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ABSTRACT

Epitope-based vaccines (EVs) have recently been
attracting significant interest. They trigger an
immune response by confronting the immune
system with immunogenic peptides derived from,
e.g. viral- or cancer-related proteins. Binding of
these peptides to proteins from the major histocom-
patibility complex (MHC) is crucial for immune
system activation. However, since the MHC is
highly polymorphic, different patients typically
bind different repertoires of peptides. Furthermore,
economical and regulatory issues impose strong
limitations on the number of peptides that can be
included in an EV. Hence, it is crucial to identify
the optimal set of peptides for a vaccine, given
constraints such as MHC allele probabilities in the
target population, peptide mutation rates and max-
imum number of selected peptides. OptiTope aims
at assisting immunologists in this critical task. With
OptiTope, we provide an easy-to-use tool to deter-
mine a provably optimal set of epitopes with respect
to overall immunogenicity in a specific individual
(personalized medicine) or a target population
(e.g. a certain ethnic group). OptiTope is available
at http://www.epitoolkit.org/optitope.

INTRODUCTION

Vaccines rank among the greatest achievements of modern
medicine. They utilize the adaptive part of the immune
system to prevent infections as well as to fight chronic
diseases and cancer.

A vital event in the triggering of adaptive immunity
is the recognition of antigen-derived peptides bound to
major histocompatibility complex (MHC) class I and II
molecules by T-cell receptors. Since the MHC is highly
polymorphic, each individual possesses a set of MHC
class I and class II molecules of differing specificities,
i.e. different patients typically bind different repertoires

of peptides. Peptides capable of causing an immune
response are called epitopes. These epitopes form the
basis of so-called epitope-based vaccines (EVs). A mixture
of well-chosen epitopes can evoke an immune response
precisely directed at conserved and highly immunogenic
regions of several antigens. Key criteria for selection are,
e.g. overall immunogenicity, tolerance for antigenic muta-
tions, population coverage and antigen coverage. Due to
the manifold advantages of EVs, discussed in detail in a
recent review (1), and their applicability in personalized
medicine, they have recently been attracting significant
interest.
A crucial step in the design of an EV is the selection of

the epitopes: which set of epitopes yields the best immune
response in a given population or individual? Constraining
factors are economical and regulatory issues, which
impose strong limitations on the number of peptides
that can be included in an EV. This renders the epitope
selection an interesting optimization problem. Neverthe-
less, this critical task is typically performed manually. Sev-
eral computational approaches have been published (2–4).
In a recent paper (4), we proposed a mathematical frame-
work to find a provably optimal set of epitopes for an EV.
Given a set of predicted or experimentally determined epi-
topes, the framework efficiently identifies the set most
likely to elicit a broad and potent immune response in
the target population.
Based on a specific application of this framework,

OptiTope aims at assisting immunologists in the critical
task of epitope selection. It is an easy-to-use web-based
tool to efficiently determine an optimal set of epitopes in a
specific individual or a target population.

RELATED WEB SERVERS

Recently, two web-based tools aiding in vaccine design
have been published. Hotspot Hunter (5) identifies immu-
nological hotspots on pathogenic proteins. The Mosaic
Vaccine Tool Suite (6) provides a set of web-based tools
for designing artificial recombinant proteins to be used
in T-cell vaccines. While the Mosaic Vaccine Tool Suite
focuses on a completely different type of vaccine,
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Hotspot Hunter precedes OptiTope in the EV design
pipeline. The identified peptides are suited as input for
OptiTope.

MATERIALS AND METHODS

Mathematical Framework

OptiTope is based on a recently proposed mathematical
framework for the selection of an optimal set of peptides
for epitope-based vaccines (4). A brief outline of this
framework is given below.
The search for an optimal peptide set for an EV is inter-

preted as an optimization problem: out of a given set
of candidate epitopes, choose a subset which, out of all
subsets meeting certain requirements for a good vaccine
(e.g. mutation tolerance, population coverage), displays
maximum overall immunogenicity. Overall immunogeni-
city is defined to be the immunity induced in the target
population and the following mathematical abstraction is
proposed: given a set of epitopes and a set of MHC alleles,
i.e. a target population, the overall immunogenicity of the
epitope set is assumed to be comprised of the immuno-
genicities of its components with respect to the different
MHC alleles. Furthermore, the probability of an MHC
allele to occur within the target population directly affects
the allele’s contribution to the overall immunogenicity.
(In this context, probability is commonly referred to as
frequency.) A common allele weighs more than an uncom-
mon allele. This yields a mathematical interpretation of
overall immunogenicity as weighted sum over immuno-
genicities of epitopes. Formulation of this optimization
problem as an integer linear program (7) allows finding
the optimal peptide set quite efficiently.
The underlying assumption of independence and addi-

tivity of immunogenicities of individual epitopes is, of
course, a simplification. However, lacking a more sophis-
ticated model of the interplay of multiple epitopes in the
induction of an immune response, this assumption repre-
sents the state-of-the-art. For a more detailed discussion
of this problem and its implications, we refer to (4).

Target population or individual

Given the mathematical background of OptiTope, a target
population or individual is sufficiently described by a set
of MHC alleles and their respective probabilities. The
NCBI dbMHC database (http://www.ncbi.nlm.nih.gov/
gv/mhc) contains data on MHC allele probabilities in var-
ious human populations and geographic areas (8). These
data were retrieved and made available to the OptiTope
users in order to facilitate the input of a target population.

Epitope immunogenicity

In order to increase the usability, OptiTope needs to
incorporate a method to predict immunogenicity.
Unfortunately, the prediction of immunogenicity is a
rather challenging problem and to our knowledge no suf-
ficiently accurate solution exists. However, in (9), Sette
et al. have demonstrated a correlation between immuno-
genicity and MHC class I binding affinity. It is therefore

reasonable [and also very common (e.g. 3,10)] to use MHC
class I binding affinity prediction methods for the predic-
tion of immunogenicity. OptiTope employs three widely
used MHC class I binding affinity prediction methods,
namely BIMAS (11), SYFPEITHI (12) and SVMHC
(13). Prediction methods for MHC class II will be included
in the near future. Predictions of methods that are not
included in OptiTope, e.g. NetMHCpan (14) for MHC
class I or ProPred (15) for MHC class II, can be utilized
via the third input type: a table of epitopes and their
immunogenicities with respect to specific MHC alleles.

Since a positive prediction score does not necessarily
imply immunogenicity, a threshold is required to separate
non-immunogenic from immunogenic epitopes. OptiTope
offers three kinds of thresholds: user-defined, percentage
(16) and halfmax (16). The percentage thresholds are
calculated based on a large set of naturally occurring
peptides. Using, e.g. the 1% threshold, 1% of these pep-
tides would be classified as immunogenic. The halfmax
threshold corresponds to half of the maximal possible pre-
diction score.

Implementation

OptiTope is incorporated into the website SBS
EpiToolKit (16), which is based on the Zope application
server (http://www.zope.org), and the content manage-
ment system Plone (http://plone.org). For the user inter-
face, we employ dynamic HTML with CSS and
JavaScript. Python scripts are used for data validation
and processing. OptiTope was thoroughly tested for
compatibility with the popular web browsers Mozilla
Firefox (version 3.0.5) and Microsoft Internet Explorer
(version 7).

OptiTope uses the GNU Linear Programming Kit
GLPK (version 4.32, http://www.gnu.org/software/glpk)
and the GNU MathProg modeling language GMPL to
formulate and solve the optimization problems.

WEB INTERFACE

OptiTope requires the following input data: (i) sequences
of known antigens, (ii) a target population, i.e. MHC
alleles and corresponding probabilities and (iii) the user’s
requirements on the epitope set to be selected. The infor-
mation given by the user is transformed into an optimiza-
tion problem. If this problem is feasible, OptiTope will
return an optimal set of epitopes along with additional
information on their respective contribution to the overall
immunogenicity. Otherwise, OptiTope will propose
changes to the user’s requirements that might yield a fea-
sible optimization problem. The structure of the web inter-
face is depicted in Figure 1.

An introductory tutorial is provided on the OptiTope
home page to assist new users in learning how to use the
web server.

Conceptual design

For ease of use, the web interface is divided into four
steps: three input steps and one output step. Step-by-
step, the user is asked to enter the required data.
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Navigation through the individual steps is guided by a
navigation bar at the top of each site. The navigation
bar indicates the current step and contains corresponding
instructions. Furthermore, it provides access to a more
detailed help page. In order to keep the page layout
clear, settings and options are hidden from the user by
default. They can be accessed via the advanced options
button underneath the navigation bar.

Target sequences

In the first step, the sequences of known target-specific
antigens are entered. They can either be pasted directly
or uploaded as a file. Three different formats are accepted:
(i) a list of multiple sequence alignments (MSAs) in
FASTA format, (ii) a list of epitopes of equal length,
one epitope per line and (iii) a table of epitopes and
their (experimentally determined) immunogenicities with
respect to specific MHC alleles. Higher immunogenicity
values ought to indicate stronger immunogenicities.
Antigenic sequences entered as MSAs will be converted
into consensus sequences. From these sequences, all pep-
tides of a given length will be derived and will be consid-
ered as candidate epitopes. The user can adjust the peptide
length to be applied via the advanced options.

Target population

In the second step, information on the target population
has to be entered. This step is subdivided into two queries.
The user is queried for (i) the MHC alleles to consider
(if they have not already been entered in the previous
step) and (ii) for their probabilities in the target
population.

(i) MHC alleles can be selected by population or geo-
graphic area based on data (8) retrieved from the
NCBI dbMHC database (http://www.ncbi.nlm.nih.
gov/gv/mhc). The corresponding probabilities will
be employed for the next query. Alternatively, the
MHC alleles can be selected manually from an
expandable allele tree (16) or by pasting a list of
alleles.

(ii) In this step, a list of the selected MHC alleles along
with probabilities (default values or values retrieved
from the NCBI dbMHC database, respectively)
is given. These probabilities can either be modified
manually or they can be replaced by population or
geographic area-specific probabilities from the
NCBI dbMHC database via the advanced options.
Individual MHC alleles can be excluded from fur-
ther processing. Furthermore, low probability MHC

Figure 1. Structure of the OptiTope web interface. OptiTope is divided into four parts: target antigens, target population, constraints and results.
(i) Target antigens: three different formats of antigenic sequences can be entered: (a) a list of multiple sequence alignments of target-specific antigens,
(b) a list of epitopes and (c) a table of epitopes with (experimentally determined) immunogenicities with respect to specific alleles. (ii) Target
population: the information required to specify the target population (MHC alleles and corresponding probabilities) depends on the chosen input
format. (iii) Constraints: OptiTope offers a set of constraints, which can be modified or excluded by the user. (iv) Results: if feasible, OptiTope
presents an optimal set of epitopes.
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alleles can be excluded from the epitope selection
process via a filter in the advanced options section.

If the user has not entered the immunogenicities of the
candidate epitopes together with the target sequences,
OptiTope will employ a prediction method to determine
the respective immunogenicities. The prediction method to
be employed can be selected via the advanced options.

Constraints

In the third step, the user is queried for the requirements
on the epitope set to be selected. Depending on the data
that have been entered in the previous steps (a summary
of these data is given), a list of suitable constraints is
displayed. The user can (de)select and modify these
constraints. Potential constraints are:

� Maximum number of epitopes to select. This con-
straint defines the maximum number of epitopes
OptiTope should select. It is the only obligatory
constraint.
� Minimum epitope conservation. This constraint

ensures that only epitopes that fulfill a user-defined
conservation requirement will be considered.
� Minimum number of alleles to cover. An MHC allele

is considered to be covered by an epitope set, if one of
the epitopes is sufficiently immunogenic with respect

to the allele. If this constraint is selected, the optimal
set of epitopes will be immunogenic with respect to the
specified number of alleles or more.
� Minimum number of antigens to cover. An antigen is

considered to be covered by an epitope set, if one
of the epitopes is derived from this antigen. This con-
straint guarantees that the optimal epitope set will
include epitopes from a specified number of antigens
or more.

The advanced options offer the possibility to set an
immunogenicity threshold, i.e. a minimum immunogeni-
city score required for a peptide to be considered immu-
nogenic with respect to a specific allele. Only peptides
which score above this threshold for at least one MHC
allele will be considered during epitope selection.

Results

The results page gives a summary of the input data and
the selected constraints as well as the results of the
optimization.

If the optimization problem is feasible, a
table containing the optimal set of epitopes will be dis-
played (Figure 2). For every epitope in the set the follow-
ing information is given: its fraction of the overall
immunogenicity, a list of the MHC alleles it covers and,
if antigen information was given, the corresponding

Figure 2. A screenshot from the results page of OptiTope.
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antigens. The user can switch to a more detailed results
table, which contains additional information on epitope
conservation and immunogenicities. Information on the
size of the selected set, the number of covered alleles and
on the number of covered antigens, if applicable, is dis-
played above the table. Furthermore, the coverage of each
of the given MHC loci and the corresponding population
coverage are given. (If locus A has a coverage of 75%, the
probability of an individual from the target population
carrying a covered allele at locus A is 75%. A population
coverage of 80% corresponds to a probability of 80% for
an individual from the target population to carry at least
one of the covered alleles.) The results can be downloaded.
A choice of two file formats is given: XLS (MS Excel) and
CSV (comma separated values). For typical problem sizes,
OptiTope finds an optimal set of peptides within seconds.
Nevertheless, the user can choose to be notified of the
completion of the request via e-mail.

If the optimization problem is infeasible, meaning that
no set of epitopes from the given antigenic sequences
fulfills all requirements, a basic analysis of the problem
is performed. Based on this analysis, OptiTope suggests
constraint modifications that might result in a feasible
problem. If the basic analysis does not yield a possible
explanation for the infeasibility, OptiTope will suggest
to deselect individual constraints or to increase the
number of epitopes to be selected.

CASE STUDY

In order to demonstrate the performance of OptiTope, we
used it to select epitopes suitable for a hepatitis C virus
(HCV) vaccine for the European population. An HCV
dataset from (4) was utilized as antigenic sequence input.
It consists of 10 MSAs corresponding to 10 different HCV
proteins from four different strains, totaling in 4054 anti-
genic sequences. (This dataset is provided as an example
dataset on the web server.) Default settings were used,
i.e. immunogenicity prediction using BIMAS, a minimum
conservation of 20%, coverage of at least 5 out of
10 antigens and of at least 10 out of 19 alleles. Within a
few seconds, OptiTope returns a set of 10 epitopes cover-
ing 5 antigens and 10 alleles, yielding a locus coverage of
�54% for locus A, �20% for locus B and �35% for locus
C. The corresponding population coverage is 94.28%.
Three of these epitopes are known HCV epitopes and
can be found in the Immune Epitope Database (IEDB,
release 2008_4_1_3_28) (17). Another three epitopes are
contained in known longer epitopes. Increasing allele cov-
erage to 19, i.e. 100%, increases locus coverage for locus A
to �79% and to �56% for locus B. Population coverage
is increased to 99.63% (Figure 2). The selected set of epi-
topes includes five known HCV epitopes and another two
epitopes contained in known longer epitopes. Again, this
set of epitopes is found within a few seconds.

CONCLUSION

With OptiTope, we provide an easy-to-use tool that
assists immunologists in designing EVs. Given a set of

antigenic sequences of interest, a target population and
special requirements of the user, OptiTope efficiently
determines an optimal set of epitopes. To our knowledge,
OptiTope is the first web-based approach for optimal
vaccine design.
Currently, OptiTope only offers immunogenicity predic-

tions for MHC class I, i.e. the only way to include MHC
class II in the selection process is via the third input type:
a table of epitopes and their immunogenicities with respect
to specific MHC alleles. We plan to add MHC class II
predictions and further MHC class I prediction methods
in the future. A refinement of the analysis of infeasible
problems in order to provide the user with more detailed
information is also intended. Furthermore, we will
enhance the results page by linking selected epitopes that
can be found in the IEDB (17) to the corresponding IEDB
site.
Due to the lack of a more sophisticated model of immu-

nogenicity, OptiTope is forced to employ a commonly
used additive model as well as prediction methods for
MHC binding instead of immunogenicity. However, this
does not pose fundamental limitations to the method.
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