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Abstract: Adenosine deaminase acting on RNA 1 (ADAR1) is an enzyme responsible for double-
stranded RNA (dsRNA)-specific adenosine-to-inosine RNA editing, which is estimated to occur
at over 100 million sites in humans. ADAR1 is composed of two isoforms transcribed from differ-
ent promoters: p150 and N-terminal truncated p110. Deletion of ADAR1 p150 in mice activates
melanoma differentiation-associated protein 5 (MDA5)-sensing pathway, which recognizes endoge-
nous unedited RNA as non-self. In contrast, we have recently demonstrated that ADAR1 p110-
mediated RNA editing does not contribute to this function, implying that a unique Z-DNA/RNA-
binding domain α (Zα) in the N terminus of ADAR1 p150 provides specific RNA editing, which
is critical for preventing MDA5 activation. In addition, a mutation in the Zα domain is identified
in patients with Aicardi–Goutières syndrome (AGS), an inherited encephalopathy characterized by
overproduction of type I interferon. Accordingly, we and other groups have recently demonstrated
that Adar1 Zα-mutated mice show MDA5-dependent type I interferon responses. Furthermore,
one such mutant mouse carrying a W197A point mutation in the Zα domain, which inhibits Z-
RNA binding, manifests AGS-like encephalopathy. These findings collectively suggest that Z-RNA
binding by ADAR1 p150 is essential for proper RNA editing at certain sites, preventing aberrant
MDA5 activation.
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1. Introduction

Multiple lines of evidence have demonstrated that RNA modifications play a variety
of roles in regulating the fate of each transcript, including recoding, splicing, mRNA decay,
and translation. In addition, with the implementation of mRNA vaccines, the crucial roles
of RNA modifications in distinguishing self and non-self RNAs have been highlighted [1].
Inosine is a modified nucleotide abundantly present in mRNA and is converted from
adenosine via a deamination reaction, which is termed RNA editing [2–4] (Figure 1). This
type of RNA editing is catalyzed by two active adenosine deaminases acting on the RNAs
(ADARs) in mammals—ADAR1 and ADAR2 (Figure 2). Given that ADAR1 and ADAR2
commonly contain double-stranded RNA (dsRNA)-binding domains (dsRBDs), as well as
a C-terminal deaminase domain, inosine is inserted into the dsRNA structure. Although it
is extremely rare, inosine is found in certain coding regions, which form a dsRNA structure
with the adjacent intron or within a single exon [5–9]. RNA editing in these coding regions
can affect the amino acid sequence, altering the physiological function of the resultant
protein, given that inosine is recognized as if it were guanosine by translational machinery.
One such example is the Q/R site of Gria2, which encodes the GluA2 subunit of α-Amino-
3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) type glutamate receptors. AMPA
receptors are homo- or hetero-oligomeric assemblies composed of four subunits, GluA1,
GluA2, GluA3, and GluA4, in various combinations. Among these subunits, only Gria2 is
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edited solely by ADAR2 at the Q/R site almost completely in neurons, substituting the
glutamine (Q) to the arginine (R) [6]. This modification affects the properties of the subunit,
in which edited GluA2-containing receptors have low Ca2+ conductance, whereas unedited
GluA2-containing receptors are Ca2+ permeable. However, most RNA-editing sites are
found in repetitive elements, especially in short interspersed elements (SINEs), located in
introns and 3′ untranslated regions (UTRs), given that two inverted repetitive elements
form a long dsRNA structure. Therefore, the number of RNA-editing sites is determined
by the abundance of repetitive elements [10–16]. In humans, at least 85% of precursor or
mature mRNAs presumably form a dsRNA structure, and therefore, it is estimated that
RNA editing occurs at more than 100 million sites, especially in Alu elements, the most
abundant SINEs in humans [10,17,18]. This number is much greater than that in mice
(~50 thousand sites), reflecting the volume of a repeat repertoire [15,16,19,20].

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 2 of 14 
 

 

Among these subunits, only Gria2 is edited solely by ADAR2 at the Q/R site almost com-
pletely in neurons, substituting the glutamine (Q) to the arginine (R) [6]. This modification 
affects the properties of the subunit, in which edited GluA2-containing receptors have 
low Ca2+ conductance, whereas unedited GluA2-containing receptors are Ca2+ permeable. 
However, most RNA-editing sites are found in repetitive elements, especially in short in-
terspersed elements (SINEs), located in introns and 3′ untranslated regions (UTRs), given 
that two inverted repetitive elements form a long dsRNA structure. Therefore, the number 
of RNA-editing sites is determined by the abundance of repetitive elements [10–16]. In 
humans, at least 85% of precursor or mature mRNAs presumably form a dsRNA struc-
ture, and therefore, it is estimated that RNA editing occurs at more than 100 million sites, 
especially in Alu elements, the most abundant SINEs in humans [10,17,18]. This number 
is much greater than that in mice (~50 thousand sites), reflecting the volume of a repeat 
repertoire [15,16,19,20]. 

 
Figure 1. Adenosine-to-inosine RNA editing. Adenosine deaminases acting on RNA (ADARs) con-
vert adenosine into inosine through a deamination reaction. 

 

Figure 2. Structural representation of active human ADARs. Both ADAR1 and ADAR2 comprise 
double-stranded (ds)RNA-binding domains (orange), a C-terminal deaminase domain (green), and 
a nuclear localization signal (NLS; shown in purple). Both ADAR1 p150 and p110 comprise Z-
DNA/RNA-binding domain β (Zβ; shown in light blue), which loses binding capacity to Z-
DNA/RNA. In contrast, ADAR1 p150-specific Zα (red) can bind to Z-DNA/RNA. A nuclear export 
signal (NES; shown in light brown) is present only in the p150 isoform, which is predominantly 
localized in the cytoplasm. Amino acid substitution resulting from point mutations in the ADAR1 
gene, identified in patients with Aicardi–Goutières syndrome (AGS), is also shown. Amino acid 
sequences of a part of Zα in human and mouse ADAR 150 are shown below. Critical residues for Z-
DNA/RNA binding and resides mutated in patients with AGS are shown in red. 

ADAR1 is expressed as two isoforms: longer p150 and short p110, which are tran-
scribed from the same genomic loci using different promoters and share Z-DNA/RNA-
binding domain β (Zβ), dsRBDs, and the deaminase domain [21] (Figure 2). In contrast to 
N-terminal-truncated ADAR1 p110, which is driven by a constitutive promoter, ADAR1 

ditions of the Creative Commons At-

tribution (CC BY) license (http://crea-

tivecommons.org/licenses/by/4.0/). 

Figure 1. Adenosine-to-inosine RNA editing. Adenosine deaminases acting on RNA (ADARs)
convert adenosine into inosine through a deamination reaction.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 2 of 14 
 

 

Among these subunits, only Gria2 is edited solely by ADAR2 at the Q/R site almost com-
pletely in neurons, substituting the glutamine (Q) to the arginine (R) [6]. This modification 
affects the properties of the subunit, in which edited GluA2-containing receptors have 
low Ca2+ conductance, whereas unedited GluA2-containing receptors are Ca2+ permeable. 
However, most RNA-editing sites are found in repetitive elements, especially in short in-
terspersed elements (SINEs), located in introns and 3′ untranslated regions (UTRs), given 
that two inverted repetitive elements form a long dsRNA structure. Therefore, the number 
of RNA-editing sites is determined by the abundance of repetitive elements [10–16]. In 
humans, at least 85% of precursor or mature mRNAs presumably form a dsRNA struc-
ture, and therefore, it is estimated that RNA editing occurs at more than 100 million sites, 
especially in Alu elements, the most abundant SINEs in humans [10,17,18]. This number 
is much greater than that in mice (~50 thousand sites), reflecting the volume of a repeat 
repertoire [15,16,19,20]. 

 
Figure 1. Adenosine-to-inosine RNA editing. Adenosine deaminases acting on RNA (ADARs) con-
vert adenosine into inosine through a deamination reaction. 

 

Figure 2. Structural representation of active human ADARs. Both ADAR1 and ADAR2 comprise 
double-stranded (ds)RNA-binding domains (orange), a C-terminal deaminase domain (green), and 
a nuclear localization signal (NLS; shown in purple). Both ADAR1 p150 and p110 comprise Z-
DNA/RNA-binding domain β (Zβ; shown in light blue), which loses binding capacity to Z-
DNA/RNA. In contrast, ADAR1 p150-specific Zα (red) can bind to Z-DNA/RNA. A nuclear export 
signal (NES; shown in light brown) is present only in the p150 isoform, which is predominantly 
localized in the cytoplasm. Amino acid substitution resulting from point mutations in the ADAR1 
gene, identified in patients with Aicardi–Goutières syndrome (AGS), is also shown. Amino acid 
sequences of a part of Zα in human and mouse ADAR 150 are shown below. Critical residues for Z-
DNA/RNA binding and resides mutated in patients with AGS are shown in red. 

ADAR1 is expressed as two isoforms: longer p150 and short p110, which are tran-
scribed from the same genomic loci using different promoters and share Z-DNA/RNA-
binding domain β (Zβ), dsRBDs, and the deaminase domain [21] (Figure 2). In contrast to 
N-terminal-truncated ADAR1 p110, which is driven by a constitutive promoter, ADAR1 

ditions of the Creative Commons At-

tribution (CC BY) license (http://crea-

tivecommons.org/licenses/by/4.0/). 

Figure 2. Structural representation of active human ADARs. Both ADAR1 and ADAR2 com-
prise double-stranded (ds)RNA-binding domains (orange), a C-terminal deaminase domain (green),
and a nuclear localization signal (NLS; shown in purple). Both ADAR1 p150 and p110 comprise
Z-DNA/RNA-binding domain β (Zβ; shown in light blue), which loses binding capacity to Z-
DNA/RNA. In contrast, ADAR1 p150-specific Zα (red) can bind to Z-DNA/RNA. A nuclear export
signal (NES; shown in light brown) is present only in the p150 isoform, which is predominantly
localized in the cytoplasm. Amino acid substitution resulting from point mutations in the ADAR1
gene, identified in patients with Aicardi–Goutières syndrome (AGS), is also shown. Amino acid
sequences of a part of Zα in human and mouse ADAR 150 are shown below. Critical residues for
Z-DNA/RNA binding and resides mutated in patients with AGS are shown in red.

ADAR1 is expressed as two isoforms: longer p150 and short p110, which are tran-
scribed from the same genomic loci using different promoters and share Z-DNA/RNA-
binding domain β (Zβ), dsRBDs, and the deaminase domain [21] (Figure 2). In contrast to
N-terminal-truncated ADAR1 p110, which is driven by a constitutive promoter, ADAR1
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p150 contains a unique Zα in the N terminus and is controlled under an interferon (IFN)-
inducible promoter [22,23]. Furthermore, ADAR1 p110 and ADAR2 are highly expressed in
the brain and are mainly localized in the nucleus, especially in the nucleolus [24–27]. In con-
trast, ADAR1 p150 is expressed at very low levels in the mouse brain but highly expressed
in lymphoid organs, such as the thymus and spleen [26,27]. In addition, ADAR1 p150
possesses a nuclear export signal (NES), which is partially overlapped with Zα (Figure 2).
Therefore, it predominantly localizes in the cytoplasm but might shuttle between the nu-
cleus and cytoplasm, especially under certain conditions, such as viral infections [21,28–30].
Adar2 knockout (KO) mice die up to 3 weeks after birth due to progressive seizures [31].
This is caused by an absence of recoding at the Q/R site of Gria2. Therefore, the expression
of edited Gria2 rescues the lethality of Adar2 KO mice [31,32]. In contrast, Adar1 KO mice
exhibit embryonic lethality at E11.5–12 with massive apoptosis and the excess expression
of type I IFN [33–35], suggesting that the biological significance of ADAR1-mediated RNA
editing is different from that of ADAR2. In addition, Adar1 p150-specific KO mice also
manifest embryonic lethality at E11–12 [36], suggesting the contribution of ADAR1 p150 to
normal development at early stages. However, many longstanding questions remain. For
instance, what is the biological significance of RNA editing at repetitive elements? Why do
Adar1 KO mice exhibit embryonic lethality with elevated expression of type I IFN? How do
functions differ between ADAR1 p110 and p150? What is the role of Zα, which is unique to
ADAR1 p150? We have obtained some, though not all, answers to these questions. In this
review, we introduce recent findings that offer crucial clues to such questions and discuss
what remains unsolved.

2. ADAR1-Mediated RNA Editing Is Essential to Avoid MDA5 Sensing of
Endogenous dsRNAs

Although the number is very limited, ADAR1 participates in RNA editing at coding
sites [5,16]. For instance, RNA editing at five sites of serotonin 5-HT2C receptor, which
are catalyzed by both ADAR1 and ADAR2, affects the efficacy of G protein coupling [7].
Consequently, the pattern of RNA editing regulates energy metabolism and mood in
mice [37–40]. The Q/R site of the kainite glutamate GluK2 subunit is also edited by both
ADAR1 and ADAR2, which regulates Ca2+ permeability and synaptic plasticity [5,41].
However, the majority of coding sites are edited by ADAR2, and therefore, ADAR1-
mediated protein recoding is not involved in embryonic lethality found in Adar1 KO
mice [16,42].

In contrast, one of the great findings regarding the biological significance of ADAR1-
mediated RNA editing is that embryonic lethality found in Adar1 KO mice is rescued by
concurrent deletion of either Ifih1-encoded melanoma differentiation-associated protein 5
(MDA5) or its downstream mitochondrial antiviral signaling protein (MAVS) [43,44]. In
addition, deletion of either MDA5 or MAVS also ameliorates the elevated expression of
IFN-stimulated genes (ISGs) found in Adar1 KO mice. MDA5 belongs to the retinoic acid-
inducible gene I (RIG-I)-like receptor (RLR) family, with RIG-I and LGP2 (Figure 3). LGP2
lacks caspase recruitment domains (CARDs), which are required for MAVS activation [45].
In contrast, MDA5 and RIG-I are cytosolic sensors for exogenous dsRNA and promote
transcription of ISGs through MAVS. MDA5 recognizes longer dsRNAs, whereas RIG-I
binds to dsRNAs containing the 5′ppp and blunt end [44,46–49]. Considering embryonic
lethality is not rescued by concurrent deletion of RIG-I, and endogenous repeat elements
can activate MDA5 [44,50], these findings indicate that ADAR1-mediated RNA editing
prevents aberrant MDA5 recognition of endogenous dsRNA as non-self. Nevertheless,
most Adar1/Mavs double KO (dKO) and Adar1/Ifih1 dKO mice die just after birth and
cannot survive beyond P10 [43,44]. In contrast, ~60% of Adar1 p150/Mavs dKO mice can
survive more than 20 days after birth [44]. Furthermore, although Adar1E861A/E861A mice
that express inactive ADAR1 with an E861A substitution in the deaminase domain exhibit
embryonic lethality at E13.5 with an excess expression of ISGs, Adar1E861A/E861A/Ifih1 KO
mice survive until adulthood [5,42,51,52]. These findings collectively suggest that both
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ADAR1 p110 and p150 might have functions other than RNA editing, which is especially
critical for postnatal early development.
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through interaction with the mitochondrial antiviral-signaling protein (MAVS), with a DExD/H-box
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are required for RNA binding. LGP2 lacks CARDs.

3. ADAR1 p110 Is Dispensable for Blocking MDA5-Sensing Pathway

In order to investigate the contribution of ADAR1 p110 to the MDA5-sensing pathway,
we created Adar1 p110-specific KO mice by deleting the constitutive promoter and ADAR1
p110-specific first exon [27]. This manipulation did not affect ADAR1 p150 expression. In
addition, ADAR1 p110 expression is not altered in cells derived from Adar1 p150-specific
KO mice [44]. These findings indicate that the expression of each ADAR1 isoform can
be maintained by each isoform-specific promoter. Notably, Adar1 p110-specific KO mice
show a high mortality rate during early postnatal days without an ISG signature [27].
This high mortality rate is not ameliorated by concurrent deletion of MDA5 but rescued
by expressing inactive ADAR1 (E861A). These findings indicate that although causative
abnormalities remain unspecified, ADAR1 p110 exerts RNA-editing-independent functions
that are essential for early postnatal development. In addition, the high mortality rate
found in Adar1 p110-specific KO mice explains, at least partly, the phenotypic differences
between Adar1/Mavs dKO and Adar1 p150/Mavs dKO mice, and between Adar1/Ifih1 dKO
and Adar1E861A/E861A/Ifih1 KO mice.

We further created Adar1 p110/Adar2 dKO mice, in which increased expression of ISGs
was not observed [27]. This is in contrast to the phenotypes found in Adar1 p150-specific
KO mice, in which MDA5 is aberrantly activated [44]. Furthermore, the number of RNA-
editing sites and editing frequency, especially in intronic regions, are dramatically reduced
in Adar1 p110/Adar2 dKO mice. In particular, substantial intronic editing is not detected
in the brains of these mutant mice. Such findings indicate that RNA editing in intronic
regions, which is catalyzed by nuclear ADAR1 p110 and ADAR2, is dispensable to prevent
MDA5 activation. In contrast, although the number is fewer than 40 sites, RNA editing is
observed in the 3′UTR of mRNA in the brains of Adar1 p110/Adar2 dKO mice. These sites
are definitely catalyzed by cytoplasmic ADAR1 p150, although its expression is extremely
low [5,26,27,52]. Indeed, RNA editing in the 3′UTR of certain genes is well preserved in
the absence of ADAR1 p110 and ADAR2 [27]. Collectively, these lines of evidence suggest
the presence of ADAR1 p150-specific RNA-editing sites, which are essential to suppress
aberrant MDA5 sensing of endogenous dsRNAs.

4. Mutations in Zα and the Deaminase Domain Are Associated with
Aicardi–Goutières Syndrome

Aicardi–Goutières syndrome (AGS) is a rare congenital interferonopathy with en-
cephalopathy characterized by leukodystrophy and intracranial calcification, leading to
brain atrophy [53]. In addition, patients manifest inflammatory symptoms in various
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organs, including liver, lung, and skin, accompanied by the overproduction of type I IFN.
Symptom onset occurs during the perinatal stage, and most patients die within 10 years
after birth [53,54]. To date, seven causative genes have been identified, including ADAR1
(AGS type 6) and IFIH1 (AGS type 7) [53,55–57]. In cases of AGS type 7, gain-of-function
mutations make MDA5 more prone to be activated by reducing ligand specificity. In con-
trast, in cases of AGS type 6, most mutations are identified in the deaminase domain, which
likely reduces RNA-editing activity [43,55] (Figure 2). Notably, although homozygous
mutations have not been identified to date, a heterozygous point mutation exists at the
position of amino acids 173 and 193 in ADAR1 p150-specific Zα, which converts asparagine
173 to serine (N173S), and proline to alanine (P193A), respectively [55,58] (Figures 2 and 4).
These mutations are accompanied by another mutation in the deaminase domain or one
that leads to the loss of ADAR1 p150 expression. These findings suggest that Zα most
likely plays a pivotal role in ADAR1 p150-specific regulation of RNA editing.
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Z-DNA/RNA binding (N173 and Y177 in the α helix, and W195 in the β sheet) and residues mutated
in patients with AGS (N173 and P193) are shown in red.

5. Zα Contributes to ADAR1 p150-Mediated RNA Editing

How does ADAR1 p150 regulate its specific RNA editing? Given that Zβ, dsRBDs,
and the deaminase domain are shared between ADAR1 p110 and p150, differences between
the two include the intracellular localization and the presence of Zα in the N terminus
of the p150 isoform (Figure 2). Although ADAR1 p150 is predominantly localized in
the cytoplasm, it might shuttle between the nucleus and cytoplasm [21,28–30]. However,
substantial intronic editing is not detected in the brains of Adar1 p110/Adar2 dKO mice,
whereas RNA editing in the 3′UTR of certain mRNAs is preserved [27]. This finding
suggests that ADAR1 p150-mediated RNA editing is generally executed in the cytoplasm,
at least under normal conditions. In addition, ADAR1 p150 translocates into cytoplasmic
stress granules (SGs) under abnormal conditions, such as viral infection and IFN-induced
stress [60–64]. This translocation requires Zα and might sequester specific RNAs into SGs
to escape MDA5 sensing or achieve efficient RNA editing. However, this translocation is
not observed under normal conditions. Collectively, considering that ADAR1 p110 and
p150 harbor the same deaminase domain, and ADAR1 p110 meets target RNAs in the
nucleus prior to ADAR1 p150, the difference in intracellular localization cannot account for
all ADAR1 p150-specific regulation of RNA editing.

Zα of ADAR1 p150 was originally identified as the domain that binds to left-handed Z-
DNA composed of CG repeats [65–68]. However, ADAR1 p150 is an RNA-editing enzyme,
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predominantly localized in the cytoplasm. Therefore, although binding to Z-DNA may
play a biological function under certain conditions [69], it is reasonable to postulate that this
domain plays a role in RNA regulation. Indeed, Zα of ADAR1 p150 efficiently binds to Z-
RNA composed of CG repeats [59,70,71] (Figure 4). Additionally, although in vivo Z-RNA
sequences remain unknown, the addition of CG repeats to dsRNA increases ADAR1 p150-
mediated RNA editing in vitro, which suggests Z-RNA formation affects the efficiency of
RNA editing [72]. The periodic sequence composed of CG repeats in Z-RNA produces
a zigzag in the course of the line that links alternating phosphates and therefore needs
12.4 bp per turn, which is in contrast to ~11 bp per turn in right-handed A-RNA [73,74]. The
formation of Z-RNA requires higher energy, and therefore, this configuration is unstable in
the absence of Zα. Three conserved residues—N173 and tyrosine 177 (Y177) in the α helix,
and tryptophan 195 (W195) in the β sheet of Zα of human ADAR1 p150—play central roles
in the interaction with Z-DNA, which is also applicable to Z-RNA [59,75] (Figures 2 and 4).
In particular, compared with N173A and Y177A substitution, W195A substitution is the
most deleterious and results in the complete loses of binding to Z-DNA [76]. Therefore, we
compared RNA-editing activity between wild-type ADAR1 p150 (WT) and ADAR1 p150
(W197A) by expressing the corresponding gene in mouse Adar1/Adar2 dKO Raw 264.7 cells.
W197 in mouse ADAR1 p150 corresponds to W195 in the human equivalent (Figure 2).
Although cytoplasm-dominant localization and expression level are not affected by W197A
substitution, the RNA-editing activity of ADAR1 p150 (W197A) is significantly lower than
that of the wild-type at selective sites [77]. Furthermore, de Reuver et al. inserted Y177A
with/without N173A mutations into ADAR1 p150 in human HEK293 cells and compared
RNA-editing activity between wild-type ADAR1 p150 (WT) and Zα-mutated ADAR1 p150
after increasing the amount of ADAR1 p150 by the addition of IFN-α2 [78]. This analysis
demonstrates that although the number of RNA-editing sites, including ADAR1 p110-
and ADAR2-responsible sites, is not largely different, RNA editing in the 3′UTR seems
more affected than in other regions. In addition, Zα-mutated ADAR1 p150-expressing
HEK293 cells are more sensitive to the increased amount of MDA5 than wild-type cells [78].
Notably, the expression of dsRBD-mutated ADAR1 p150, in which Zα is intact, cannot edit
any sites in Adar1/Adar2 dKO Raw 264.7 cells, suggesting that the presence of Zα alone is
not sufficient to induce RNA editing [77]. Collectively, these findings indicate that Z-RNA
binding of ADAR1 p150 through the Zα domain is required for efficient RNA editing at
certain sites, at least in vitro.

6. Preventing Z-RNA Binding of ADAR1 p150 Induces AGS-Like Encephalopathy

To elucidate the biological significance of Z-RNA-binding to ADAR1 p150 in vivo,
various studies, analyzing mutant mice harboring single or double point mutation(s) in
Zα, have been reported [77–81]. Adar1 knock-in (KI) mice that harbor a P195A point
mutation, corresponding to human AGS-causative P193A mutation (Figure 2), show no
overt phenotypes [80,81]. However, Adar1P195A/- and Adar1P195A/p150− mice cannot survive
beyond 3 and 4 months, respectively, with abnormalities in the spleen, kidney, and liver, and
increased expression of ISGs, which is in contrast to the normal phenotypes of Adar1+/−

and Adar1 p150+/− mice [80]. These findings suggest that the P193A mutation most
likely affects the RNA-editing activity of ADAR1 p150 to some extent but not enough
to induce phenotypic abnormalities, which might explain the reason why homozygous
point mutations in Zα have not been identified in patients with AGS to date. In contrast,
Adar1 KI mice harboring N175A/Y179A point mutations exhibit increased expression
of ISGs in multiple organs, which lasts more than a year [78,79]. N175A/Y179A point
mutations correspond to an N173A/Y177A substitution in human ADAR1 p150, both of
which reduce Z-DNA-binding capacity in vitro [76] (Figures 2 and 4). However, although
only male Adar1N175A:Y179A/N175A:Y179A mice are leaner, these mutant mice survive beyond
a year without displaying specific abnormalities in certain organs, suggesting chronically
enhanced expression of ISGs is not sufficient to induce abnormal pathology [78,79]. Notably,
Adar1 N175A:Y179A/− mice cannot survive beyond postnatal day 1, which is more deleterious
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than found for Adar1P195A/− mice [78,80]. This difference most likely reflects the remaining
capacity of Z-RNA binding.

We created Adar1 KI mice harboring either W197A or N175A/W197A point muta-
tions, both of which result in a normal appearance at birth; however, such mice have
severe growth retardation, and therefore, half of the mutant mice die within 6 weeks
after birth [77]. The expression of ISGs is elevated in multiple organs, especially in the
brains of Adar1W197A/W197A mice. In addition, the numbers of thymocytes and splenocytes
were severely reduced and accompanied by atrophy of the thymus and spleen. Further-
more, differentiation into lineage marker (L)−/c-Kit (K)+/Sca-I (S)− (LKS−) hematopoietic
stem cells from LKS+ cells was impaired in the bone marrow of Adar1W197A/W197A mice,
as similarly found in Adar1 KO and Adar1E861A/E861A mice [34,51,77]. Brain atrophy with
white matter vacuolation is characteristically observed in Adar1W197A/W197A mice, which is
reminiscent of the encephalopathy found in patients with AGS. In addition, astrocytes and
microglia are aberrantly activated without infiltration of lymphocytes, which provides a
clue in elucidating mechanisms underlying the formation of leukodystrophy in patients
with AGS. It should be noted that such phenotypic abnormalities and enhanced expression
of ISGs are ameliorated by concurrent deletion of MDA5.

In Adar1N175A:Y179A/N175A:Y179A and Adar1W197A/W197A mice, the expression of ADAR1
p150, which is an ISG, is increased, leading to enhanced RNA editing at a subset of, but
not all, target sites [77,79]. In addition, ADAR1 p110 and ADAR2 are normally expressed,
which makes it difficult to understand the pattern of RNA editing in Zα-mutated Adar1
KI mice. However, the phenotypes of Adar1W197A/E861A mice are more deleterious than
those of Adar1W197A/W197A mice [77]. These findings suggest that reduced RNA editing
at certain sites, which cannot be ameliorated by increased expression of mutant ADAR1
p150, causes aberrant activation of the MDA5-sensing pathway in these Zα-mutated Adar1
KI mice [77–79] (Figure 5). Indeed, we found that some sites in the 3′UTR of Rnf168 and
2900026A02Rik show reduced RNA editing and do not respond to increased expression of
ADAR1 p150 (W197A) in the brains of Adar1W197A/W197A mice [77]. Therefore, these sites
most likely require Z-RNA binding of ADAR1 p150 through Zα to maintain the proper
RNA-editing level (Figure 5).
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Figure 5. Preventing MDA5 sensing of dsRNAs by ADAR1 p150-mediated RNA editing. ADAR1 p150 binds to Z-prone
sequences in dsRNAs through Zα, converting to Z-RNA and promoting adenosine (A)-to-inosine (I) RNA editing of
dsRNAs. ADAR1 p150-specific RNA editing is required for prevention of sensing unedited dsRNAs by MDA5, leading to
filament assembly and activating MAVS.

7. Downstream of MDA5-Sensing Pathway Contributes to Mutated ADAR1
p150-Driven Pathology

Phenotypic and pathological abnormalities found in Adar1P195A/p150− and Adar1W197A/W197A

mice are normalized by concurrent deletion of MDA5, which ameliorates the expression
level of ISGs [77,80]. In addition, early postnatal lethality found in Adar1 N175A:Y179A/−
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mice is rescued by concurrent deletion of MAVS [78]. These findings indicate that MDA5
is an initial sensor of unedited dsRNAs, which transmits signals to MAVS (Figure 5).
However, elucidating downstream of the MDA5/MAVS axis has been hampered so far,
given that concurrent deletion of STAT1, IFNα/β receptor subunit 1 (IFNAR1), IFNγ

receptor (IFNGR), STING, RIG-I encoded by Ddx58, IFN regulatory factor 3 (IRF3), and
protein kinase R (PKR) encoded by Eif2ak2 all fail to rescue embryonic lethality found in
Adar1 KO mice, which is caused by a mixture of RNA-editing-dependent and-independent
mechanisms [27,35,43,44,82,83]. In contrast, the expression of ADAR1 p110 is intact in
Adar1P195A/p150− mice. In addition, pathological abnormalities and elevated expression of
ISGs found in Adar1P195A/p150− mice are normalized by concurrent deletion of MDA5 [80],
which suggests that the RNA-editing-independent function of ADAR1 150 has a minimal
effect in these mutant mice if present. Therefore, Maurano et al. investigated downstream
of the MDA5/MAVS axis by crossing Adar1P195A/p150− mice with other mutant mice in
which candidate genes, such as Dhx58 (encoding LGP2), Ifnar1, Rnasel, and Eif2ak2, are
deleted [80]. Intriguingly, LGP2 deficiency completely rescued the abnormalities found
in Adar1P195A/p150− mice, including a high mortality rate and elevated expression of ISGs.
Although LGP2 lacks CARD, which is required for MAVS activation [45] (Figure 3), it
interacts with MDA5, facilitating MDA5 fiber assembly on dsRNAs [84–86]. Therefore,
LGP2 likely plays a supportive role in MDA5 sensing of unedited dsRNAs and transmit-
ting signals to MAVS, which needs further investigation. Concurrent deletion of IFNAR1
extends survival of Adar1 KO embryos by 3–4 days and partially ameliorates the enhanced
expression of ISGs [43]. Therefore, as expected, the absence of the type I IFN receptor also
completely rescues the abnormalities found in Adar1P195A/p150− mice [80]. These findings
suggest that the type I IFN produced is downstream of MDA5 activation in a subset of
cells, and is secreted to affect a much wider range of cells.

Oligoadenylate synthetase (OAS) proteins produce 2′,5′-oligoadenylate upon recogni-
tion of dsRNAs, which activates RNase L and eventually induces translational inhibition
and apoptosis [87,88]. The lethal phenotype of ADAR1-deficient A549 cells is rescued by
concurrent deletion of RNase L [89], which suggests the OAS-RNase L pathway as being
downstream of the MDA5-sensing pathway or an alternative one. In addition, PKR is
induced by IFN and activated upon recognition of dsRNAs, inhibiting translation and
inducing the expression of genes associated with the integrated stress response. In normal
and cancer cells, ADAR1 deficiency activates the PKR pathway, leading to translational
shutdown and cell death or growth arrest [90–94]. However, the relationship between
MDA5 and PKR pathways has not been clear by using cell culture models. Maurano et al.
reported that RNase L deficiency cannot rescue the abnormalities found in Adar1P195A/p150−

mice, indicating that the OAS–RNase L pathway is not likely involved in the sensing of
unedited dsRNAs in vivo. In contrast, PKR deficiency completely rescues mortality and
restores the weight loss found in Adar1P195A/p150− mice, although the expression of ISGs
remains elevated [80]. These findings indicate that the PKR pathway that contributes to
the formation of an abnormal pathology is downstream of the MDA5-sensing pathway. It
should be noted that the phenotypes of Adar1W197A/W197A and Adar1W197A/E861A mice are
severer than those found in Adar1P195A/p150− mice [77,80]. This difference is attributable
to the remaining capacity for Z-RNA binding, which is definitely required for ADAR1
p150-mediated RNA editing at certain critical sites. Therefore, the extent of the recovery of
abnormal phenotypes and pathology found in Adar1W197A/W197A mice by the concurrent
deletion of IFNAR1 and PKR merits investigation.

8. Unsolved Issues and Future Challenges Regarding Z-RNA and ADAR1
p150 Interactions

During the past decade, various aspects of ADAR1-mediated RNA editing have been
elucidated. However, many unsolved issues remain. First, where Z-RNA is embedded
in the dsRNA structure remains unknown. Given that the dsRNA structure in vivo is
largely incomplete, it is more difficult to search for potential Z-RNA sequences compared
with DNA. Recent studies revealed that primate-specific Alu elements contain CG-rich
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sequences, which can form Z-RNA [67,95]. Nichols et al. proposed that ADAR1 p150
binds to the Z-prone sequence, destabilizing neighboring right-handed A-form regions,
and subsequent binding of another ADAR1 p150 stabilizes a Z-conformation surrounded
by A–Z junctions [67,95]. Although this information offers an important clue, such CG-rich
sequences are not found in rodent SINEs. However, we are now aware of the existence
of ADAR1 p150-specific sites and that aberrant MDA5 activation is suppressed by only
ADAR1 p150-mediated RNA editing (Figure 5). Therefore, a comparison of preferen-
tial editing sites between ADAR1 p110 and p150 may shed light on Z-RNA sequences
recognized by Zα in vivo.

Second, how the insertion of inosine into dsRNAs can block MDA5 sensing remains
unknown. The increasing amount of MDA5 forcibly expressed induces strong activation
of an IFNβ reporter in wild-type HEK293 cells; this is enhanced in cells expressing Zα-
mutated ADAR1 p150 [78]. ADAR1 p150 is expressed at the lowest level in the mouse
brain where the MDA5 expression level is also low, in contrast to the high expression of
ADAR1 p150 and MDA5 in the thymus [27]. Therefore, a proper RNA-editing level seems
to be determined by the expression level of MDA5, regardless of the amount of dsRNAs,
at least in part. Although the reason why ADAR1 p150 is expressed at the lowest level in
the mouse brain remains unknown, the most enhanced expression of ISGs in the brains
of Adar1W197A/W197A mice might be attributed to a lack of extra capacity of RNA editing
in the brain. A–U base pairs are destabilized by RNA editing. However, ADARs prefer
A–C mismatches [96,97], which are stabilized by RNA editing. Therefore, it is difficult
to predict how a combination of inosine insertion, which depends upon the expression
of ADAR1 p150 and target mRNAs, alters each dsRNA structure [51,98,99]. In addition,
the identification of endogenous RNAs bound to MDA5 is challenging, given that MDA5
forms helical filaments for binding to dsRNAs [50]. Since the number of ADAR p150-
mediated RNA-editing sites is very limited in the mouse brain, clues are expected from the
identification of sites highly edited by ADAR1 150 in such organs [27].

Finally, RNA-editing-independent functions of ADAR1 p150, in addition to that of
ADAR1 p110, merits investigation. An ADAR1 p110 deficiency in mice causes early postna-
tal death in an RNA-editing-independent manner, which is not specified [27]. In addition,
~40% of Adar1 p150/Mavs dKO mice cannot survive more than 20 days after birth, in con-
trast to the long-term survival of Adar1E861A/E861A/Ifih1 KO mice [44,52]. Notably, Adar1∆7–9

mutant mice, in which exon 7–9 of Adar1 is deleted, show milder phenotypes, compared
with Adar1 KO mice, in which exon 2–13 is deleted [33,83]. In Adar1∆7–9 mutant mice,
truncated ADAR1 p150 and p110 are expressed, which lose the third dsRBD, including a
nuclear localization signal, and editing activity (Figure 2). Therefore, although localization
of truncated ADAR1 p110 is perturbed, cytoplasmic localization of truncated ADAR1 p150
is preserved, which might contribute to milder phenotypes. Collectively, the possibility
remains that ADAR1 150 might have an RNA-editing-independent function by binding to
dsRNAs through Zα with dsRBDs.

9. Conclusions

In this review, we summarized many important findings regarding ADAR1-mediated
RNA editing and its physiological relevance. We now understand that ADAR1 exerts
RNA-editing-dependent and -independent functions and that the targets of p110 and
p150 isoforms are not necessarily identical. In particular, aberrant MDA5 recognition of
endogenous dsRNAs is prevented by only ADAR1 p150-mediated RNA editing, in which
Z-RNA recognition through Zα is indispensable. Adar1W197A/W197A mice, in which Zα loses
the binding capacity for Z-RNA, manifest encephalopathy with gliosis, reminiscent of AGS.
Collectively, ADAR1 p150–Z-RNA interactions are essential for maintaining proper RNA
editing at certain sites, as well as for cellular homeostasis. The mechanisms underlying
the escape of MDA5 sensing via RNA editing remain unclear. In addition, preferential
sequences for forming Z-RNA in vivo need further investigation.
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