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Abstract: Natural antisense transcripts are RNA sequences that can be transcribed from both DNA
strands at the same locus but in the opposite direction from the gene transcript. Because strand-specific
high-throughput sequencing of the antisense transcriptome has only been available for less than
a decade, many natural antisense transcripts were first described as long non-coding RNAs. Although
the precise biological roles of natural antisense transcripts are not known yet, an increasing number
of studies report their implication in gene expression regulation. Their expression levels are altered
in many physiological and pathological conditions, including breast cancers. Among the potential
clinical utilities of the natural antisense transcripts, the non-coding|coding transcript pairs are of
high interest for treatment. Indeed, these pairs can be targeted by antisense oligonucleotides to
specifically tune the expression of the coding-gene. Here, we describe the current knowledge about
natural antisense transcripts, their varying molecular mechanisms as gene expression regulators,
and their potential as prognostic or predictive biomarkers in breast cancers.
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1. Introduction

After an international effort, the scientific community has revealed that up to 90% of the human
genome is transcribed. Thanks to the FANTOM project (functional annotation of the mammalian
genome, available online: http://fantom.gsc.riken.jp/), started in 2000 with the mouse genome [1,2],
which was quickly followed by the human genome in 2003 by the ENCODE project (encyclopedia
of DNA elements, available online: https://www.encodeproject.org/) [3,4], we know that 98% of
the human genome is composed of non-coding (nc) sequences, previously considered “Junk DNA”
due to their heterogeneity, low expression levels, and unknown functions [5–11]. This huge part
of the transcriptome could therefore play a role in protein-coding (pc) RNA expression regulation.
Databases specialized in genome annotation, such as the GENCODE project (encyclopædia of genes
and gene variants, available online: http://www.gencodegenes.org/) [12,13], specialized in ncRNA,
such as the NONCODE (integrated knowledge database dedicated to ncRNAs, especially lncRNAs,
available online: http://www.noncode.org/) and RNAcentral projects (the non-coding RNA sequence
database, available online: http://rnacentral.org/) [14,15], or specialized in human long non-coding
RNAs (lncRNAs), such as the LNCipedia project (a comprehensive compendium of human long
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non-coding RNAs, available online: https://lncipedia.org/) [16], are now illustrating this new vision
of the transcriptome.

Non-coding RNAs are classified according to their transcript length. With few exceptions, a 200-nt
arbitrary threshold is used to separate short and long ncRNAs [17]. The long non-coding RNAs
(lncRNAs) make up the largest portion of ncRNAs. With approximatively 98% of the genome containing
non-coding regions and only 1.1% containing exons, it is obvious that many lncRNAs do not overlap
exons. lncRNAs are classified according to their original genomic location and their context when
compared to a protein-coding gene (pcGene) [18–20]. Figure 1 depicts the five current categories of
lncRNAs, named intergenic, intronic, bidirectional (or divergent), sense and antisense. Sense and
antisense lncRNAs are defined according to the nearest pcGene position. Both can overlap, partially or
entirely, one or more exons of a pcGene [2]. Bidirectional lncRNA transcription starts close to a pcGene
(less than 1 kb from the pcGene transcription start site) and proceeds in the opposite direction as pcGene
transcription. Intronic lncRNAs are transcribed entirely from introns, and do not overlap with any
exon [20–22]. Those in intergenic regions are named long intergenic non-coding RNAs (lincRNAs),
and their transcription can occur in both directions [23,24]. Some ncRNA classification exceptions
are also worth noting. A few lncRNAs, such as BC1 or snaR, contain less than or close to 200 nt,
but they are classified as lncRNAs in the lncRNAdb database (the reference database for functional
long noncoding RNAs, available online: http://lncrnadb.org/) [25]. Other lncRNAs can reach lengths
of 1 Mbase and are thus called very long intergenic RNA (vlincRNA) [26].
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Figure 1. lncRNA classification according to their orientation and position in the genome. lincRNAs 
are located between two pcGenes, regardless of their orientation. Intronic lncRNAs are entirely 
encoded in pcGene introns, while sense lncRNAs overlap pcGene exons. Bidirectional lncRNA 
transcription starts less than 1 kb from a pcGene transcription start site and goes in its opposite 
direction. Cis-NATs (natural antisense transcript) are RNA sequences that are transcribed from the 
two strands of the same genomic locus, in the antisense direction. NAT pairs can be protein-coding 
sequences (pc, red colored) or non-coding sequences (nc, blue colored), forming nc|pc, nc|nc or 
pc|pc pairs. NAT pairs that are nc|pc or nc|nc sequences only belong to the lncRNA classification 
(purple colored sequences are pc or nc). 

lncRNAs are defined as endogenous cellular RNAs without a significant ORF (open reading 
frame) [27–29]. However, some ncRNAs containing an ORF smaller than 100 amino-acids may be 
classified as lncRNAs [27]. The known biological roles of lncRNAs are very heterogeneous and cover 
various molecular and cellular functions such as pcGene regulation [30], stem cell pluripotency and 
differentiation [31], allelic expression [32], cell cycle control [33], apoptosis and senescence [34], heat 
shock response [35], and control of chromatin modifications [36]. It is worth noting that lncRNAs are 
found in all tissues and show pronounced tissue-specific expression. Their cellular location may 

Figure 1. lncRNA classification according to their orientation and position in the genome. lincRNAs
are located between two pcGenes, regardless of their orientation. Intronic lncRNAs are entirely encoded
in pcGene introns, while sense lncRNAs overlap pcGene exons. Bidirectional lncRNA transcription
starts less than 1 kb from a pcGene transcription start site and goes in its opposite direction. Cis-NATs
(natural antisense transcript) are RNA sequences that are transcribed from the two strands of the same
genomic locus, in the antisense direction. NAT pairs can be protein-coding sequences (pc, red colored)
or non-coding sequences (nc, blue colored), forming nc|pc, nc|nc or pc|pc pairs. NAT pairs that are
nc|pc or nc|nc sequences only belong to the lncRNA classification (purple colored sequences are pc or nc).

lncRNAs are defined as endogenous cellular RNAs without a significant ORF (open reading
frame) [27–29]. However, some ncRNAs containing an ORF smaller than 100 amino-acids may be
classified as lncRNAs [27]. The known biological roles of lncRNAs are very heterogeneous and
cover various molecular and cellular functions such as pcGene regulation [30], stem cell pluripotency
and differentiation [31], allelic expression [32], cell cycle control [33], apoptosis and senescence [34],
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heat shock response [35], and control of chromatin modifications [36]. It is worth noting that lncRNAs
are found in all tissues and show pronounced tissue-specific expression. Their cellular location may
vary, probably reflecting their function [20,37,38]. There is a structural similarity between lncRNAs
and mRNAs, in the sense that they may be multi-exonic, 5′ capped, 3′ polyadenylated, and spliced [23].
RNA polymerase II (RNA Pol II) is responsible for the transcription of most of the lncRNAs, and their
expression is under the control of promoters and enhancers, that can be induced by external stimuli [23].

2. Generic Definition of NATs

Natural antisense transcripts (NATs) are coding or non-coding RNA sequences that are
complementary to and overlap with either protein-coding or non-coding transcripts [39]. As 98% of
the transcriptome is non-coding, the vast majority of paired transcripts are composed of nc|nc or
nc|pc pairs. Therefore, NATs are defined in regard to the relative genomic position from their paired
transcript origins, in cis or in trans. Cis-NAT pairs are transcribed from the opposite strand of the same
genomic locus and display perfect RNA|RNA sequence complementarity with the opposite strand
transcript (if no RNA modifications, such as RNA editing, occur). Trans-NAT pairs are transcribed
from different genomic loci, and the two RNA molecules may hybridize to each other with imperfect
RNA|RNA sequence complementarity [40,41].

Because whole genome sequencing of the antisense transcription has only been available for less
than a decade, many NATs were described as lncRNAs without information about the co-existence
of other transcripts from the same genomic origin. This convergence between NAT and lncRNA
classifications may thus lead to some confusion in the literature and will probably disappear with the
increasing knowledge in the antisense transcription field.

3. NAT: Structure, Localization, and Expression Regulation

Like lncRNAs and mRNAs, NATs may be capped and poly-adenylated transcripts that are
maturated to excise introns. NAT expression is also controlled by promoters and enhancers. In addition,
many examples of bidirectional promoters that control transcript expression originating from both
strands are described in the literature [42,43]. In this case, several transcription factors, such as GABPA
or E2F1, are preferentially implicated [44–46]. NATs may originate from cryptic promoters that are
then inserted within the intronic regions of a gene or close to the transcription start site of neighboring
genes [43,47,48].

NATs accumulate preferentially in the nucleus, associating with chromatin, unlike coding mRNAs
which accumulate in the cytoplasm. NATs are also found in other cellular compartments, such as
mitochondria, and have been reported to accumulate at polysomes [3,18,49]. Moreover, NAT expression
is closely linked with the activity of their sense or neighboring genes [43].

4. NAT: Role, Function and Mechanism of Action

The biological significance of NATs remains under scientific investigation with major key
questions yet to be answered. Specific pcGene regulation by their corresponding overlapping ncNATs
has been reported. Our team and others have shown that up to 50% of the pcGenes also express
ncNATs [2,39,50] and that transcript levels of nc|pc pairs are often tightly correlated [39,46,50].
Altogether, this suggests that NATs could be implicated in a new level of gene expression
regulation [5,51].

Both transcriptional and post-transcriptional regulations of expression have also been explained
as the result of the creation of natural sense and antisense transcript pairs. The regulatory processes
implicated can be more or less complex, ranging from simple transcriptional interference to modulation
of chromatin changes or the formation of double-stranded RNA (dsRNA). The latter leads to RNA
masking, RNA interference or RNA editing [52].

Several examples of pcGene expression regulation by their NATs are described hereafter to illustrate
the different molecular mechanisms of action.
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4.1. Action in Cis or Trans

While NATs are more likely to handle regulation of other genes in cis, they may also tune gene
expression elsewhere in the genome by trans regulation. Based on the definition of overlapping
genes from Makalowska et al., cis-NATs are here classified according to the relative position of the
DNA coding sequence of the RNA transcripts [53]. Three categories can thus be described and are
depicted in Figure 2: (1) “head-to-head”, where sense and antisense transcripts overlap on their 5′ ends;
(2) “tail-to-tail”, where sense and antisense transcripts overlap on their 3′ ends; and (3) “embedded
overlap” (also called “full overlap”), where one of the entire transcript overlaps the other.
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Figure 2. cis-NAT classification. cisNAT pairs can be protein coding sequences (pc) or non-coding
sequences (nc), forming nc|pc, nc|nc or pc|pc pairs. In head-to-head orientation, sense and antisense
transcripts overlap on their 5′ ends. Inversely, tail-to-tail describes an overlap of the 3′ ends. In a full
overlap (or embedded overlap), one transcript is totally included in the other one.

4.2. Transcriptional Interference

Antisense transcription can modulate in cis the sense transcription of the opposite strand, although
this effect may not be caused by the pairing of the RNA molecules themselves. The proximity of the
two transcriptional events, sense and antisense, leads to a downregulation of both transcripts [54].
Transcriptional interference can occur during the initiation or elongation phases of transcription. In the
initiation phase, promoters of head-to-head NATs are competing for the use of RNA Pol II and common
regulatory elements (Figure 3A). In the elongation phase, interference can occur after the following
events: a collision between RNA Pol II complexes, leading to a machinery blockage (Figure 3B);
a promoter occlusion by RNA Pol II during the antisense transcript elongation (Figure 3C); or an RNA
Pol II dislodgement by the RNA Pol II standing on the opposite strand, when the first one was too
slow to start (Figure 3D) [54]. It is worth noting that the transcriptional interference investigation
field is still young and that formal proof of gene expression regulation by this mechanism was only
recently reported [55]. Nevertheless, a negative correlation between sense and antisense transcript
levels are less frequently observed than a positive correlation or no correlation. This suggests that only
a minority of NATs could be involved in transcriptional interference processes [50,56–59].



Int. J. Mol. Sci. 2018, 19, 123 5 of 23

Int. J. Mol. Sci. 2018, 19, 123 5 of 24 

 

GNG12-AS1 downregulates its transcription by recruiting Argonaute 2 and inhibiting RNA 
polymerase II binding. In this case, the active transcription of GNG12-AS1 causes the transcriptional 
silencing of DIRAS3, leading to increased cell proliferation.  

 
Figure 3. Transcriptional Interference: (A) in the initiation phase, promoters of head-to-head NATs 
are competing for the use of RNA Pol II and common regulatory elements; (B) in the elongation 
phase, interference can occur after the following events: a collision between RNA Pol II complexes, 
leading to a machinery blockage; (C) a promoter occlusion by RNA Pol II during the antisense 
transcript; and (D) a RNA Pol II dislodgement by the RNA Pol II standing on the opposite strand, 
when the first one was too slow to start. Promoters of protein coding sequences are represented in 
red, and promoters of non-coding sequences in blue. RNA pol II enzyme is represented in dark grey 
when able to transcribe the sequence, and light grey when its binding and thus activity, is prevented. 

4.3. Chromatin Modification 

ncNATs may regulate the expression levels of the sense pcGenes by regulating chromatin 
modifications. Such epigenetic modifications encompass DNA methylations of cytosine in CpG 
islands and histone modifications by methylation or acetylation of lysine residues. NATs and, more 
widely, ncRNAs, are thought to affect DNA methylation by interacting with various types of 
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Figure 3. Transcriptional Interference: (A) in the initiation phase, promoters of head-to-head NATs are
competing for the use of RNA Pol II and common regulatory elements; (B) in the elongation phase,
interference can occur after the following events: a collision between RNA Pol II complexes, leading
to a machinery blockage; (C) a promoter occlusion by RNA Pol II during the antisense transcript;
and (D) a RNA Pol II dislodgement by the RNA Pol II standing on the opposite strand, when the first
one was too slow to start. Promoters of protein coding sequences are represented in red, and promoters
of non-coding sequences in blue. RNA pol II enzyme is represented in dark grey when able to transcribe
the sequence, and light grey when its binding and thus activity, is prevented.

Despite difficulties in discriminating transcription interference from gene expression regulation by
RNA transcripts, Stojic et al. [55] have demonstrated such a mechanism by screening an siRNA library.
Whereas nearly all siRNAs dampen GNG12-AS1 (a non-coding natural antisense transcript of the
tumor suppressor coding gene DIRAS3) post-transcriptionally, siRNA targeting exon 1 of GNG12-AS1
downregulates its transcription by recruiting Argonaute 2 and inhibiting RNA polymerase II binding.
In this case, the active transcription of GNG12-AS1 causes the transcriptional silencing of DIRAS3,
leading to increased cell proliferation.
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4.3. Chromatin Modification

ncNATs may regulate the expression levels of the sense pcGenes by regulating chromatin
modifications. Such epigenetic modifications encompass DNA methylations of cytosine in CpG islands
and histone modifications by methylation or acetylation of lysine residues. NATs and, more widely,
ncRNAs, are thought to affect DNA methylation by interacting with various types of proteins involved
in histone modification or chromatin remodeling such as, in particular, the polycomb repressive
complex 2 (PRC2) [60]. A current hypothesis considers that nascent NATs guide PRC2 to specific-target
sites on the chromatin. The tethering would occur by pairing the nascent NAT with DNA or mRNA
sequences, during or after NAT transcription (Figure 4A) [61].
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Figure 4. ncNATs (non-coding natural antisense transcripts) may regulate the expression levels of
the sense pcGenes (protein coding genes) by regulating chromatin modifications by the following.
(A) A decoy mechanism: The NAT binds a protein complex that can trigger chromatin modifications
and prevents, by competition, this complex from binding the sense transcript. This complex can
also prevent the interaction of the sense gene with RNA Pol II (RNA polymerase II); (B) a tethering
mechanism, such as ANRIL (antisense non-coding RNA in the INK4 locus): ANRIL recruits PRC2
(polycomb repressive complex) through interaction with SUZ12 (suppressor of zeste 12 homolog)
and EZH2 (enhancer of zeste 2 polycomb repressive complex 2 subunit) components and PRC1 by
binding CBX7 (chromobox homolog 7). Next, PRC2 silences the INK4 locus expression by inducing
H3K27 tri-methylation, and PRC1 maintains a repressive chromatin structure by mono-ubiquitination
of H2AK119. Protein coding sequences or promoters are represented in red, and non-coding in blue.

Additionally, a “decoy” mechanism can be described, where the NAT binds a protein complex,
such as PRC2, and prevents this complex from binding the sense transcript by competition.
This complex can also prevent the interaction of the sense gene with RNA Pol II or the chromatin [61,62].

Here are two examples of lncRNA/NAT that play a role in the tethering of PRC2 with chromatin.
The first example is the combined action of ANRIL and PRC1–PCR2 on INK4b-ARF-INK4a gene
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expression and on the chromatin structure of this locus. ANRIL is a cisNAT that is dysregulated in
breast cancer. It is located in the INK4b-ARF-INK4a gene cluster, which contains three genes encoding
the three tumor-suppressor proteins p15, p14 and p16 [63]. Polycomb repressive complexes 1 and
2 (PRC1 and PRC2) are implicated in epigenetic silencing mechanisms. ANRIL can recruit those
complexes to the chromatin of the INK4b-ARF-INK4a locus, recruiting PRC2 through interaction with
SUZ12 and EZH2 components, and recruiting PRC1 by binding CBX7 [63–65]. Next, PRC2 silences
INK4b-ARF-INK4a gene expression by inducing H3K27 tri-methylation, and PRC1 maintains
a repressive chromatin structure by mono-ubiquitination of H2AK119 (Figure 4B) [66].

A second example is HOTAIR, which is implicated and dysregulated in many types of cancer
and displays an active and critical role in chromatin dynamics [67,68]. Like ANRIL, HOTAIR interacts
with PRC2 through its 5′ end to induce H3K27 tri-methylation. In addition, HOTAIR binds to
LSD1 (lysine-specific demethylase 1) by its 3′ end, leading to H3K4 demethylation. These combined
modifications lead, in trans, to a repressive chromatin structure and thus to the silencing of multiple
genes [68,69].

4.3.1. Double-Stranded RNA/RNA Masking

NATs can regulate gene expression through the formation of a complex of two overlapping
NAT sequences. This double-stranded RNA (dsRNA) molecule thus creates a physical protection
against post-transcriptional regulation factors that target the pcGene. RNA masking will then interfere
with splicing or translation machineries. This mechanism will also prevent miRNA binding or RNAse
activities, which often target single-stranded RNA and influence their complex stability [52]. Under this
condition and in opposition with other mechanisms described above, NAT positively regulates
pcGene expression.

In osteocarcinoma, upregulated FGFR3-AS1 forms a tail-to-tail dsRNA with FGFR3, its sense
transcript. FGFR3 mRNA is thus protected against RNase activity, leading to an increase in both its
mRNA stability and its protein production [70]. Conversely, binding of the MALAT1 3′ UTR by its
ncNAT TALAM1 allows for RNase P cleavage, leading to 3′ end processing and maturation that is
essential for MALAT1 stability and function [71].

While forming dsRNAs, NATs can also interfere with splicing and translation mechanisms.
For example, the protein coded from the gene ZEB2 is a transcriptional factor that downregulates
E-cadherin and its antisense transcript, ZEB2-AS1. ZEB2 also contains an IRES (internal ribosome
entry site) required for its translation. By binding this sequence, ZEB2-AS1 promotes ZEB2 splicing
and downregulates its protein expression [72].

4.3.2. Double-Stranded RNA/RNA A to I Editing

ADARs (adenosine deaminases that act on RNA) are enzymes responsible for RNA editing by
site-specific adenosine deamination. They target dsRNA molecules such as those formed by NAT pairs.
After adenosine to inosine (A-to-I) editing, inosines (I) are interpreted as a guanosines (G) during
splicing or translation. Such modification may modulate the localization or the stability of the edited
transcripts [73,74]. The occurrence frequency of RNA editing by NATs is not yet characterized [52,75,76].
Indeed, few NATs display edited sequences, but they may be quickly degraded or retained in the
nucleus, thus disappearing from the bulk of the expressed sequences [77].

An example of this A to I editing mechanism has been found in human prostate cancers with
the sense/antisense couple of PRUNE2 and PCA3 transcripts. PRUNE2 is a pcGene that has a tumor
suppressor role. PCA3 is an NAT that originates from introns, and is fully overlapped by PRUNE2’s
6th intron. The dsRNA created by PCA3 and PRUNE2’s pre-mRNA forms a complex with ADAR
proteins. An A-to-I editing of this dsRNA leads to a downregulation of protein expression and an
increase in tumor cell growth [78]. It is important to note that PCA3 was also approved as a specific
biomarker for diagnostic tests.
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4.3.3. Double-Stranded RNA/RNA Interference

RNA interference is an additional mechanism whereby NATs are implicated in pcGene
post-transcriptional regulation [79]. RNA interference is the endogenous siRNA formation from
NAT-derived dsRNA. RNA interference is DICER-dependent and is followed by the action of the
RNA-induced silencing complex (RISC) [80–82]. NATs may thus serve as precursors in endo-siRNA
and miRNA production [83]. NATs form internal hairpins or duplexes with sense RNA, leading to
a dsRNA that can be handled and digested by DICER. Short RNA duplexes will then be bound by
the RISC complex, where one strand of the RNA duplex is used as a guide for mRNA recognition.
This mRNA is then cleaved by the RISC complex, which will decrease the protein expression. Even with
scarce evidence of NAT involvement in the RNA interference process, recent transcriptome sequencing
studies have shown the widespread occurrence of endo-siRNAs and their regulatory potential during
stages of development and differentiation [82,83].

5. NATs in Breast Cancer

Numerous studies have highlighted a link between lncRNA/NAT and cancers, especially breast
cancers. Most of these transcripts were either highlighted by high-throughput transcriptomic studies
that lacked the strand origin, or explored one by one due to their implication in oncogenic pathways.
Therefore, many lncRNA listed in Table 1 are generally not described as NAT in the literature.
In addition, the expression correlation between the NAT pair transcripts, as well as the ncNAT
regulatory role with regard to the paired pcGene, are often unknown. It is also worth noting that
most genomic loci coding for NAT transcript pairs also display numerous alternative transcripts.
Therefore, each lncRNA transcript may belong to different classes among NAT pc|nc, lincRNA,
lncRNA, or NAT nc|nc.

To the best of our knowledge, only three strand-specific whole genome transcriptomic studies were
performed on breast cancer samples [39,46,50]. The main concordant conclusions were that: (i) pcGene
transcription coincides with an antisense ncNAT transcription in 50% of the cases; (ii) NAT transcripts
are 1000 times less abundant than pcGene transcripts; and (iii) positive expression correlations between
ncNATs and their paired pcGenes are approximately six times more frequent than negative correlations.
This latest suggests that if ncNATs can affect the expression of their corresponding pcGene, positive
regulation of expression should be more frequently observed than repression. However, a comparison
of transcript levels between tumors and paired non-malignant adjacent healthy tissues showed that
the ncNAT/pcGene transcript balance is disrupted in tumors. Therefore, new positive correlations of
NAT/pcGene pairs are created in tumor tissues, while others that were present in the normal tissue
decline [50].

The mechanism by which lncRNA/NAT regulates pcGene expression is known in several instances,
and two mechanisms are often described in breast cancer. The first is driven by the polycomb repressing
complexes (PRC), and the second by microRNAs. Here are three examples of PRC2 involvement in
cancer pathways. The NAT ANRASSF1 leads PRC2 binding on the RASSF1 promoter to regulate
RASSF1 expression [84]. The INK4b-ARF-INK4A locus coding for the cell cycle associated proteins p14,
p15 and p16 is regulated by the NAT ANRIL via PRC2, and in addition, the lncRNA PANDAR recruits
PRC1 to also regulate p16 expression [63–65,85]. Similarly, the p53 pathway is regulated at several
levels via PCR2 by HOTAIR and MEG3 lncRNAs [86–89]. The importance of gene regulation by PRC2
is well known in breast cancers, as the expression of its targeted genes can be used to predict patient
outcomes [90].

As displayed in Table 1, microRNAs are also frequently involved in gene regulation by lncRNA.
One particular example is the epithelial to mesenchymal transition (EMT) that is regulated by three
lncRNAs, namely, H19, linc-RoR and TP73-AS, which capture multiple microRNAs and prevent their
binding to other mRNA targets [91–94].
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Table 1. Role and therapeutic utility of lncRNAs in breast cancer. lncRNAs implicated in breast cancer pathology are listed and classified in different categories:
lincRNA (long intergenic non-coding RNA), bidirectional lncRNA, sense-overlapping lncRNA, sense-intronic lncRNA, and NAT composed of nc|nc or nc|pc
transcripts pairs. In the case of nc|pc pairs, the pcGene name is provided. As ncRNAs often display multiple transcript variants, some lncRNAs may belong to
multiple categories.

lncRNA in
Breast Cancer Access Number Type pcGene Alteration/Role in

Breast Cancer Mechanism of Action Therapeutic Utility Ref.

ANRASSF1 ENSG00000281358 NAT (nc|pc) RASSF1 Upregulation/Oncogenic Binds to PRC2 and silences the tumor suppressor gene RASSF1A. [84]

ANRIL ENSG00000240498 NAT (nc|pc) CDKN2A,
CDKN2B Upregulation/Oncogenic

ANRIL is the NAT of CDKN2B gene (p15); binds to components
of PRC1 (CBX7) and PRC2 (SUZ12) to silence the INK4 locus by
epigenetic mechanisms.

Overexpressed in a variety of cancers and diseases. [63–65]

LINC00901 ENSG00000242385 NAT (nc|pc) LSAMP Downregulation/Tumor
suppressor Low expression is associated with low overall survival. Potential prognostic marker. [95]

BCAR4 ENSG00000262117 lincRNA Upregulation/Oncogenic
Interaction with SNIP1 and PNUTS in Hedgehog canonical
pathway leads to a resistance to cancer treatments with
SMO inhibitors.

Responsible for the acquisition of resistance to
treatments and upregulation of non-canonical
hedgehog pathway.

[96,97]

BCYRN1 ENSG00000236824 NAT (nc|nc) Upregulation/Oncogenic BCYRN1 expression is associated with cell proliferation.

Knockdown BCYRN1 impacts viability of actively
proliferating cells through growth arrest and
apoptosis. Potential therapeutic target for
various cancers.

[98]

CCAT2 ENSG00000280997 NAT (nc|nc) Upregulation/Oncogenic
Downregulates p15 through interaction with EZH2. Regulates
TGF-β and Wnt signaling pathways. Promotes cell proliferation,
invasion, tumor growth and metastasis.

Potential prognosis biomarker and therapeutic target. [99–103]

CRNDE ENSG00000245694 lincRNA Upregulation/Oncogenic Molecular sponge of miRNA-136 in breast cancer, activating
Wnt/β-catenin. Associated with unfavorable prognosis. [104]

DANCR ENSG00000226950 lincRNA Upregulation/Oncogenic Participates in cell proliferation and invasion. Associated with a worse prognosis in TNBC. [105]

DSCAM-AS1 ENSG00000235123 NAT (nc|pc) DSCAM Upregulation/Oncogenic
Expression induced by estrogen stimulation. Positive correlation
with genes associated with cancer aggression, tamoxifen
resistance, and metastasis.

Biomarker for luminal subtype. [106,107]

FAM83H-AS1 ENSG00000282685 lincRNA Upregulation/Oncogenic Most upregulated in luminal subtype of breast cancer. Prognostic marker of luminal subtype. [108]

GAS5 ENSG00000234741

NAT
(nc|pc)/bidirectional

lncRNA/lincRNA
(multiple transcripts)

ZBTB37 Downregulation/Tumor
suppressor

Required for decoy of glucocorticoid receptor (GR), inhibits
transcriptional induction by GR, stops growth and triggers
apoptosis, induces PTEN through miR-103 inhibition.

Responsible for the acquisition of trastuzumab
resistance. Potential circulating biomarker. [109–114]

H19 ENSG00000130600 lincRNA Upregulation/Oncogenic

Mediates breast cancer cell plasticity, invasion, and proliferation
by sponging several miR (miR-200b/c, let-7b, miR-152), silences
pro-apoptotic gene BIK through epigenetic modifications,
precursor of miR-675 (pro-tumoral and pro-metastatic).

Upregulated in cancer. Potential circulating
biomarker for early screening and prognosis
monitoring in breast cancer.

[92,115–118]

HIF1A-AS2 ENSG00000258667 NAT (nc|pc) HIF1A Upregulation/Oncogenic Involved in cell proliferation and invasion, contributes to
chemotherapy resistance.

In TNBC, biomarker for detection, prognosis and
prediction for recurrence and response to taxane
chemotherapy.

[119,120]

HMMR-AS1 ENSG00000251018 NAT (nc|pc) HMMR Upregulation/Oncogenic Involved in cell proliferation and invasion.
Positive correlation with HMMR, BRCA1, BRCA2
(oncogenic), biomarker and potential target in
basal-like breast cancer.

[121]
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Table 1. Cont.

lncRNA in
Breast Cancer Access Number Type pcGene Alteration/Role in

Breast Cancer Mechanism of Action Therapeutic Utility Ref.

HOTAIR ENSG00000228630
NAT

(nc|pc)/lincRNA
(multiple transcripts)

HOXC11 Upregulation/Oncogenic

Guides epigenetic mechanisms to silence tumor suppressor genes
through interaction with PRC2 and LSD1, involved in protein
degradation by interaction with E3-ubiquitin ligases, tumor
invasion, apoptosis and EMT.

Over-expressed in cancer, biomarker and potential
therapeutic target.

[86,89,122–
127]

HOTAIRM1 ENSG00000233429

NAT
(nc|pc)/bidirectional

lncRNA (multiple
transcripts)

HOXA1,
HOXA2 Upregulation/Oncogenic

Modulates gene expression in HoxA gene cluster by interacting
with PRC1 and PRC2 complexes. High positive correlation with
HOXA1 expression.

Increased in basal-like subtype breast cancer. [128,129]

HOXA-AS2 ENSG00000253552 NAT (nc|pc) HOXA3,
HOXA4 Upregulation/Oncogenic

Acts as an endogenous sponge of miR-520c-3p and indirectly
controls the expression of miR520c-3p target genes (TGFBR2 and
RELA).

[130]

HOXA11-AS ENSG00000240990 NAT (nc|pc) HOXA11 Upregulation/Oncogenic Promotes cell proliferation, invasion and metastasis by
regulating EMT.

Biomarker for metastasis and prognosis in breast
cancer. Blocked relation between HOXA11-AS and
EMT may have therapeutic utility.

[131]

Lnc-ITGB1-6:7 Lnc-ITGB1-6
(LNCipedia) lincRNA Upregulation/Oncogenic

Promotes cell proliferation, invasion and metastasis by
regulating EMT. High linc-ITGB1 expression is associated with
poor prognosis.

Biomarker in prognosis of breast cancer. [132,133]

Linc-RoR ENSG00000258609 lincRNA Upregulation/Oncogenic
Induces EMT. Contributes to tumor growth, invasion, metastasis
and drug resistance through endogenous competition with
various miR (145, 205, 133, 34) and inhibition of p53 expression.

Upregulation is a marker in multi-drug resistance,
chemotherapy tolerance. Potential therapeutic target
for aggressive and metastatic breast cancer.

[91,134]

LINC00472 ENSG00000233237 lincRNA Downregulation/Tumor
suppressor

Associated with tumor grade, estrogen receptor status and
molecular subtype in breast cancer. Repressed by methylation of
its promoter.

Potential prognosis and predictive biomarker. [135,136]

LSINCT5 ENSG00000281560 lincRNA Upregulation/Oncogenic Promotes cell proliferation. [137]

MALAT1 ENSG00000251562 NAT (nc|nc) Upregulation/Oncogenic Plays a critical role in pre-mRNA alternative splicing. Regulates
EMT gene expression.

Knockdown reduces cell growth, invasion, migration
and differentiation into cystic tumors. Potential
prognosis marker in ER− and prediction marker for
endocrine treatment sensitivity in ER+.

[138–141]

MEG3 ENSG00000214548 NAT (nc|nc) Downregulation/Tumor
suppressor

Represses MDM2, leading to p53 accumulation. Silences genomic
loci of TGFβ-associated genes by interaction with PRC2.
Represses AKT signaling pathway. Inhibits EMT by sponging
miR-421.

Expression promotes apoptosis, inhibits proliferation
and angiogenesis.

[87,88,142,
143]

MIR31HG
(LOC554202) ENSG00000171889 Sense-overlapping

lncRNA
Downregulation/Tumor

suppressor

Host gene of miR-31. Silenced in TNBC by promoter
hypermethylation. Inhibits invasion-metastasis cascade by
targeting pro-metastasis genes (i.e., RhoA and WAVE3).

[144–146]

NEAT1 ENSG00000245532 lincRNA Upregulation/Oncogenic

Modulates miRNA biogenesis by organizing key components of
paraspeckles and regulates transcription through protein
sequestration into paraspeckles. Promotes proliferation and EMT.
In ER+, NEAT1 is indispensable for interaction between FOXN3
and SINA3 complex. Regulates EZH2 through miR-101.

Overexpression of miR-548ar-3p downregulates
NEAT1 and results in inhibition of cell growth. [147–152]

PANDAR ENSG00000281450 lincRNA Upregulation/Oncogenic
Represses p16INK4A expression through modulating the
recruitment of Bmi1 to the p16INK4A promoter. Removes cycle
arrest possibility during G1/S transition.

Potential therapeutic target. [85]
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Table 1. Cont.

lncRNA in
Breast Cancer Access Number Type pcGene Alteration/Role in

Breast Cancer Mechanism of Action Therapeutic Utility Ref.

PTPRG-AS1 ENSG00000241472 NAT (nc|pc) PTPRG,
C3ORF14 Upregulation/Oncogenic Differentially expressed between ER+ and

ER− subtypes. [153,154]

PVT1 ENSG00000249859 NAT (nc|pc) TMEM75 Upregulation/Oncogenic Co-operation between c-Myc and PVT1. Enhances c-Myc stability
through inhibiting its phosphorylation.

Due to synergy between c-Myc and PVT1, silencing
PVT1 expression decreases cell proliferation and
increases apoptosis. Potential therapeutic target.

[155–158]

SNHG17 ENSG00000196756 lincRNA
Differentially expressed between ER+ and ER−
subtypes. Low expression associated with overall
survival. Expression correlates with tumor grade.

[154]

SOX2-OT ENSG00000242808
NAT (nc|pc),

sense-overlapping
lncRNA, lincRNA

DNAJC19 Upregulation/Oncogenic Through positive effect on SOX2 expression, SOX2OT plays a key
role in pluripotency and tumorigenesis. Potential prognosis marker and therapeutic target. [159,160]

SPRY4-IT1 ENSG00000281881 Sense-intronic
lncRNA Upregulation/Oncogenic

Upregulates ZNF703 involved in the activation of the mTor
signaling pathway. Promotes cell proliferation and
inhibits apoptosis.

SPRY4-IT1 positively correlates with tumor size and
pathological stage. Prognostic marker and potential
therapeutic target.

[161,162]

TERRA
(Telomeric

repeat-containing
RNA)

lncRNA Misregulation
Transcribed from telomeric C-rich strand. Interacts with TRF1
and TRF2 to facilitate heterochromatin formation. Provides RNA
template to aid telomerase function.

Potential therapeutic target to impair
telomerase activity. [163–166]

TP73-AS1 ENSG00000227372 NAT (nc|pc) TP73 Upregulation/Oncogenic

TP73-AS1/miR-200a/ZEB1 forms a regulating loop. TP73-AS1
competes with ZEB1 for binding to miR-200a. ZEB1 binds to
TP73-AS1 promoter and activates its expression. Upregulation of
TP73-AS1/ZEB1 promotes cell invasion and migration.

Potential therapeutic target. [94,167]

treRNA ENSG00000231265 lincRNA Upregulation/Oncogenic

Regulates translation through interaction with ribonucleoprotein
complex, which will bind to the translation initiation factor
(EIF4G1). Overexpressed in lymph-node metastasis. Promotes
tumor invasion and metastasis. Regulates expression of
metastasis promoting-gene Snail. Suppresses epithelial markers
and translation of E-cadherin mRNA.

[168]

UCA1 ENSG00000214049 lincRNA Upregulation/Oncogenic

Enhances chemotherapy resistance (tamoxifen) through mTor
pathway inhibition and miR-18a downregulation. Promotes EMT
through activating Wnt/β-catenin signaling. UCA1/hnRNP1
suppresses p27 protein level by competition. Downregulates
tumor suppressor miR-143.

Potential urine biomarker. Knockdown reduces
chemoresistance, cell migration and tumor size. [169–173]

ZFAS1 ENSG00000177410 NAT (nc|pc) ZNFX1

Downregulation in
breast

cancer/Upregulated in
other cancers

Associated with ribosomes in breast cancer. Role in development
and cell differentiation in mammary gland. Potential biomarker. [174–178]

Abbreviations: nc: non-coding; pc: protein coding; lncRNA: long intergenic non-coding RNA; TNBC: triple negative breast cancer; NAT: natural antisense transcript;
EMT: epithelial to mesenchymal transition; ER+ and ER−: estrogen receptor positive and negative breast cancers; G1/S transition: The transition between the two
first phases of the cell cycle; ANRASSF1: RASSF1 antisense RNA 1; RASSF1: Ras association domain family member 1; PRC: olycomb repressive complex; ANRIL:
antisense non-coding RNA in the INK4 locus; CDKN2A: cyclin dependent kinase inhibitor 2A; CDKN2B: cyclin dependent kinase inhibitor 2B; CBX7: chromobox 7;
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SUZ12: SUZ12 polycomb repressive complex 2 subunit; INK: cyclin dependent kinase inhibitor; LSAMP: limbic system-associated membrane protein; BCAR4:
breast cancer anti-estrogen resistance 4; SNIP: SRC kinase signaling inhibitor 1; PNUTS: protein phosphatase 1 regulatory subunit; SMO: smoothened, frizzled class
receptor; BCYRN1: brain cytoplasmic RNA 1; CCAT2: colon cancer associated transcript 2; TGFbeta: transforming growth factor beta 1; Wnt: wingless-type MMTV
integration site family; CRNDE: colorectal neoplasia differentially expressed; DANCR: differentiation antagonizing non-protein coding RNA; DSCAM-AS1: DSCAM
antisense RNA 1; DSCAM: DS cell adhesion molecule; FAM83H-AS1: FAM83H antisense RNA 1; GAS5: growth arrest specific 5; ZBTB37: zinc finger and BTB domain
containing 37; GR: glucocorticoïd receptor; H19: H19, imprinted maternally expressed transcript; BIK: BCL2 interacting killer; HIF1A-AS2: HIF1A antisense RNA 2;
HIF1A: hypoxia inducible factor 1 alpha subunit; HMMR-AS1: HMMR antisense RNA 1; HMMR: hyaluronan mediated motility receptor; BRCA1: BRCA1, DNA repair
associated; BRCA2: BRCA2, DNA repair associated; HOTAIR: HOX transcript antisense RNA; HOXC11: homeobox C11; LSD1: lysine demethylase 1A; HOTAIRM1:
HOXA transcript antisense RNA, myeloid-specific 1; HOX: homeobox; HOXA-AS2: HOXA cluster antisense RNA 2; TGFBR2: transforming growth factor beta
receptor 2; RELA: RELA proto-oncogene, NF-kB subunit; HOXA11-AS: HOXA11 antisense RNA; LSINCT5: long stress-induced non-coding transcript 5; MALAT1:
metastasis associated lung adenocarcinoma transcript 1; MEG3: maternally expressed 3; MDM2: transformed mouse 3T3 cell double minute 2 proto-oncogene; AKT:
thymoma viral proto-oncogene serine/threonine kinase 1; RhoA: ras homolog family member A; RhoA: ras homolog family member A; WAVE3: WAS protein family
member 3; NEAT1: nuclear paraspeckle assembly transcript 1; FOXN3: forkhead box N3; SINA3: E3 ubiquitin-protein ligase SINAT5-like; PANDAR: promoter
of CDKN1A antisense DNA damage activated RNA; Bmi1: BMI1 proto-oncogene, polycomb ring finger; PTPRG-AS1: PTPRG antisense RNA 1; PTPRG: protein
tyrosine phosphatase, receptor type G; C3ORF14: chromosome 3 open reading frame 14; PVT1: Pvt1 oncogene; TMEM75: transmembrane protein 75; c-Myc: MYC
proto-oncogene, bHLH transcription factor; SNHG17: small nucleolar RNA host gene 17; SOX2-OT: SOX2 overlapping transcript; DNAJC19: DnaJ heat shock protein
family (Hsp40) member C19; SOX2: SRY-box 2; SPRY4-IT1: SPRY4 intronic transcript 1; ZNF703: zinc finger protein 703; mTor: mechanistic target of rapamycin kinase;
TRF: telomeric repeat binding factor; TP73-AS1: TP73 antisense RNA 1; TP73: tumor protein p73; ZEB1: zinc finger E-box binding homeobox 1; treRNA: translation
regulatory long non-coding RNA 1; EIF4G1: eukaryotic translation initiation factor 4 gamma 1; Snail: snail family transcriptional repressor 1; UCA1: urothelial cancer
associated 1; ZFAS1: ZNFX1 antisense RNA 1; ZNFX1: zinc finger NFX1-type containing 1.
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5.1. NATs as Cancer Biomarkers

Like mRNAs, the expression levels of NATs and lncRNAs are affected under cancerous conditions.
Differences in mRNA expression patterns between different subgroups of breast cancer patients have
been used to develop genomic tests able to predict patient’s prognosis, or to predict treatment response
by breast cancers. Among them, we can underline the MammaPrint and PAM50 microarray-based
gene signatures, or the Oncotype DX RT-PCR–based assay that can help clinicians make treatment
decisions based on the calculation of the recurrence risk, and/or the benefits of chemotherapy in the
case of Oncotype DX test [179–181].

Similarly, multiple NATs/lncRNAs display expression levels that are associated with the
disease prognosis, the treatment response or the clinical classification of breast cancers (Table 1).
Although no clinically validated test has emerged yet, several studies report prognostic ncRNA gene
signatures [119,182–185].

5.2. NATs as Therapeutic Targets

The understanding of antisense transcription is important for therapies. Indeed, NATs represent
a potential highly specific entry point for therapeutic intervention on targeted genes by the use of ASO
(antisense oligonucleotides) that are drugs already FDA-approved for several diseases [186].

Functionally characterized NATs can be targeted by ASOs, called in this case antagoNATs, to block
the interaction of the sense and antisense transcripts. The hybridization of ASOs with the antisense
transcript would lead to its degradation, or to transcriptional de-repression at the chromatin level [187].
The first in vivo demonstration of antagoNAT efficacy was shown by Modarresi et al. [188] and has
been validated in other clinical contexts, detailed in the review by MacLeod et al. [187].

6. Conclusions

Up to 90% of the human genome length is transcribed: ~2% of the genomic DNA is coding for
proteins; ~88% is transcribed but do not encode proteins; and ~10% is not transcribed. In contrast,
~80% of the RNA transcripts are coding for proteins and the remaining ~20% do not. These sequences
are thus less expressed than the coding ones. They are also less conserved between species than coding
genes, but more conserved than the non-coding and the non-transcribed genes. Such transcripts must
therefore play a biological role, which has yet to be described.

Among lncRNAs, NATs are coding or non-coding RNA sequences, which are complementary
to and overlapping with either protein-coding or non-coding transcripts. Their main biological role
is thought to be the regulation of pcGene expression through a variety of molecular mechanisms.
High-throughput transcriptomic studies have demonstrated that the expression of NATs and
lncRNAs is modified under cancerous conditions, making them good cancer biomarkers. Finally,
non-coding/pcGene transcript pairs are interesting, especially for specific target-gene treatments
using ASO.
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NAT Natural antisense transcripts
nc Non-coding
pc Protein-coding
ds Double-stranded
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pcGene Protein-coding gene
lncRNA Long non-coding RNA
lincRNA Long intergenic non-coding RNA
ncRNA Non-coding RNA
mRNA Messenger RNA
RNA Pol II RNA polymerase II
PRC Polycomb Repressive Complex
ASO Antisense oligonucleotide
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