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Coevolution of the three basic mechanisms of immunity, intrinsic, innate and adaptive, is 
a constant feature of the host defense against pathogens. Within this frame, a peculiar 
role is played by restriction factors (RFs), elements of intrinsic immunity that interfere 
with viral life cycle. Often considered as molecules whose specific functions are distinct 
and unrelated among themselves recent results indicate instead, at least for some of 
them, a concerted action against the pathogen. Here we review recent findings on the 
antiviral activity of tripartite motif 22 (TRIM22) and class II transactivator (CIITA), first 
discovered as human immunodeficiency virus 1 RFs, but endowed with general antiviral 
activity. TRIM22 and CIITA provide the first example of cellular proteins acting together 
to potentiate their intrinsic immunity.
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ReSTRiCTiOn FACTORS (RFs): KeY eLeMenTS OF inTRinSiC 
iMMUniTY AGAinST viRUSeS

In recent years, the role of viral RFs as potent effectors of intrinsic antiviral immunity has become 
more clear (1–5). Most studies have focused on the mechanisms of host-mediated restriction 
of human immunodeficiency virus 1 (HIV-1), in which RFs exert intrinsic antiviral activity by 
targeting different steps of the HIV-1 life cycle, from capsid uncoating to viral budding (4, 6–11). 
Although RFs can be expressed constitutively in the host cell, most of them are potently upregulated 
by molecules of innate immunity such as type I and type II interferons (IFN), reinforcing the 
concept that they are crucial players of the immune defense against retroviruses (12). The most 
extensively studied RFs are Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 
3G (APOBEC3G), Tripartite motif 5-alpha (TRIM5α), tetherin (also known as BST-2, CD317, 
or HM1.24), and Sterile alpha motif domain and histidine aspartic domain containing protein1 
(SAMHD1) (Figure 1).

To evade host restriction, HIV-1 has developed some countermeasures by using viral acces-
sory proteins or by inducing specific mutations on protein interfaces (13). For example, the 
human APOBEC3 G/F enzymes are cytidine deaminases packaged into the virus particles during 
assembly. They inhibit reverse transcription by deaminating viral cDNA cytosines to uracils, thus 
introducing G-to-A hypermutations in the viral genome (14–17). The viral infectivity factor of 
HIV-1 counteracts the APOBEC3 activity, by mediating its proteasomal degradation. Similar to 
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FiGURe 1 | Schematic overview of the action of different restriction factors (RFs) at various stages of the human immunodeficiency virus life cycle. RFs are in bold 
and framed. Their targeted functions on the virus life cycle are indicated in red. Tripartite motif 22 (TRIM22) and class II transactivator (CIITA), the two RFs described 
in this review are magnified and written in violet. TRIM5α acts at early phases of virus infection by disturbing and inducing a premature uncoating. SAMHD1 inhibits 
reverse transcription of the viral RNA by either targeting the dNTP pool or reverse transcription products. CIITA acts by inhibiting the Tat-mediated activation of 
transcription and particularly the elongation of primary transcripts. TRIM22 acts both at the level of transcription of viral DNA by blocking the action of Sp1 and at 
the level of assembly of new viral particles. Tetherin blocks the budding of viral particles at the cell surface. APOBEC3G (A3G) incorporates into newly formed viral 
particles and after infection of a new cell A3G induces hypermutations during the process of reverse transcription thus inhibiting the viral replication cycle.
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APOBEC3 enzymes SAMHD1 also inhibits retroviral transcrip-
tion, by depleting the intracellular pool of deoxynucleoside 
triphosphates available during early reverse transcription (17). 
SAMHD1 activity is prevented in HIV-2 and related SIVs by 
the viral proteins Vpx and Vpr (18, 19). Different from the host 
factors mentioned above, TRIM5α acts as a species-specific 
antiviral factor. Indeed rhesus monkey TRIM5α (rhTRIM5α), 
but not human TRIM5α, potently limits HIV-1 infection in Old 
World monkeys by targeting the viral capsid, thus preventing 
the uncoating of the viral pre-integration complex (20). Tetherin 
targets the post-integration stages of HIV-1 replication and pre-
vents the release of nascent viral particles by anchoring virions 
on the cell surface of HIV-1 infected cells. Viral proteins Vpu 
and Env overcome tetherin restriction by sequestering tetherin 
in cellular compartments away from sites of viral budding or by 
targeting it for degradation into lysosomes (21).

Often considered as independent elements in the action 
against virus infection, recent studies unveil, instead, that RFs 
may act in concert against the pathogen. This review will discuss 
the example of cooperativeness in HIV-1 restriction of two 
recently described RFs, the tripartite motif 22 (TRIM22) and the 
MHC class II transactivator (CIITA). Importantly, this functional 
synergy is mirrored by their cellular policy of getting together  

in common subcellular compartments where other crucial fac-
tors controlling HIV-1 replication convene. Thus, TRIM22 and 
CIITA represent a clear example of concerted action whose final 
goal is favored by compartmentalization of multiple players 
involved in fighting against HIV-1.

MeCHAniSMS OF TRiM22 AnD  
CiiTA viRAL ReSTRiCTiOn

Tripartite motif 22 was first identified as an IFN-inducible 
protein that restricts HIV-1 transcription (Figure 1) (22). The 
first clinical evidence highlighting the antiviral function of 
TRIM22 in vivo was reported by Singh et al. demonstrating that 
in peripheral blood mononuclear cells (PBMCs) of infected 
patients, the expression of TRIM22 was significantly increased 
and correlated with lower viral loads and higher CD4+ T cell 
counts (23, 24). At present, several reports demonstrated that 
TRIM22 acts as RF against a broad spectrum of viruses. Besides 
inhibiting HIV-1 transcription, TRIM22 also inhibits Influenza 
A virus (25), Hepatitis B and C viruses (26, 27), and encephalo-
myocarditis virus (28), by using different mechanisms. TRIM22 
belongs to TRIM family of proteins exerting various functions, 
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including cellular proliferation, apoptosis, oncogenesis, and 
antiviral activity (29). TRIM proteins are characterized by 
the RBCC motif, consisting in a Really Interesting New Gene 
(RING) domain, one or two B-boxes followed by a coiled-coil 
(CC) region. The C terminal part is specific for each TRIM (6). 
The RING domain is involved in protein–protein interactions 
and is associated with E3 ubiquitin ligase activity (30). The CC 
region is crucial for the formation of protein complexes and 
promotes homo- and hetero-oligomerization that may cause 
dislocation in distinct subcellular compartments (31, 32). 
TRIM22, as other TRIM proteins, contains a C-terminal B30.2/
SPRY domain, whose function has not been fully clarified. Some 
studies have shown that it is also critical for TRIM22 nuclear 
localization and formation of nuclear bodies (33). Furthermore, 
the B30.2/SPRY was shown to dictate the different subcel-
lular distributions and thus specific functions of TRIM family 
members (34, 35). Indeed, the B30.2/SPRY domain is essential 
for TRIM22-mediated activation of nuclear factor kappa B  
(NF-κB) (26, 36) and possibly for the recently described 
TRIM22-mediated monocyte apoptosis (37). The intimate  
reasons of the distinct subcellular distribution of TRIM22 found 
in various studies, however, remain controversial. Indeed, 
several factors may influence the subcellular localization of the 
protein, such as the assessment of endogenous versus exog-
enous expression, the cell line analyzed, the cell cycle, being 
epitope-tagged or untagged, and the method of fixation used 
in the analysis (32). We and others have reported that TRIM22 
localizes in the nucleus as punctate bodies (26, 38, 39). In some 
cells, these TRIM22 nuclear bodies partially overlap with Cajal 
bodies (34, 35) or centrosome (39). Other investigators have 
shown that TRIM22 may also localize in the cytoplasm with a 
diffuse and/or a speckled pattern (33–35). Here, TRIM22 local-
ized in vimentin-containing structures (39).

The considerations expressed above are crucial for a precise 
delineation of additional mechanisms of inhibition of HIV-1 
replication mediated by TRIM22. Indeed, Barr et  al. reported 
that cytoplasmic TRIM22 ectopically expressed in human 
epithelial HeLa or in osteosarcoma HOS-CD4-CXCR4 cell lines 
blocked the release of HIV-1 particles by targeting Gag and thus 
inhibiting HIV particle assembly (Figure  1). This inhibitory 
function depended on its RING domain (40). Other reports 
demonstrated that TRIM22 overexpressed in COS-1, human 
macrophages or in 293 T cells impaired basal as well as phorbol-
12-myristate13-acetate (PMA)-ionomycin induced HIV-1 long 
terminal repeat (LTR)-mediated transcription when present in 
the nucleus (7, 22, 41). TRIM22 suppressed transcription from 
HIV-1 LTR independent of its E3 ubiquitin ligase activity and did 
not inhibit neither Tat nor NF-kB-activated HIV-1 transcription 
(7). Recently, this effect has been attributed to the capacity of 
TRIM22 to affect the binding of Specific protein 1 (Sp1) to the 
HIV-1 LTR promoter region (42) (Figure 1). Although most of 
the studies demonstrating the antiviral function of TRIM22 have 
been conducted by using ectopically expressed proteins, some 
reports indicated that physiologic levels of TRIM22 could indeed 
interfere with HIV-1 replication (7, 24). In particular, Kajaste-
Rudnitski et al. identified TRIM22 as the HIV-1 RF expressed 
in a subset of U937 promonocytic cell clones poorly permissive 

to HIV-1 replication, and not expressed in the isogenic HIV-1 
permissive U937 cell clones (7, 43). In this regard, they found 
that the depletion of TRIM22 in non-permissive U937 clones 
increased viral LTR transcription to levels closer to those 
observed in the permissive cells, thus suggesting that TRIM22 
contributed to HIV-1 refractory phenotype of poorly permis-
sive cells (7). Consistently, exogenous expression of TRIM22 in 
permissive clones reduced HIV-1 LTR transcription.

The MHC class II transcriptional activator, also designed 
CIITA, was originally discovered as a master regulator of major 
histocompatibility complex (MHC) class II gene expression 
(44–46). Both constitutive and IFNγ-inducible expression of 
MHC-II are under the control of CIITA (47). By regulating the 
expression of all MHC class II genes, CIITA controls antigen 
presentation to CD4+ T helper (TH) cells, thus playing a critical 
role in the triggering of the adaptive immune response against 
a wide variety of antigens including pathogens (48, 49) and 
tumors (50). CIITA is a large protein characterized by distinct 
functional domains critical for its transactivating function: the 
N-terminal transcription activation domain (AD); the proline/
serine/threonine-rich region (P/S/T); the GTP-binding domain 
(GBD), and the C-terminal leucine-rich repeats (LRR) important 
for the subcellular localization of the protein (51–53).

Besides its role in antigen presentation, via the regulation 
of MHC-II genes expression, it was demonstrated that CIITA 
restricts HIV-1 infection in human T cells by acting at the level 
of viral LTR transcription (Figure 1). CIITA binds to CyclinT1 
of the positive transcription elongation factor b (P-TEFb) (54) 
and competes with the viral transactivator Tat for the binding to 
CyclinT1 (55). Subsequent studies have shown that CIITA acts 
as a general RF against retroviruses (49). Indeed, CIITA inhibits 
human T lymphotropic virus 2 (HTLV-2) replication, by target-
ing the viral transactivator Tax-2 (56). This inhibition occurs by 
preventing the association of Tax-2 to the common binding ele-
ment nuclear factor Y (NF-Y), used by the virus to promote viral 
transcription (57, 58). Importantly, CIITA blocks the replication 
of the HTLV-1, the first discovered human oncogenic retrovirus 
(59), responsible for a severe form of T cell leukemia-lymphoma 
of the adult (ATL). Here, CIITA exerts a double function:  
it competes with the viral transactivator Tax-1 for binding with 
key cellular factors required for Tax-1 transactivating function 
on the viral LTR, and it binds directly to the viral transactivator, 
greatly limiting its intracellular migration (49, 60). Thus, CIITA 
restricts HTLV-1 viral replication by physically and function-
ally excluding Tax-1 transactivator from its crucial action in 
recruiting cellular transcription factors on virus LTR promoter 
to initiate viral replication. Tax-1 is crucial not only for the 
regulation of viral replication but also for its key action on cel-
lular transformation predisposing to ATL. In this regard, it has 
been recently demonstrated that CIITA affects not only Tax-1 
transactivating capacity but also Tax-1-mediated NF-kB activa-
tion, the crucial molecular event in initiation of leukemogenesis 
(61). Here, CIITA exerts its inhibitory function mainly by retain-
ing Tax-1-NF-kB complex in the cytoplasm, thus preventing 
the translocation of NF-kB to the nucleus and the consequent 
activation of NF-kB responsive genes. In this regard, CIITA may 
counteract the oncogenic potential of HTLV-1 (52, 53).

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FiGURe 2 | The recruitment of factors in tripartite motif 22 (TRIM22) nuclear bodies strongly inhibits viral gene expression. (A) Human immunodeficiency virus 1 
(HIV-1) gene transcription and expression are essential steps in the viral life cycle. HIV-1 transcription is under the control of several factors among which NFAT, 
NFkB, and Sp1 (symbolized in the figure as a square, oval and circle, respectively) are particularly important. They bind to specific sequences of the 5′LTR promoter/
enhancer region to activate viral genome transcription. The cellular transcription factor Sp1 is one of the most potent inducer of HIV-1 gene expression and it is 
crucial to initiate the basal transcription of viral RNA. The viral transactivator protein Tat plays a central role in sustaining a high level of HIV-1 replication. When  
Tat is present and binds to the bulge of the Trans-Activation Response (TAR) RNA element, the cellular transcription elongation factor P-TEFb, composed by the 
regulatory subunit CyclinT1 (CyT1) and the kinase subunit CDK9, will be recruited. Upon phosphorylation of RNA polymerase II (POL II), TAR can be elongated  
to the full length viral RNA. (B) TRIM22 nuclear bodies, containing class II transactivator (CIITA) and PML, recruit also CyT1 and Sp1, thus impairing both HIV  
gene transcription initiation and transcription elongation.
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THe iMPORTAnCe OF SUBCeLLULAR 
COMPARTMenTALiZATiOn TO 
COUnTeRACT viRAL RePLiCATiOn

As mentioned above, the first clue that CIITA may act as an 
RF was made when it was found that CIITA inhibited HIV-1 
replication in T  cells (55). Relevant to HIV infection, subse-
quent recent studies have shown that CIITA, like TRIM22, 
was expressed in HIV-1 poorly permissive U937 myeloid cell 
clones, and absent in the permissive U937 myeloid parental cells  
(52, 53). Importantly, transfection of CIITA in HIV-1 permissive 
U937 clones resulted in the inhibition of Tat-dependent HIV-1 
replication independent of TRIM22 (52, 53). Thus, CIITA is an 
HIV-1 RF for both lymphoid and myeloid cells.

It was apparent, however, that neither CIITA nor TRIM22 
alone could restore completely the level of HIV-1 inhibition of 
replication observed in poorly permissive cells (7, 52, 53), sug-
gesting that the simultaneous expression of these two RF could be 
required for a more effective HIV-1 restriction (52, 53). To better 
delineate the biological basis of the possible cooperativeness 
between CIITA and TRIM22, further experiments were designed 
to assess possible interaction and subcellular localization of the 
two RFs. It was found that TRIM22 interacted with CIITA and 
recruited it in newly defined compartments that we designated as 

TRIM22 nuclear bodies (Figure 2) (38). Interestingly TRIM19, 
another member of TRIM family, also known as promyleocitic 
leukemia protein (PML), and reported to inhibit the replication 
of various viruses, including HIV-1 (62–66), co-localized to a 
significant number of TRIM22 bodies. Relevant to this point, 
previous studies showed that PML and CIITA homed to the 
same nuclear bodies when cells were treated with IFN-γ (67). 
Thus, it was important to assess whether in cells co-expressing 
TRIM22 and CIITA, the latter was recruited by TRIM22 in 
nuclear bodies containing also endogenous PML. Indeed, this 
was the case (38). Of further relevance was the fact that TRIM22 
nuclear bodies hosted also CyclinT1 of the P-TEFb complex,  
a key component of the trascription machinery used by HIV-1 to 
promote viral gene expression. CyclinT1 was previously shown 
not only to be bound by CIITA to inhibit Tat-mediated HIV-1 
transcription (55), but also to localize in PML bodies where 
aggregation with PML negatively affected Tat-induced LTR 
transcription (68). Interestingly, silenced but transcriptionally 
competent HIV-1 proviruses were shown to reside in close 
proximity to PML NBs and this association inhibited HIV-1 gene 
expression (69).

Taken together, these recent observations strongly point to 
the possibility that CIITA and PML cooperate in the inhibition 
of Tat-mediated HIV-1 LTR transactivation by competing with 
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Tat for the binding to CyclinT1. Moreover, TRIM22 inhibits basal 
HIV-1 LTR transcription by affecting the binding of Sp1 to the 
viral promoter (42), and PML interacts with and sequesters Sp1 
in PML nuclear bodies, suppressing the transcriptional function 
of Sp1 to its target sequence (70). Thus it is also possible that 
PML, by associating with Sp1, contributes to TRIM22-mediated 
inhibition of basal HIV-1 transcription as well (Figure  2). 
Within this frame, TRIM22 nuclear bodies may then be seen as 
the first example of an intracellular hub where several RFs may 
convene and act in concert to inhibit HIV-1 viral replication. 
This may be relevant for the mechanism of latency and persis-
tence as the regulation of HIV-1 transcription might correlate 
not only with the localization of proviral DNA (69) but also  
with the recruitment-dependent synergy of key transcription 
factors with inhibitory function on viral transcription.

COnCLUDinG ReMARKS AnD FUTURe 
PeRSPeCTive

Although several studies have focused at clarifying the antiviral 
mechanisms of host RFs, much research is still required particu-
larly on those aspects related to the possible cooperative action 
of RF during viral infection. In this review, we summarized the 
recent acquisition on the function of two newly defined RFs, 
CIITA and TRIM22, against retroviruses, particularly HIV-1, 
highlighting peculiar aspects that strongly suggest the existence 
of a concerted action against HIV-1.

First, the generation of specific TRIM22 nuclear bodies and 
the accumulation of TRIM22 and CIITA in these compartments.

Second, the recruitment of CIITA and CyclinT1, a key com-
ponent in the HIV-1 Tat-mediated elongation of HIV-1 primary 
transcripts, in the same TRIM22 nuclear bodies, an event that 
may ensure a potent inhibition of HIV-1 transcription by acting 
at basal (through TRIM22) and Tat-promoted (through CIITA) 
LTR transcription.

Third, the co-localization in TRIM22 nuclear bodies of PML,  
previously shown to affect Tat-dependent LTR transcription 
and to bind Sp1, can synergize with the inhibitory action of 
both CIITA and TRIM22.

The above findings now open up the field to novel investiga-
tions and additional interesting new questions related, for exam-
ple, to the intimate molecular mechanisms that drive distinct 
RFs to migrate to the same endocellular compartments and to 
retain them in the endocellular compartment. Additionally, 
are these mechanisms of co-localization of molecules with 

potential synergic action against the virus an active response of 
the infected cells to the insult or, paradoxically, are used by the 
virus to tentatively counteract or even neutralize its intracellular 
opponents? In the latter case may RFs be used by the virus to 
favor a state of latency by reducing its capacity to replicate? Is 
the co-localization of several RFs in the same compartments the 
mirror of a recently acquired evolutionary action to better fight 
virus infection, or a mechanism to serve other diverse functions 
in cell homeostasis? CIITA is one of the most important regula-
tors of adaptive immunity through its activating function on the 
expression of MHC class II genes and thus on antigen presenta-
tion to CD4+ TH cells. Is its function as RF against retroviruses 
a recent diversification of its duties or an old function preceeding 
its role on adaptive immunity?

Future research on the mechanisms of subcellular localiza-
tion and redistribution as well as functional cooperativity 
between distinct RFs will certainly enlarge our knowledge on 
the complexity of host cell–pathogen interaction and provide 
new ideas and strategies to better counteract viral infectivity and 
spreading.
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