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Abstract
Background Studies have shown that losartan reduces serum uric acid in adults, unlike angiotensin-converting enzyme inhibi-
tors. A previous study demonstrated that losartan and enalapril had comparable effects on proteinuria in children.
Methods We conducted a post hoc analysis of results from a prospective trial in which the proteinuria-reducing effects of losartan
and enalapril were compared. We have now evaluated (a) the effects of these medications on SUA in 248 children with
proteinuria and (b) the correlation between changes in SUA and eGFR.
Results SUA levels after 36 months were found to be increased when compared to baseline in both losartan and enalapril groups.
The mean change in SUA from baseline was significantly different at 12 months between 23 hypertensive patients randomised to
losartan (3.69% decrease [95%CI 11.31%, 3.93%]) and 24 randomised to enalapril (12.57% increase [95%CI 3.72%, 21.41%]),
p = 0.007. This significant difference remained after 24, 30 and 36 months but was observed in the entire group of 248 patients
only at 12 months. There was a statistically significant negative correlation between changes in SUA and changes in eGFR at
each time point over 36 months.
Conclusions Losartan may have long-term beneficial effects on SUA and eGFR in children with proteinuria.
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Introduction

Hyperuricemia (HU) has long been associated with hyperten-
sion, diabetes, cardiovascular and kidney disease in adults [1,
2]. Increased serum uric acid (SUA) levels are common in
patients with chronic kidney disease (CKD) due to declining
glomerular filtration rate (GFR) and subsequent uric acid re-
tention. However, in recent years, it has been reported that HU
is also a contributing factor for both the development [3–7]
and progression [8, 9] of CKD in adults, although some stud-
ies have found that this may not be true in patients with GFR

values under 45 ml/min/1.73 m2 (i.e., CKD stages 3b and 4)
[10, 11]. Although most of the studies have been conducted in
adults, similar conclusions have also been reported recently in
children [12–14]. The association of HUwith accelerated pro-
gression of kidney insufficiency appears to be especially well
documented in adult patients with IgA nephropathy [15–18].

Renewed interest in uric acid comes at a time when the
rising prevalence of CKD necessitates the identification of
early detection markers and strategies to delay or prevent pro-
gression to stage 5 CKD. The mechanisms responsible for
progressive CKD are not fully understood; however, hyper-
tension and proteinuria have been consistent candidates and
pharmacologic interventions using ACEi and/or ARBs, with
or without diuretics or low-sodium diets, have resulted in im-
proved kidney outcomes in adults [19–24] and in children and
adolescents with CKD [25–29]. Unfortunately, some of these
treatment regimens are associated with electrolyte abnormali-
ties, including HU. This has led to many investigators evalu-
ating medications that reduce uric acid production [30–40] or
increase excretion [40–49].
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Of interest in this report is the uricosuric effect of losartan
in children and adolescents who have CKD. Studies have
demonstrated that whereas losartan lowers SUA in adults, this
is not observed with other ARBs [43, 47] or ACE inhibitors,
but there are no comparable paediatric studies. In order to
address this issue, we performed a post hoc analysis of data
obtained in a multicentre, prospective, randomised controlled
trial (RCT) of children with persistent proteinuria in which it
was shown that losartan and enalapril exhibited comparable
long-term efficacy and tolerability in normotensive and hyper-
tensive children with CKD of multiple aetiologies [28]. The
post hoc analysis reported herein was conducted in 248 of the
patients in this previous report. The goal was to determine if
losartan and enalapril are associated with different effects on
SUA levels in these patients, and to evaluate whether such
changes in SUA correlate with changes in estimated GFR
(eGFR).

Methods

Trial design

The initial study protocol that forms the background for this
report (Merck Sharp & Dohme Corp. Losartan Protocol 326
NCT00568178) has been reported previously [27]. In the orig-
inal trial, 306 children and adolescents < 18 years of age, with
urine protein/creatinine ratios (UPCR) ≥ 0.3 (g/g), were en-
rolled in 50 participating centres. Normotensive (NT) patients
were randomised to receive losartan (0.7–1.4 mg/kg/day) vs.
placebo, whereas hypertensive (HT) patients received the
same dose of losartan vs. amlodipine (0.1–0.2 mg/kg/day).
The primary endpoint in this initial study was the change in
UPCR from the time of study entry to the end of 12 weeks of
therapy [27].

At the end of their involvement in this 12-week trial, the
patients were enrolled in a subsequent long-term extension
study which examined the effects of losartan vs. enalapril in
268 of the initial cohort of patients. Patients again were
randomised 1:1, stratified by assigned treatment in the
double-blind RCT. This extension study was prespecified to
continue until 100 patients completed 3 years of follow-up.
The primary endpoints were changes from baseline, defined in
this post hoc trial as the values obtained at the end of the 12-
week double-blind study, in both UPCR and eGFR during up
to 3 years of treatment [28]. Full inclusion and exclusion
criteria for the initial trial were reported previously [27]. The
original study was conducted in accordance with the princi-
ples of Good Clinical Practice and approved by the relevant
ethics review committees [12].

During the long-term extension study, investigators sub-
mitted data regarding patient blood pressure, ongoing medi-
cations, growth and adverse events that were measured at

baseline, and every 6 months thereafter until the last study
visit in the extension phase. Laboratory values including se-
rum creatinine (SCr), serum uric (SUA) and serum cystatin C
(CysC) levels (determined in a central laboratory) were also
obtained at each visit.

Eligibility criteria for this post hoc study

All subjects with uric acid measurements included in the
Merck Sharp & Dohme Corp. Losartan Protocol 326 were
eligible for inclusion in this post hoc analysis, with the excep-
tion of those receiving calcineurin inhibitors, such as cyclo-
sporine A (CsA) and tacrolimus, since these medications are
known to increase SUA levels.

Outcome measures

The primary outcome measure was the change in SUA
from baseline (last value in the double-blind 12-week
RCT) to 6, 12, 18, 24, 30 and 36 months of treatment.
The secondary outcome measure was the change in SUA
in relation to kidney function as measured by a change in
eGFR. Height measurements were obtained at each time
point and eGFR was estimated using the formula detailed
by Zappitelli and colleagues: (507.76 × e0.003xheight)/
(CysC0.635 × SCr0.547 (μmol/L)) [50].

Statistical analysis

The primary endpoint was the change in SUA on the natural
logarithm scale from baseline (end of 12 weeks study) to each
time point which was analysed using a mixed model repeated
measure with time, time interaction by treatment (losartan/
enalapril), stratum factor 1 (normotensive/hypertensive) and
stratum factor 2 (prior treatment; losartan/amlodipine/place-
bo), gender and baseline log(SUA) as covariates and a random
effect for the patient. The structure used for covariance matrix
to represent correlation between outcomes at the different time
points was banded 4 which assumes no correlation between
outcomes with more than 4 time points apart. The treatment
effects at each time point were estimated from this model
along with associated 95% confidence intervals (CI).
Additionally, treatment by blood pressure (BP group status
(normotensive/hypertensive)) interaction terms was added to
allow direct estimation of the treatment effects in the two
subgroups and a Wald test of the relevant interaction term
was used to ascertain whether the treatment had a differential
effect according to baseline BP status. A significance level of
5% was considered and effect of multiple testing was in mind
when interpreting the results. Analyses were performed in
Stata C 13 (64-bit).
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Results

Patient population

Figure 1 summarises the study participant flow. A total of 306
participants were randomised in the initial 12-week RCT; 268
of these patients were re-randomised in the open-label exten-
sion phase, and data from 248 of these 268 patients were
analysed in this post hoc study. Three of the 20 patients who
were excluded were receiving calcineurin inhibitors and 17
had missing SUA values either at baseline or all 6–36months’
time points. Missing SUA values were not related to treat-
ment, previous treatment in the initial RCT or any particular
participant characteristic at any time point.

Table 1 displays the baseline characteristics of the 124
patients receiving losartan (mean dose 1.17 mg/kg/day) and
the 124 receiving enalapril (mean dose 0.26 mg/kg/day). Male
participants outnumbered females but otherwise, there were
no significant differences between the two treatment groups.
Baseline SUA levels correlated positively with age (p < 0.001)
and negatively with baseline eGFR values (p < 0.001) but
were not significantly correlated with gender.

Changes in SUA levels in response to losartan or
enalapril

Treatment effects when all patients were combined

When data from the 124 NT and 124 HT patients were com-
bined, SUA levels after 36 months were found to be increased
when compared to baseline in both losartan and enalapril-treated
participants, with the losartan patients showing a smaller in-
crease in SUA compared to the enalapril group. However, there

was no significant difference observed in change in SUA levels
between the losartan and enalapril groups except at the 12-month
time point (p = 0.018). In an additional analysis, adding glomer-
ular status did not alter the results substantially.

Different treatment effects observed in HT vs. NT patients

Despite there being no difference in SUA levels between the two
treatment groups, there were significant interactions between
treatment and BP groups at each time point from 12 months
onwards (p-values from Wald test: 0.48, 0.025, 0.015, 0.009,
0.021, 0.033). We therefore examined the SUA response to
losartan and enalapril in the twoBP groups separately. Themean
change in log SUA was significantly different between the
losartan and enalapril groups in HT participants at 12 months.
Losartan group: −3.69%decrease (95%CI−11.31%, 3.93%) vs.
enalapril group: 12.57% increase (95% CI 3.72%, 21.41%), p =
0.007(Table 2). This significant difference remained after 24, 30
and 36 months of treatment. This effect was not observed in NT
participants. Figure 2 shows the estimated marginal mean per-
centage change in SUA from the mixed effect model in (a) all
patients, (b) NT patients and (c) HT patients.

Serum uric acid and estimated glomerular filtration
rate

A mixed model repeated measure analysis with change in
log(SUA) as dependent variable and time and time interac-
tion by change in log(eGFR) as covariates showed a statis-
tically significant negative correlation between changes in
eGFR and changes in SUA at each time point over 36
months (all p < 0.001) (Fig. 3 and Table 3).

Fig. 1 Study participant flow
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Discussion

This post hoc analysis of an investigator-led multicentre, pro-
spective trial has demonstrated that children and adolescents
with proteinuria and HT have significantly greater increases in

SUA levels after receiving enalapril (n = 24; mean dose 0.26
mg/kg/day) when compared to patients receiving losartan (n =
23; mean dose 1.17 mg/kg/day) for up to 36 months.
Furthermore, the change in SUA levels was correlated with
change in eGFR. Unfortunately, it is not possible to conclude

Table 1 Comparison of patient
characteristics at baseline1 in the
losartan and enalapril groups

Characteristic Losartan

n = 124

Enalapril

n = 124

p-value

Gender, n (%) 0.04+

Female 44 (35.5%) 61 (49.2%)

Male 80 (64.5%) 63 (50.8%)

Age, median (interquartile) 10 (6.14) 10 (6.14) 0.70^

Race, n (%) 0.19+

Asian 20 (16.13%) 17 (13.71%)

Black 6 (4.84%) 2 (1.61%)

Multiracial 25 (20.16%) 40 (32.26%)

White 68 (54.84%) 61 (49.19%)

Other 5 (4.03%) 4 (3.23%)

Blood pressure group, n (%) 0.99+

Normotensive 101 (81.5%) 100 (80.6%)

Hypertensive 23 (18.5%) 24 (19.4%)

Prior ACEI/ARB use, n (%) 0.44+

No 59 (47.58%) 52 (41.94%)

Yes 65 (52.42%) 72 (58.06%)

Previous treatment in RCT, n (%) 0.98+

Amlodipine 10 (8.06%) 11 (8.9%)

Losartan 61 (49.2%) 62 (50.0%)

Placebo 53 (42.7%) 51 (41.1%)

eGFR at baseline1, mean (SD) ml/min/1.73m2 84.1 (37.4) 89.6 (40.1) 0.13*

SUA at baseline1, mean (SD) mg/dl 5.38 (1.77) 5.37 (1.87) 0.98*

Etiologies of proteinuria, n (%) 0.7+

Glomerular 60 (48.39 %) 57 (45.97 %)

Reflux nephropathy 11 (8.87 %) 12 (9.68 %)

Hemolytic uremic syndrome 11 (8.87 %) 17 (13.71 %)

Alport syndrome 15 (12.1 %) 14 (11.29 %)

Hypoplasia/dysplasia/aplasia 6 (4.84 %) 7 (5.65 %)

Obstruction 3 (2.42 %) 1 (0.81 %)

Other 6 (4.84 %) 2 (1.61 %)

Unknown 12 (9.68 %) 14 (11.29 %)

Abbreviations: ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin II type I receptor blocker;
eGFR, estimated glomerular filtration rate
+ Chi-squared test

^Mann Whitney U-test

*t-test
1 baseline = results obtained at the end of the 12-week RCT
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that the changes in SUA levels caused the changes in GFR since
it is also known that changes in GFR can result in altered excre-
tion rates of uric acid. The study did not demonstrate a signifi-
cant relationship between treatment modality and SUA levels in
NT patients with proteinuria.

The role of HU as a risk factor for CKD progression re-
mains controversial, particularly since it is ubiquitous in CKD
patients. However, studies from many countries have now
shown that elevated SUA levels predict the development of
CKD in subjects with normal kidney function [3–7]. Some
reports have also demonstrated that higher SUA levels predict
more rapid progression in patients with established CKD [6],
but these findings have been contradicted by other studies
[10]. One possibility for this apparent discrepancy is the var-
iable CKD stages that are present in the patient groups that
have been studied. For example, in the study reported by
Srivastava et al., higher levels of SUA were independently
associated with risk of kidney failure in patients with eGFR
> 45ml/min/1.73 m2 but not in those with eGFR < 30ml/min/
1.73 m2 [11]. Patients with eGFR 30–44 ml/min/1.73 m2 had
an intermediate risk that did not reach statistical significance.

Evaluating whether HU is a biomarker or risk factor for
CKD has been investigated using therapies that directly de-
crease the production of SUA, such as allopurinol and
febuxostat. Although the SUA-lowering effect conferred by
allopurinol slowed kidney disease progression in some HU
subjects with CKD [18, 19], its effectiveness in slowing pro-
gression in patients with significant kidney impairment (CKD
stages 3–4) has not been upheld in a recent placebo-controlled
prospective clinical trial reported by Badve et al for the CKD-
FIX Study Group [39]. The frequency of serious side effects
was similar in the 2 groups (allopurinol 46%, controls 44%).
A similar situation exists with febuxostat which appears to

have a more profound effect on SUA levels than allopurinol
[36–38]. Most small trials using febuxostat have shown prom-
ising results [36], but this was not the case with a recent large
controlled trial reported by Kimura et al for the FEATHER
Study Investigators [34]. It is interesting to note, however, that
patients in this trial with CKD stage 3a (eGFR was approxi-
mately 52 ml/min/1.73 m2) appeared to do better than patients
with CKD stages 3b or 4 (approximate eGFR 37 ml/min/1.73
m2). It remains to be seen whether there is a “point of no
return”when looking at the impact of uric acid-lowering drugs
on eGFR. The patients in our study had well-preserved GFR
levels and hence would fall within the “good responder” cat-
egory if the hypothesis described above is correct.

Mechanisms responsible for the purported nephrotoxic effects
of uric acid have been examined in recent years. Some studies
have shown that increased SUA levels result in increased RAS
activity, kidney inflammation and impairment of renal autoregu-
lation ultimately leading to glomerular hypertension and thus
contributing to the initiation and development of kidney disease
[51, 52]. Our data did not show an effect of glomerular status on
change in SUA between the two groups. Experimental models
have provided evidence for the mechanisms behind uric acid-
induced damage. Raising uric acid levels in animal models and
cell culture systems resulted in an increase in oxidative stress and
endothelial dysfunction leading to systemic and glomerular hy-
pertension and contributing to the progression of kidney disease.

The hypouricemic action of losartan is attributed to an in-
hibition of the human urate transporter 1 (URAT1) and
resulting decline in urate reabsorption by the proximal tubule,
the primary site of uric acid secretion and reabsorption. A
recent study by Sun et al has shown how uricosuric responses
may vary among patients as a result ofURAT1 gene polymor-
phisms [53].

Table 2 Treatment effect of losartan and enalapril from mixed model repeated measure in hypertensive patients

Time Losartan,*
percentage change (95% CI)

Enalapril, *
percentage change
(95% CI)

Treatment effect, ^
95% CI,
p-value

6 months −0.87 (−7.40, 5.66)
n = 23

6.68 (0.31, 13.68)
n = 24

0.073 (−0.0203, 0.1673)
p = 0.125

12 months −3.69 (−11.31, 3.93)
n = 21

12.57 (3.72, 21.41)
n = 21

0.16 (0.0429, 0.269)
p = 0.007

18 months −1.79 (−9.54, 5.96)
n = 20

17.87 (8.78, 26.94)
n = 21

0.18 (0.0705, 0.29)
p = 0.001

24 months −4.09 (−12.16, 3.97)
n = 20

17.04 (7.01, 27.07)
n = 19

0.19 (0.0773, 0.3210)
p = 0.001

30 months −0.67 (−8.25, 6.90)
n = 20

17.04 (7.79, 26.0)
n = 17

0.16 (0.0525, 0.275)
p = 0.004

36 months 9.08 (0.83, 17.34)
n = 12

36.12 (25.48, 46.75)
n = 11

0.22 (0.1116, 0.3311)
p = 0.0001

*Marginal mean percentage change (obtained after antilog transformation of the estimations) in SUA level in each treatment group in hypertensive
patients

^Treatment effect from mixed effect repeated measure model (exact coefficients)
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The 3-year longitudinal follow-up of children and adoles-
cents with a wide range of kidney disorders is a strength of our
study, but a potential limitation is the lack of body mass index
z-score data and comparatively small number of hypertensive
patients (n = 47). The post hoc analysis of RCT data was not
designed to investigate the effects of changes in SUA and
kidney outcomes, and that is a further limitation.
Nonetheless, the smaller increase in SUA levels seen with

losartan in HT children and adolescents when compared to
the greater increase in SUA associated with enalapril provides
new and important data to support the use of losartan in chil-
dren with CKD.

A further limitation is the lack of information regarding
patients’ pubertal status over the study duration. The median
age at enrolment was 10 years and despite no difference in
baseline SUA between the two groups, it is plausible that the
difference in gender ratio between the losartan (44/80) and
enalapril (61/63) groupsmay have affected the final SUA after
36 months.

Our study did not evaluate whether the increase in SUA
levels seen with enalapril would also be found with other
ARBs or ACE inhibitors. It should also be noted that the
comparable reduction in proteinuria we have found in short-
term studies comparing lisinopril with losartan, or in long-
term studies comparing enalapril with losartan, would not
necessarily be duplicated with other ACE inhibitors, such as
ramipril, the ACE inhibitor used so successfully by the
ESCAPE Study Group [26, 29]. However, our findings sug-
gest that RCTs comparing the effects of losartan and ACE
inhibitors on SUA levels and kidney progression in children
and adolescents with CKD should be considered further. This
may be of special importance in situations where these med-
ications are prescribed in association with diuretics or
lowsodium diets. It will also be relevant to include a signifi-
cant number of children without proteinuria in future trials
since it is important to determine if losartan’s beneficial im-
pact on SUA levels and GFR are independent of the effects on
proteinuria. In addition, the inclusion of children with varying
stages of CKD will be important in order to determine if the
baseline level of GFR is an important determinant of the po-
tential benefit of losartan on preservation, or even improve-
ment in GFR levels.

�Fig. 2 Percentage change in SUA over 36-month follow-up obtained
after antilog transformation of the estimations from mixed-effect model
with time interaction by treatment (losartan/enalapril), gender, stratum
factor 1 (normotensive/hypertensive), stratum factor 2 (treatment at the
first stage of study; losartan/amlodipine/placebo) and time as covariate, in
a all patients, b normotensive patients and c hypertensive patients

Table 3 Coefficients of log(eGFR) and their 95% CI frommixed effect
repeated measure model of change in log(SUA) against change in
log(eGFR)

Time Coefficient of change in log(eGFR) (95% CI)
p-value

6 months −0.36 (−0.45, −0.26)
< 0.001

12 months −0.28 (−0.36, −0.21)
< 0.001

18 months −0.32 (−0.39, −0.24)
< 0.001

24 months −0.26 (−0.33, −0.19)
< 0.001

30 months −0.18 (−0.25, −0.11)
< 0.001

36 months −0.25 (−0.34, −0.17)
< 0.001

Fig. 3 Change in log(SUA) vs.
change in log(eGFR)
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