y-axis for a counterexample probability close to zero. HGA, XZ, and XUZ can successfully
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provide counterexamples for all possible upper bounds with a reasonable computational
effort. HGA finds the first increment of the counterexample after exploring a smaller
fraction of the state space than XZ and XUZ. The Probability value of the first increment
which is generated by HGA is greater than 0.011, and the reason for this is that we use a
diagnostic subgraph to represent counterexample. After exploring about 2000 states and
transitions, all algorithms can implement the second increment of the counterexample,
and generate a counterexample after finding the second increment, because the total
probability value exceeds the given probability. In the process of finding a counterexample,
HGA explores fewer states and transitions than XZ and XUZ algorithms, except for the
range between 0.006 and 0.011. HGA reaches the probability bound within about 3 s and
consumes 250 KB memory. Meanwhile, GA, XZ, and XUZ algorithms reach the probability
bound within about 3 s and 300 KB. GA generates a counterexample exploring more states
and transitions, because it uses directed coding methods to generate many invalid paths
and crossover operators used by GA cannot generate better offspring.
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4.2. Synchronous Leader Election Protocol

This case is the synchronous leader election protocol [40,41]. It selects a unique leader
node from N identical network nodes of the MCPSs. At each round, every node chooses
a random number from {0, . . . , K} as its ID. A node with the maximum unique ID will
be elected as leader; otherwise, a new round begins between these nodes. The protocol
system is modeled in PAT as a DTMC with 12,400 states and 16,495 transitions. Here,
we set N and K as 4 and 8, respectively. This process will not stop until the leader is
elected. The probability of the formula (F <= (L ∗ (N + 1) “elected”)) is 0.95703125 by
PAT, where “elected” indicates that a node has been selected as the leader, and L is set to be
1. We generate a counterexample of property P≤0.95703125(F <= (L ∗ (N + 1) “elected”))
by HGA, GA, XZ, XUZ, and Eppstein algorithms.

As shown in Figure 7, we can see that the Eppstein and XUZ algorithms grow almost
parallel to the y-axis, so the probability of the counterexample is zero. HGA and XZ can
generate a counterexample for probability upper bound by reasonable computational
effort. The HGA finds the first increment after exploring about half of the entire state
space. However, the probability of the first increment of counterexample is less than 0.5.
After exploring all the states and transitions, the HGA and XZ algorithms can find the
second increment. HGA explores fewer states and transitions than XZ; and HGA finds the
first increment with consumption of about 150 s and 360 KB memory. The GA algorithm
consumes too much memory to find a counterexample, the reason being that direct coding
produces more invalid paths.
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4.3. Zeroconf Protocol

This case is a Zeroconf protocol [42]. It offers a distributed “plug-and-play” solution,
in which the address configuration is managed by an individual MCPSs device when it
is connected to the network. Each station has a single-message buffer and is cyclically
attended by the server. The buffer could store the messages that it wants to send; in such
cases, messages are not relevant after reconfiguring, and thus keeping these messages
can slow down the network and make hosts reconfigure when they do not need to. We
only consider version networks where the host does not do anything (No Reset) on these
messages.

It is modeled as an MDP in PAT. The number of abstract hosts is denoted by N, the
number of probes to send is denoted by K, and the probability of message loss is denoted
by a loss. In this experiment, N and loss are set to 1000 and 0.1, respectively. K is set to 2
or 4. We are interested in the probability that a host picks an IP address already in use. In
Table 1, “Time” and “Memory” represent the run time (in seconds) and memory (in KB).
We compare Eppstein, XUZ, GA, and HGA on the two k-value variants of the model, as
shown in Tables 2 and 3. When the searched state space is very big, Eppstein and XUZ
algorithms cannot get a counterexample. They are recorded as “Failed”, which denotes
out of memory. The time consumption of HGA is less than Eppstein, XUZ, and GA, at the
expense of very little memory, especially when the searched state and transitions are very
large.

Table 1. Model information of MDP in PAT.

K 2 4

States 77,279 276,781

Transitions 180,442 640,721

Time 24.868 77.430

Memory 3584.0 11,878.4
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Table 2. Run time of counterexample generation.

K Probability Eppstein XUZ GA HGA

2

0.01 19.076 17.161 16.105 15.176

0.04 169.06 165.090 156.223 105.103

0.08 909.082 801.214 601.31 520.282

0.1 2198.009 1996.071 1077.56 809.072

4

0.01 93.040 105.943 37.09 29.235

0.04 786.047 518.177 509.43 435.034

0.08 5963.085 4163.076 2607.38 1998.089

0.1 Failed Failed 5901.92 4076.92

Table 3. Memory consumption of counterexample generation.

K Probability Eppstein XUZ GA HGA

2

0.01 797.9 702.8 699.4 690.2

0.04 3798.4 3301.7 2863.5 2831.3

0.08 7802.2 7032.9 5051.2 4960.3

0.1 18,915.6 16,970.3 10,967.9 9818.9

4

0.01 7849.2 7649.3 7734.6 5782.34

0.04 37,851.7 37,091.8 15,736.6 9825.4

0.08 87,869.7 85,981.8 36,751.5 17,838.3

0.1 Failed Failed 99,302.2 48,804.2

4.4. Bounded Retransmission Protocol

BRP (bounded retransmission protocol) is a variant of the alternating bit protocol [43]
for the compositional MCPSs. It sends a file in several chunks, but allows only a bounded
number of retransmissions of each chunk. It is modeled as an MDP in PAT, where N
represents the number of blocks, and MAX represents the maximum number of retransmits
allowed for each block. In the experiment, MAX is set to 5 and the size of state space is
scaled by N. It is modeled as an MDP in PAT; we are interested in the probability that the
sender does not report a successful transmission. Model information is shown in Table 4,
and experimental results are shown in Tables 5 and 6, the fields of which have the same
meaning as Tables 1–3, respectively.

The non-deterministic analysis of MDP results in 137,313 transitions at N = 640 and
685,153 transitions at N = 3200. As can be seen from Table 4, the transitions in DTMC are
98% of that in MDP, which indicates that the MDP model is low uncertainty. Tables 5 and 6
list very low probabilities because these methods fail to provide counterexamples for large
probability boundaries in real time. This is caused by the very low probability of a single
diagnostic path being carried in this model, which means that many diagnostic paths must
be found and processed to increase the probability of counterexamples. The run time and
memory consumption of HGA performs best, especially for large probability bounds. HGA
has a greater advantage in memory consumption because more efficient paths are found
with a heuristic, and for large probability boundaries, the number of diagnostic paths
found is very large, so there is a great advantage in storing them in an AND/OR tree.
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Table 4. Model information of MDP in PAT.

N 640 3200

States 103,962 518,682

Transitions 139,888 697,968

Time 347.055 5023.233

Memory 4403.2 20,992.0

Table 5. Run time of counterexample generation.

N Probability Eppstein XUZ GA HGA

640

0.01 132.721 120.835 111.443 109.234

0.04 633.893 626.542 496.856 409.764

0.08 5328.984 4996.132 1975.362 1153.762

0.10 Failed Failed 4206.716 2043.571

3200

0.005 1402.754 1603.239 1085.234 987.365

0.008 5405.326 5564.271 2354.331 1801.259

0.016 Failed Failed 5979.845 2969.267

0.02 Failed Failed Failed 8597.813

Table 6. Memory consumption of counterexample generation.

N Probability Eppstein XUZ GA HGA

640

0.01 13,009.5 13,447.4 12,950.1 12,908.3

0.04 23,768.1 24,647.8 23,840.4 21,987.2

0.08 514,153.4 528,356.3 49,453.2 77,623.2

0.10 Failed Failed Failed 893,615.8

3200

0.005 549,063.4 43,252.3 30,432.2 29,987.5

0.008 793,109.2 797,602.6 618,023.1 50,568.2

0.016 Failed Failed 896,581.1 93,298.4

0.02 Failed Failed Failed 897,536.8

4.5. Analysis

Compared with the existing works, we can see that HGA can generate a counterexam-
ple effectively for all 4 cases, even if the Eppstein algorithm, XUZ algorithm, and Genetic
algorithm cannot get the counterexample for large state space of MCPSs, which are noted
as “failed” in the corresponding tables. The bigger the state space of MCPSs, the more the
effectiveness of our method is apparent, compared with the related works. This is rooted
in the advantages of HGA: firstly, under the action of the genetic operator, HGA has a
strong search ability, which can find the global optimal solution of the counterexample
with a large probability; secondly, inherent in the parallelism of HGA, it can effectively
deal with the large state space of the MCPSs model MDP. Compared with GA, HGA also
performs better in counterexample generation for MDP. It is because that we adopt the
indirect path coding in HGA to extend the search range of state space, and the heuristic
crossover operator to generate more effective diagnostic paths.

5. Conclusions

We propose an HGA-based counterexample generation for PCTL probabilistic model
checking MCPSs with nondeterministic and discrete-time stochastic behaviors, i.e., MDP.
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As far as we know, it is the first counterexample generation method that employs the
Genetic algorithm to search the diagnostic subgraph of MDP. We encode paths into chro-
mosomes to generate more efficient paths through priority-based indirect coding. The
heuristic crossover operator guarantees that a number of populations are excellent indi-
viduals, which helps to improve the average value of the population and speed up the
convergence. We use the diagnostic subgraph to represent the counterexample, which is
more compact. Experimental results show that the time and memory consumption are less
than existing works. In the future, we will continue to optimize HGA to generate coun-
terexamples for MCPSs against requirements in PCTL* which is a super set of PCTL. At the
same time, we would like to extend HGA to generate counterexamples for MCPSs models
with continuous-time or hybrid-time stochastic behaviors, such as CTMDPs (Continuous-
time Markov Decision Processes), PHA (Probabilistic Hybrid Automata), against CSL
(Continuous-time Stochastic Logic) stochastic communication logics [44,45].
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Probabilistic Computation Tree Logic PCTL
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Probabilistic Timed Computation Tree Logic PTCTL
Bounded Model Checking BMC
Best-Frist BF
Genetic Algorithm GA
Heuristic Genetic Algorithm HGA
Bounded Retransmission Protocol BRP
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