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ABSTRACT

Objective: Design a metric to assess the comparative
effectiveness of biomedical data elements within a
study that incorporates their statistical relatedness to a
given outcome variable as well as a measurement of
the quality of their underlying data.

Materials and methods: The cohort consisted of
874 patients with adenocarcinoma of the lung, each
with 47 clinical data elements. The p value for each
element was calculated using the Cox proportional
hazard univariable regression model with overall
survival as the endpoint. An attribute or A-score was
calculated by quantification of an element’s four quality
attributes; Completeness, Comprehensiveness,
Consistency and Overall-cost. An effectiveness or
E-score was obtained by calculating the conditional
probabilities of the p-value and A-score within the
given data set with their product equaling the
effectiveness score (E-score).

Results: The E-score metric provided information
about the utility of an element beyond an outcome-
related p value ranking. E-scores for elements
age-at-diagnosis, gender and tobacco-use showed
utility above what their respective p values alone would
indicate due to their relative ease of acquisition, that is,
higher A-scores. Conversely, elements surgery-site,
histologic-type and pathological-TNM stage were
down-ranked in comparison to their p values based on
lower A-scores caused by significantly higher
acquisition costs.

Conclusions: A novel metric termed E-score was
developed which incorporates standard statistics with
data quality metrics and was tested on elements from a
large lung cohort. Results show that an element’s
underlying data quality is an important consideration in
addition to p value correlation to outcome when
determining the element’s clinical or research utility in
a study.

INTRODUCTION

According to the Institute of Medicine com-
mittee, comparative effectiveness research
(CER) is defined as ‘the generation and syn-
thesis of evidence that compares the benefits

ARTICLE SUMMARY

Article focus

= Develop a metric to assess the overall usefulness
or ‘effectiveness’ of biomedical data as it relates
to a given outcome.

= Evaluate the metric on a large lung cancer
cohort for 47 clinical variables using survival as
an endpoint.

= Evaluate the metric on simulated data to deter-
mine whether it is informative across a large
range of data values.

Key messages

= A novel metric termed Effectiveness score was
developed to assess a data element’s real-world
usefulness.

= The metric consisted of two parts; the p value
derived from the data element’s correlation to sur-
vival, and an Attribute score derived by quantita-
tion of four element components; Completeness,
Comprehensiveness, Consistency and Overall-cost.

= The metric was tested on a large cancer cohort
and on simulated data.

Strengths and limitations of this study

= The main strength of this study is the evaluation
of the metric on a large real-world cohort.

= The main limitation is the current lack of more
subjective data for the cost of data acquisition.

and harms of alternative methods to prevent,
diagnose, treat and monitor a clinical condi-
tion or to improve the delivery of care. The
purpose of CER is to assist consumers, clini-
cians, purchasers and policy-makers to make
informed decisions that will improve health-
care at both the individual and population
levels.’! In recent years, CER has garnered
much attention on the basis of two main
factors: (1) the sharp rise in medical care
cost, and (2) the passage of the Patient
Protection and Affordable Care Act (PL.
111-148). Additionally, there is a long-
studied and often-quoted phenomenon
termed practice pattern variation. This obser-
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vation by J] Wennberg and colleagues at the Darmouth
Institute for Health Policy and Clinical Practice, shows
that there is great geographical variation in treatment
for the same condition with some of the treatments
being inferior to others in terms of effectiveness and
cost. Furthermore, if these variations could be elimi-
nated a savings of up to 30% in total healthcare cost
could be possible.>™ In light of this observation and the
aforementioned factors, congressional interest and sub-
sequently funding for CER increased with $1.1 billion of
the American Recovery and Reinvestment Act of 2009
allocated to CER alone. Indeed, the research presented
in this article was conducted under a grant from that
very stimulus money.

As defined above, CER is concerned with the effective-
ness of treatments in the medical setting, and uses
numerous methods to determine the treatment, diagno-
sis or prevention most optimal for the patient popula-
tion as a whole. The work described here is similar in
nature with traditional CER but is undertaken at a more
fine-grain level and is more generalisable to different
types of clinical and biomedical data. Whereas trad-
itional CER research typically uses multiple attributes to
assess a particular procedure or treatment’s effectiveness
for a population we use multiple attributes of each indi-
vidual data element to assess its effectiveness with
respect to a given outcome variable. One can think of
this approach as quantifying the comparative effectiveness
of the individual elements within a study that are often
in turn used to perform comparative effectiveness
research at a higher level. To accomplish this, quantita-
tion of the correlation of a data element to an outcome
and the underlying quality of the data element itself is
performed. These measures are then incorporated into
a metric termed the effectiveness score (E-score).

We propose that calculation of an E-score for all data
elements considered in a CER study is critical for the fol-
lowing reasons. First, the most effective predictors of a
given outcome variable may be any number of elements
ranging from demographic and socioeconomic factors,
such as age, race, education or income, to the altered
expression of a gene or protein. It is beyond the ability
of a researcher to anticipate all of the elements that may
be correlated to a given. We, therefore, begin from the
assumption that all elements in a study are equally valu-
able in predicting outcome. Second, the quality of the
data comprising any particular element is made up of
several factors, here termed attributes, that ultimately
determine the ability to use any given data element for
CER. The E-score, therefore, provides information about
the utility of an element beyond a simple ranking by
outcome-related p value and gives CER investigators a
more thorough understanding of the true utility of each
data element allowing for more advanced data mining
and multivariate analyses using standard statistical and
machine learning techniques.

The main objective in this study was to design a metric
for the assessment of the utility of biomedical data that

incorporates both standard statistical relatedness to a
given outcome and a measurement of the quality of an
element’s intrinsic attributes within a given dataset with
the hope that this metric can then be used for a more
thorough evaluation of individual data elements in
determining their utility for inclusion into higher
dimensional CER research.

MATERIALS AND METHODS

Lung cohort

The data set used in this study consisted of 874 patients
diagnosed with adenocarcinoma lung cancer who con-
sented to Moffitt Cancer Center’s Total Cancer Care
(TCC) protocol. TCC is a multi-institutional research
protocol that prospectively enrolls cancer patients to
permit access to selfreported and medical record data,
blood samples and tissue for research purposes. Patients
who consent to TCC are followed for life, including
screening, diagnosis and treatment of cancer.

Patient data

Each patient has a total of 47 accompanying data ele-
ments encompassing demographic and clinical variables
from Moffitt’s Cancer Registry and TCC source systems.
For a full list of data elements see table 2. Moffitt’s
Cancer Registry abstracts information on demographics,
diagnosis, stage, treatment and chemotherapy from the
medical record. Follow-up for survival occurs annually
through passive and active methods. Patients seen for
second opinions are not included in the Cancer Registry
database because they do not fall under current report-
able state and/or federal guidelines. Smoking status is
categorised as self-report ever smoker (current or
former smoker) or never smoker. Where available,
pathologic TNM staging was utilised and if these data
were missing we utilised clinical stage.

p Value calculation

The p value for either a categorical or a continuous
element was calculated using the Cox proportional
hazard univariable regression model for overall survival
in 2-year follow-up. Asymptotic likelihood ratio test was
used to quantify the p value for each element.

A-score calculation

An attribute or A-score was calculated by quantification
of an element’s quality attributes. For this study, we
limited the A-score to include four main components;
Completeness, Comprehensiveness, Consistency and Ouverall-cost.
The definitions for each of the four components along
with their mean, median and SD within the lung data set
is given in table 1. The first three components can be
thought of as more quantitative in nature as predefined
formulas were used in their calculation. The final compo-
nent, Overall-cost, was by necessity, more subjective due to
the inclusion of gross estimates of the relative cost of a
procedure or treatment, as well as a subjective assessment
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Table 1 Attributes used for A-score calculation

Name Description Mean Median STDV

Completeness The percentage of rows that contain a non-null value for the data element 942 100 16.1

Comprehensiveness The percentage of rows that contain a value where the value is able covera  88.3 99 21.0
topic so that it provides the most complete information to the user

Consistency A measurement indicating the degree to which a set of data is equivalentin  51.8 55 25.1
redundant or distributed databases and reliably captured

Overall-cost A subjective qualitative measurement of the overall burden to the patient and 50 50 35.2

institution. Includes Quality of Life changes due to procedure as well as an

estimate of financial costs

of the effect of a procedure on the patient’s quality of life
(QOL). All A-scores are represented as an integer
between 1 and 100, with 100 representing the optimal
A-score value, that is, higher quality data with less cost
and impact for the patient, and one representing the
least optimal value. Calculation of the A-score consisted
of simply averaging the four components.

E-score calculation
Conditional probabilities for A-score and p value
components.

The E-score is calculated as the product of the condi-
tional probabilities; A-score and p value components.
The conditional probability is the probability of the
observed p value or A-score being the smallest within
the set of observed values. Assumptions include inde-
pendence of data elements, independence of the p
value and A-score and the most significant p value or
A-score is smallest or largest within the tested elements.
The E-score can be written as in equation 1.

ES;=Pr(R(p,)=1|U < p;, Hy) xPr(R(a;)=1|W >a;, Hy)

where i is the ith data element tested; p the p value asso-
ciated with a hypothesis test; a the A-score associated
with a particular data element; U the distribution of p
values; W the distribution of A-scores; R(-) the rank of
the element’ s p-value or A-score compared to U (W).

Using the assumption of independence of tests, we
can rewrite equation 1 into equation 2.

1-P(W<a)"

1_(1_P1)M
“Mx(1-P(W<a)

MXxp;

ES; =

where M is the number of data elements tested.

In brief, the p value portion of the ES is directly comput-
able from the p value, accounting for the number of tests
performed. The A-score portion is computed using the
empirical cumulative distribution function observed (W).

function (p,m) { ((1—(1-p)™))/ (mxp)}

function(a,m,W) { ((1—(ecdf(W)(a))™)/(mx(1—ecdf
(W) (@)}

RESULTS

A-score components quantification

Mean, median and SD (STDV) for each of the four
A-score components are given in table 1. The first com-
ponent, Completeness had the highest mean, median and
lowest STDV. The Completeness component does not dir-
ectly address the type of entry but rather only any form
of non-null entry in the database for that element. The
component, Comprehensiveness, had the second highest
mean and median values. This component is an attempt
to measure the amount of coverage an entry for a data
element provides for a given topic. For example, take
the data element survival; the expected level of coverage
would be time in months. If the entry was given as time
in years then the Comprehensiveness component would be
penalised due to lack of coverage granularity. An entry
such as time given in days would not be penalised as this
could readily be converted to months. The Consistency
component showed much greater variation than either
Completeness or Comprehensiveness. This component mea-
sures the degree of equivalency of information across
disparate databases. In this study, data was derived from
three separate data sources so that this entry represents
the equivalency of entries across these three sources.
Overall-cost had the lowest mean, median and highest
STDV of the four components. This component repre-
sents a subjective qualitative measurement of overall
burden to both the patient and the institution in terms
of financial cost and QOL. Financial cost and QOL were
given a relative cost score between 1 and 100 with 1
being the least expensive and 100 being the most
expensive.

A-score distribution

We wanted to determine the frequency of A-scores
within the potential range of values for the elements
within this study. Figure 1 shows a frequency histogram
of the A-scores for the entire lung cancer cohort. A
large majority of A-scores fell into the upper half of the
possible range of values (50-100). This is a direct reflec-
tion of the make up of the A-score as the components
Completeness and Comprehensiveness showed near perfect
scores for many of the elements. Because of this fact the
useful distribution of A-scores is between the values 50
and 100 and is driven by the large variation in the
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Table 2 Ranking by E-score of the 47 elements from the lung cancer cohort

p Value A-score E-score
Element p Value A-score E-score ranking ranking ranking
Age_at DX 3.75E-08 97 1.00E+00 1 1 1
Gender_Code 6.27E-02 97 3.23E-01 19 2 2
Alcohol_Use 2.16E-03 91 2.16E-01 10 7 3
Tobacco_Use 7.30E-03 83 8.45E-02 14 16 4
Summary_Stage_at_Pres._Code 2.89E-05 73 8.37E-02 4 19 5
Summary_Stage_at_Presentation 2.91E-04 73 8.32E-02 7 20 6
Tumor_Grade_Differentiation 7.52E-05 71 6.62E-02 5 24 7
Pathological_TNM_Stage_Code 1.91E-06 70 6.12E-02 2 26 8
Path_T_Stage_Description 8.17E-03 71 5.31E-02 15 25 9
Surgery_of_Primary_Site_Description 4.94E-06 69 5.31E-02 3 30 10
Spanish_Hispanic_Origin_Description 1.23E-01 96 4.58E-02 22 6 11
Histology_Behavior 1.42E-04 65 4.29E-02 6 37 12
Path_N_Stage_Description 8.32E-03 67 3.89E-02 16 34 13
Lung_Specimen_Type 3.70E-03 61 3.85E-02 13 38 14
Histologic_Type 7.94E—04 56 3.72E-02 9 42 15
CR_Seq 5.84E-01 97 3.64E-02 36 3 16
Histologictype 7.94E-04 53 3.55E-02 8 44 17
Lung_Histologic_Type_Description 2.64E-03 55 3.49E-02 11 43 18
Lung_Regional_Lns_Involved 3.00E-03 46 3.30E-02 12 45 19
Current_Age 7.16E-01 97 2.97E-02 39 4 20
Clinical_TNM_Stage_Code 1.35E-02 57 2.89E-02 17 41 21
Lung_Histologic_Grade_Description 2.10E-02 66 2.83E-02 18 36 22
RNA_QC_Result 2.35E-01 90 1.80E-02 27 8 23
PQC_Result 7.44E-02 70 1.64E-02 20 27 24
Tumor_Site 7.63E-02 59 1.11E-02 21 39 25
Primary_vs_Metastatic 1.80E-01 75 1.11E-02 25 17 26
Surgery_of_Primary_Site_Code 1.62E-01 73 1.10E-02 24 21 27
Race_Description 6.54E—01 97 1.03E-02 37 5 28
Final_QC_Disposition 4.41E-01 90 9.59E-03 31 9 29
Scale_Factors 4.91E-01 90 8.62E-03 34 10 30
QC_Result 2.57E-01 73 7.33E-03 28 18 31
Percent_Tumor 1.49E-01 67 6.89E-03 23 33 32
Chip_QC_Result 6.90E-01 90 6.14E-03 38 11 33
AMP_QC_Result 7.47E-01 90 5.67E-03 40 12 34
Percent_Present 7.64E-01 90 5.54E-03 41 13 35
Array_Pattern 8.55E-01 90 4.95E-03 43 14 36
Clinical_Tumor_Size 2.08E-01 59 4.07E-03 26 40 37
ICD_O_3_Primary_Site_Code 4.07E-01 73 3.79E-03 29 22 38
ICD_O_3_Primary_Site_Description 4.07E-01 73 3.79E-03 30 23 39
Regional_Nodes_Examined 4.60E-01 70 2.54E-03 33 29 40
Protocol_Name 9.13E-01 90 2.47E-03 45 15 41
Percent_Cellularity 4.47E-01 67 2.45E-03 32 31 42
Path_M_Stage_Description 5.45E-01 35 1.35E-03 35 46 43
Lung_Primary_Tumor_Code 9.47E-01 70 1.28E-03 47 28 44
Site_Of_Origin_If_Metastatic 9.47E-01 67 1.12E-03 46 32 45
Lung_Regional_Lns_Examined 8.90E-01 66 1.09E-03 44 35 46
Lung_Tumor_Size 7.74E-01 21 9.30E-04 42 47 47

remaining two A-score components, Consistency and
Overall-cost.

E-score distribution

We wanted to study the distribution of E-scores for all
elements for the entire lung cohort used in this study.
Figure 2 is a log;o plot of the E-scores for all 47 elements
across the 874 patients with lung cancer. The E-scores
are distributed across an approximate threefold range

(0001-1). The E-scores plotted here were calculated as
described in the Materials and Methods section and
were normalised between 0 and 1 before being con-
verted to logjo values. This conversion was chosen to
best visualise the overall distribution of the data.

Element ranking
To understand the value and rank relationships between
p value, A-score and E-score we calculated these three
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Figure 1 Frequency histogram of attribute-scores for entire

lung cancer cohort.

values for each of the 47 elements. Table 2 is a summary
of each element’s p value, A-score and E-score along
with their respective rankings within the lung dataset.
The Element column contains the name of each of the
47 elements used in this study. The p value column
includes the value derived from the Cox regression log
likelihood test using 2-year survival as an endpoint. The
A-score column contains the summary of the four
A-score components as described in the Materials and
Methods section. The E-score column consists of the
values calculated for the current data set comprising 874
patients with lung cancer; with the entire value set
scaled between 0 and 1. The table lists the elements by
descending E-score ranking. The ranking for the p
value, A-score and E-score are also provided. The most
significant E-score for this dataset was Age-atDX, age at
diagnosis. The p value for this element with respect to
2-year survival was also the lowest in the entire data set.
Additionally, the A-score for this element was ranked in
the first position as well. For a more complete descrip-
tion of each element refer to online supplementary
table S1.

Effect of A-score variation on E-scores for a subset of
survey elements

To test the behaviour of the E-score metric we analysed
the effect of A-score variation on E-score values for a
chosen set of survey elements. Figure 2 is a graph of the
E-score values calculated for five selected survey ele-
ments using a set of 10 simulated A-scores at 10 unit
intervals between 10 and 100. It is important to note
that the true p value calculated from the data for each
of the elements was used here (see table 2 for the
p values of each element) and that only the A-scores
were simulated.

Effect of A-score variation on E-scores for a subset of
procedure elements

We wanted to test the behaviour of the E-score metric
for a set of procedure elements with varying A-scores.
Figure 3 is a graph of the E-score values for four
selected procedure elements for a series of 10 simulated
A-scores between 10 and 100. As in figure 2 the actual p
value calculated from the data was used here (see table
2 for the p values of each element) and only the A-score
was simulated.

DISCUSSION

Determination of the ‘best’ or most effective data
element that is prognostic for an outcome variable may
at first glance be a simple process. One needs only to
pick an appropriate endpoint, such as overall survival,
and calculate p values for each element that is possibly
related to that outcome. A simple ranking of the ele-
ments by lowest to highest p value will result in the most
correlated elements. However, in practice this approach
is often not as straightforward as it may seem for various
reasons. First, there can often be several elements with
similar p values. How then is the correct one chosen? It
is unlikely that elements with very similar p values would
not show ranking changes if they were calculated on a
slightly different data set or using a different formula.
Hence, the ‘best’ element with respect to a given
outcome may change depending on the data set or the
method being employed. Second, the data underlying
the elements within the dataset may have differed dras-
tically in their acquisition, from something as simple as
asking a patient their age and smoking history to per-
forming an invasive diagnostic test. The cost in dollars
and to the patient’s QOL will therefore be drastically dif-
ferent for acquisition of these two types of data ele-
ments. Does the researcher simply ignore any
underlying cost or data quality considerations and use
the element with the slightly lower p value? What if the
researcher decides to consider these factors and wants
to quantitate the cost and quality attributes of selected
elements? How is this quantitation formulated? To
address these questions for ourselves and for the bio-
medical research community at large we developed a
novel metric to quantify an element’s underlying data
attributes and incorporate that value with the element’s
relationship to outcome as defined by standard statistical
techniques.

To determine the underlying quality and cost of a
given element we first decided to select four categories
or components that we felt would best cover variations
seen in biomedical data. While there were a virtually
infinite number of choices depending on the focus of
the research and type of element, we settled on the four
components described in table 1 for calculation of our
A-score; Completeness, Comprehensiveness, Consistency and
Overall-cost. The mean and median for Completeness and
Comprehensiveness was very high for our dataset indicating
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that the majority of the samples first, had an entry for
the 47 elements and the entry provided the expected
level of coverage for the topic at hand. The Consistency
component was chosen to address a common problem
seen at our institution and many others; inconsistency of
entries for the same data element across different
source systems. We had always suspected this was an
issue with our data but had not quantified its level until
now. This component along with Overall-cost accounted
for the majority of variation seen in the A-score.
Overall-cost had the lowest mean, median and highest
STDV of the four components. This result was expected
as the data elements naturally fall into two main categor-
ies consisting of demographic or survey-type elements in
which data acquisition is relatively easy resulting in a
higher value, and procedure-based elements when the
information is acquired as part of a procedure or treat-
ment. These procedure-based elements had a higher

Figure 3 Graph of the five
survey-type elements showing

cost both in terms of dollars and in patients QOL and,
therefore, lower values. The distribution of A-scores
(figure 1) was a direct reflection of the median values of
its  four components with  Completeness  and
Comprehensiveness being of high quality and Consistency
and Ouerall-cost of medium quality. One could argue that
because the majority of A-scores are distributed between
50 and 100 we could have simply ignored the first two
components. Although this is a valid argument for this
study it may not hold well for a different data set.
Additionally, there were several elements that showed
large variability in the first two components of the
A-score and we did not want to lose the ability to identify
these types of elements in this and future studies solely
to simplify determination of the A-score.

To assist the research in selecting the ‘best’ element
(s) our derived score must have some meaningful distri-
bution so that two scores could be determined to be
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different by a reasonable assessment. To determine the
range of values for our E-score within the lung cohort
we plotted the distribution of E-scores for all 47 ele-
ments. The range for E-score values was approximately
threefold (figure 2). This range indicated significant
E-score variation within the dataset to rank elements
with respect to E-score. However, if E-score is simply a
reflection of the p value calculated for survival or a
reflection of the A-score for data quality and cost it
would be of little additional value. We wanted to deter-
mine whether E-score would in some cases alter the
ranking of elements with respect to their p values calcu-
lated for a given outcome or A-score. The results in table
2 show the rankings for all three of these values for each
of the 47 elements. The most significant E-score for this
dataset was Age-at-DX (ie, age at diagnosis). The p value
for this element with respect to 2-year survival was also
the lowest in this data set. This element was, therefore,
very effective at predicting overall survival for this dataset.
Additionally, the A-score for this element was ranked in
the first position as well. Typically, survey or demographic
type elements should have a higher A-score which is
evident in table 2. However, some of these types of ele-
ments had lower A-scores than expected due to inconsist-
encies across databases within the institution or to
missing entries. Interestingly, Lung tumour size had the
lowest E-score for this cohort. This was due to its high p
value or lack of correlation to survival and its low A-score
due to low values for the Completeness and Consistency com-
ponents of the A-score.

Most interestingly, the results here demonstrate large
variations among p value, A-score and E-score ranking
suggesting that a high p value or A-score rank does not
necessarily relate to a high E-score rank. For example,

Figure 4 Graph of the two

Pathological-TNM stage had the second highest p value
rank in our dataset; however, it was down-ranked by
E-score due to its low A-score ranking, indicating the
high cost in terms of dollars and patient QOL to acquire
this data. A similar situation is noted for the
Histology_Behavior element. It had a very high p value
rank but a low E-score rank due to its low A value. The
opposite effect was observed for the elements Gender,
Alcohol_Use and Tobacco_Use. Where these three elements
had relatively low p value rankings 19, 10 and 14,
respectively, they had E-score rankings of 2, 3 and 4,
respectively, due to high A-score values. These observa-
tions indicate that application of the E-score to a given
data element in many cases can give the investigator a
measurement of the utility of a data element beyond p
value alone.

Next, we wanted to determine whether our E-score
would be able to reflect changes across a range of
A-scores for a relatively stable p value as could happen
when using a different data set? To address this import-
ant question we first selected five survey-type elements,
and four procedure-based elements. We used their
actual p values calculated within our data set but varied
the A-scores to determine its effect on E-score. Figure 3
shows a large range of variation between elements with
changing A-scores and demonstrates the ability of the
E-score to scale or reflect changes in the underlying
quality of the data, that is, A-score changes. Additionally,
and more importantly, these large variations in E-score
are only observed for those elements for which the p
value with respect to survival was significant as was the
case for Age and Diagnosis, Alcohol Use and Tobacco Use.
Variation of the A-score had little to no effect on the
two elements that had p values that were not statistically
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significant, that is, Gender and Spanish Hispanic Origin.
Similarly, figure 4 shows a large range of variation in
E-scores between two of the elements, Pathological- TNM
Stage and Histologic Type, with changing A-scores. Both of
these elements had p values that were highly significant
with respect to overall survival. Note that although the p
values of the two elements differ by a factor of two rela-
tive p value ranking within the data set is close, thus
accounting for the overlapping E-scores seen here. As
can be observed in figure 3, for the survey elements the
E-score is able to reflect changes in the underlying
quality of the data, that is, E-score changes in a consist-
ent and interpretable manner. Again, variation of the
A-score of those elements having non-significant p
values, that is, Tumor Site and Clinical Tumor Size had little
to no effect on the E-score.

Limitations
The limitations of this type of work are twofold: deter-
mination of the components defining quality and cost
for the A-score metric; and procurement of data needed
to calculate the A-score. As stated previously, the
number of choices for the A-score components is almost
infinite. It would be unlikely that any two researchers
would choose the same four components or define
them in the same manner as we have performed. It is
the subjective nature of this selection process and its
application to underlying data that makes this approach
difficult to reproduce for a different dataset or at a dif-
ferent institution. The questions that arise however is
whether strict adherence to the same A-score compos-
ition chosen for this study is necessary. It would seem
that a reasonable approach would be selection compo-
nents deemed important to define cost and quality of
the underlying data based on the question at hand and
on data availability and formulate an A-score metric
from there. Otherwise, a very detailed description of
each components that make up the A-score and how
they are applied to each data element would be needed
to assure the same results across different data sources.
The second consideration is the amount of additional
data necessary to calculate the A-score. Normally, only
the value of outcome variable and the variable(s)
thought to be related to it are used. Here, those vari-
ables along with the additional metadata for such com-
ponents as Completeness and Comprehensiveness would
need to be collected. Additionally, cost both in financial
terms and to the patient’s QOL would need to be deter-
mined either as a purely subjective measurement or as a
qualitative measurement or a combination of the two.
This process would greatly add to the cost of the
process. Clearly, this approach works best when data
already exist for these components and/or some of the

values for the components, such as Ouverall-cost can be
reasonably estimated.

Conclusion

In summary, a novel metric termed E-score has been
developed which incorporates standard statistics with
data quality metrics. This E-score was applied to a set of
clinical attributes from a lung data set. Our results show
that an element’s underlying data quality can be com-
bined with standard statistical calculation of correlation
to an outcome variable in determining the element’s
clinical or research utility.
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