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Abstract

The current coronavirus disease 2019 (COVID-19) pandemic, caused by the coronavirus 2

(SARS-CoV-2), involves severe acute respiratory syndrome and poses unprecedented

challenges to global health. Structure-based drug design techniques have been developed

targeting the main protease of the SARS-CoV-2, responsible for viral replication and tran-

scription, to rapidly identify effective inhibitors and therapeutic targets. Herein, we con-

structed a phytochemical dataset of 1154 compounds using deep literature mining and

explored their potential to bind with and inhibit the main protease of SARS-CoV-2. The three

most effective phytochemicals Cosmosiine, Pelargonidin-3-O-glucoside, and Cleomiscosin

A had binding energies of -8.4, -8.4, and -8.2 kcal/mol, respectively, in the docking analysis.

These molecules could bind to Gln189, Glu166, Cys145, His41, and Met165 residues on

the active site of the targeted protein, leading to specific inhibition. The pharmacological

characteristics and toxicity of these compounds, examined using absorption, distribution,

metabolism, excretion, and toxicity (ADMET) analyses, revealed no carcinogenicity or toxic-

ity. Furthermore, the complexes were simulated with molecular dynamics for 100 ns to cal-

culate the root mean square deviation (RMSD), root mean square fluctuation (RMSF),

radius of gyration (Rg), solvent-accessible surface area (SASA), and hydrogen profiles from

the simulation trajectories. Our analysis validated the rigidity of the docked protein-ligand.

Taken together, our computational study findings might help develop potential drugs to com-

bat the main protease of the SARS-CoV-2 and help alleviate the severity of the pandemic.
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Introduction

Coronavirus disease 2019 (COVID-19) is caused by a new variant of the severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) that is 65–125 nm in diameter and originated from the

Hubei Province of Wuhan in China [1]. A higher basic reproduction rate (R0 = 2–6.47) due to

human-to-human transmission, either via respiratory droplets or via close contact with people,

indicates the high transmissibility of the SARS-CoV-2 [2, 3]. According to the most recent

information provided by the WHO, the outbreak has resulted in 536,590,224 confirmed cases

and 6,316,655 deaths globally, as of June 20, 2022 (https://covid19.who.int/). SARS-CoV-2 is

included in the Ortho-Coronaviridae subfamily of the Coronaviridae family and belongs to

lineage B of the Betacoronavirus genus [4, 5]. The SARS-CoV-2 genome is the longest known

RNA genome, composed of a single open reading frame and two un-translated regions (UTRs)

with a 30 poly-A tail and a 50 cap structure [4, 6, 7]. Among the six open reading frames (ORFs),

nonstructural proteins (nsp1–16) are encoded by the first ORF (ORF1) at the 50 region. The

remaining ORFs encode four structural and accessory proteins [8–10].

Mpro is a crucial enzyme that plays a key role in viral replication and transcription and is a

promising therapeutic target against SARS-CoV-2 infection [11]. Being proteolytically auto-

cleaved between nsp4 and nsp6, Mpro (nsp5) produces functional proteins from the polypro-

teins 1a (pp1a; 486 kDa) and pp1ab (790 kDa), which are overlapping replicase polyproteins

that mediate viral replication and transcription [12, 13]. Nonstructural proteins, nsp1-nsp6,

are produced by proteolytic cleavage between pp1a and pp1b along with the RNA-dependent

RNA polymerase (RdRp) [14, 15]. The envelope (E), nucleocapsid (N), spike (S), and mem-

brane (M) proteins, as well as accessory proteins, are encoded by the subgenomic RNAs pro-

cessed from nsps [16, 17].

Main protease (Mpro) induces maturation of the polyproteins and is a prerequisite for nsps

protein synthesis. Hence, the life cycle of the virus depends on the activity of Mpro. Pathogen

progression and immune response within the host cell rely on the Mpro activity to produce

the viral replicase enzyme [7, 16]. Therefore, viral replication and viral transcription require

functional Mpro [15, 18]. Given the importance of its activity, Mpro has become a major focus

for discovering novel and effective antiviral drugs [14, 19]. Inhibiting Mpro enzyme activity

blocks viral replication by suppressing the production of infectious viral particles [13, 20].

Eventually, pathogenicity is mitigated as the viral particles fail to evade the host cell’s innate

immunity [18, 21]. An Mpro homolog has not been identified in the human genome. All coro-

naviruses strictly conserve this enzyme, making it a potential therapeutic target for pharmaco-

logical inhibitors that could lead to the development of novel antiviral drugs [22].

Natural products, also known as secondary metabolites, have been the most significant

sources of effective drug candidates [23–27]. Throughout history, phytochemicals have been

used as remedies in the form of traditional medicines, potions, and oils. According to World

Health Organization (WHO), 80% of the global population still uses conventional plant-

derived medicines for basic health care, and 122 plant-derived pharmaceuticals have ethno-

pharmacological implications. For instance, “aspirin”, which is derived from a natural product,

is a well-known anti-inflammatory agent [28]. Moreover, digitoxin, an active plant-derived

component, improves heart contractibility strength. Furthermore, penicillin is the most well-

known natural product derived from a fungus [28]. Lung cancer, acute leukemia, thyroid can-

cer, soft tissue and bone sarcomas, and both Hodgkins and non-Hodgkins lymphomas are all

treated using doxorubicin [23]. Quinine has been used to treat malaria, fever, cancer, mouth

and throat infections, and indigestion for millennia [28].

Natural components such as Pudilan Xiaoyan oral liquid, Xuebijing, Propolis, Tripterygium

wilfordii, Artemisia annua, Glycyrrhiza glabra L., and Jinhua Qinggan granules exhibit
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plausible anti-SARS-CoV-2 effects according to an in silico prognosis [29]. Likewise, emodin,

hesperidin, and chrysin have shown an S protein inhibiting efficacy that is analogous to chlo-

roquine in tandem with hydroxychloroquine [30]. Phytochemicals such as lignan, quercetin,

kaempferol, N-cis-feruloyltyramine, sugiol, jasmonic acid, putaminoxin D, 5,7-dimethoxyfla-

vanone-40-O-β-d-glucopyranoside, bonducellpin D, and caesalmin B have displayed anti-

SARS-CoV-2 effect against Mpro target [31–33]. Moreover, karuquinone B, Lonicerae Japoni-

cae Flos, and castanospermine, against S protein, in conjunction with cryptotanshinone, mou-

pinamide, quercetin, coumaroyltyramine, kaempferol, tanshinone IIa, and N-cis-

feruloyltyramine, against PLpro protein, have revealed inhibitory effects on SARS-CoV-2 [32,

34, 35]. Recently, a flavonol named quercetin, an FDA-approved compound included in anti-

allergy and antioxidant medicines, has shown a promising inhibitory effect against SARS--

CoV-2. As natural compounds and phytochemicals are efficiently processed at lower costs and

have an impact on every stage of the interaction between the host and the virus, the quest for

the most efficacious anti-SARS-CoV-2 therapeutic phytochemical is a worthwhile investiga-

tion to be performed both in silico and in vivo. Therefore, natural products and several phyto-

chemicals, solely or in combination with traditional therapies, can be utilized to preclude and

treat SARS-CoV-2 disease [29].

Computational drug detection schemes that include virtual screening techniques and

molecular dynamics simulation proceedings are reliable high-throughput methods to identify

plausible antiviral phytochemicals among a diverse array of repurposed phytochemical candi-

dates. We hypothesized that in conjunction with molecular docking, a centralized virtual

screening scheme can estimate the binding energy of compatible molecular interactions

between the objective protein substrate and the potential ligand library. Moreover, computa-

tional methods identifying possible binding modes and binding site residues located in con-

served motifs are plausible and scientifically reputable techniques to recognize repurposing

phytochemicals. Such methods using drug-repurposing phytochemicals with antiviral activi-

ties consume less time than laborious conventional screening methods.

In low-income, economically backward, and underdeveloped countries, 17.8% of the people

have received only one dose of the COVID-19 vaccine (https://ourworldindata.org/covid-vacc

inations?country). The lack of vaccines and effective antiviral components and their limited

efficacy necessitate the development of phytochemical-based eco-friendly phytopharmaceuti-

cals against viral diseases that inhibit viral replication and penetration, while having manage-

able side effects and cost-effectiveness [36, 37]. Therefore, in this study, we aimed to identify

effective inhibitors and therapeutic targets for blocking the function of SARS-CoV-2. We

retrieved 1154 phytochemicals by literature review and docked them against Mpro using a

molecular docking technique that calculates the binding affinities and modes between the tar-

get substrate (e.g. proteins) and numerous ligands, such as phytochemicals, in the shortest

time possible.

Material and methods

Protein preparation

The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB)

Protein Data Bank was used to obtain the crystal structure of Mpro in SARS-CoV-2 (PDB-ID:

6LU7; resolution 2.16) [38]. The latest version of the Discovery Studio [39] and the PyMol soft-

ware [40] package were used to deplete and capacitate the extracted protein structure through

the computational process. First, we eliminated all the heteroatoms, water molecules, and

inhibitors in Mpro. Then, a computational tool named SWISS PDB Viewer software [41] pack-

age was applied for further purification and energy depreciation in the presence of the
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Groningen Molecular Simulation (GROMOS) 43B1 force field. Alongside, the optimized crys-

tal conformation of Mpro was scrutinized using the same software to recognize subsistent

characteristics that include side-chain geometry, lacking hydrogen, and erroneous bond order.

Ligand preparation

About 1154 phytochemicals were identified from various medicinal plants after an extensive

and thorough literature survey (S1–S3 Tables). The three-dimensional structures of the pro-

cured phytochemicals that would be efficient ligand molecules were retrieved from the Pub-

Chem database [42]. For optimization and energy minimization of the ligand structure within

about 2000 minimization steps, mmff94 force field [43] along with the steepest gradient algo-

rithm was utilized.

Molecular docking study. Molecular docking through PyRx Virtual Screening Tools

(Autodock Vina, v.1.2.0.) [44] was performed to determine the binding affinity between the

phytochemicals and Mpro and to elucidate the binding pose, exhibiting every single feasible

orientation and conformation for any specific ligands at the binding site of the Mpro and the

phytochemicals. A suitable gradient method and a universal force field (UFF) were used to

achieve structural optimization and energy minimization. The numerical value of the sum of

the number of minimization steps programmed was about 2000. As compatible ligands and

substrates are required to undergo docking in AutoDock Vina, Mpro was chosen as the mac-

romolecule substrate, and phytochemicals were selected as the ligands. After precisely prepar-

ing the ligand and the substrate, a grid box in Autodock was imposed to identify the substrate-

binding pocket representing the active site of the main protease. At the docking site of Mpro,

the assigned grid box annotated the dimensions of X: 50.3334 Y: 67.2744 Z: 59.2586 Å, cen-

tered on X: 26.299 Y: 12.6039 Z: 58.9455 Å. As the ligand-flexible and protein-fixed docking

was run, an anchored protease was identified, where every bond of the ligands was rotatable.

After the completion of molecular docking, the highest docking energy signified the preemi-

nent conformation. Based on the highest binding affinities and non-bonded interactions, the

three top-most potential phytochemicals were marked for further investigation. Next, we used

BIOVIA Discovery Studio and PyMol to explore the transcendent or docked conformations

with the maximum docking energy by utilizing and assessing the visualized non-bonded inter-

actions between the selected phytochemicals and the Mpro protein. Furthermore, the molecu-

lar docking approach with the formerly formulated grid was executed to dock the co-

crystallized N3 ligand of 6LU7 by utilizing the ‘PyRx’ tool.

Absorption, distribution, metabolism, excretion, and toxicity (ADMET)

analysis

Indispensable online-based servers, such as the ADMET structure-activity relationship

(admetSAR) [45], SwissADME [46], and pKCSM [47] databases, were used to analyze and

evaluate the physicochemical descriptors in conjunction with the pharmacokinetic properties.

The above-mentioned web servers require Canonical Simplified Molecular-Input Line-Entry

System (SMILES) retrieved from the PubChem database that predicts medicinal chemistry

compatibility of the selected plausible antiviral phytochemicals.

Biological activities of the drug candidates

The online cheminformatics server "Molinspiration" (https://www.molinspiration.com/) was

used to evaluate the biological activity of the screened phytochemicals. SMILES of these phyto-

chemicals retrieved from the PubChem database were supplied as inputs to assess several bio-

logical activity parameters. This program applies sophisticated Bayesian statistics to assess a
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training set that consists of active structure and compares with the inactive molecules. Based

on the investigation, a fragment-based model was created, and the bioactivity of each substruc-

ture fragment was estimated, adding up to the total activity contributions of the molecules’

fragments.

Molecular dynamics simulation

The structural stability and constancy of the docked complex were precisely evaluated through

the molecular dynamics simulation study. For molecular dynamics simulation, another scien-

tific artificial reality application (YASARA) dynamics program [48] which used Assistant

Model Building with Energy Refinement 14 (AMBER14) forcefield [49] was utilized. A cubic

simulation cell was generated and extended for 20 Å at every part of the simulated protein-

ligand complex. The docked complexes were initially cleaned and optimized with the hydro-

gen bond network orientations. The TIP3P water solvation model was used at 0.997 g/L-1,

25˚C, and 1 atm, and energy minimization was performed using the steepest gradient algo-

rithms with simulated annealing methods [50]. The physiological condition of the simulation

cell was neutralized by the addition of 0.9% NaCl at pH 7.4 and 25˚C. Long-range electrostatic

interactions were calculated using the Particle Mesh Ewalds algorithm with a cut-off radius of

8 Å [51]. The time step of the simulation was set as 1.25 fs. The simulation trajectories were

saved after every 100 ps, and the simulation was extended up to 100 ns periods. The trajectories

were used to calculate the root mean square deviation (RMSD), root mean square fluctuation

(RMSF), radius of gyration (Rg), solvent-accessible surface area (SASA), and hydrogen bonds

[52–61].

Results

Molecular docking analysis

The three phytochemicals identified among the 1154 in PubChem were cosmosiine

(CID_5280704), pelargonidin-3-O-glucoside (CID_12302249), and cleomiscosin A

(CID_442510) with binding affinities -8.4, -8.4, and -8.2 kcal/mol, respectively (Fig 1).

Our investigation revealed that cosmosiine interacted with Mpro through three conven-

tional hydrogen bonds at positions Thr190, Gln189, and Glu166, in addition to three pi-alkyl

bonds formations at positions Met165, Met49, and Cys145 (Fig 2 and Table 1). On the other

hand, pelargonidin-3-O-glucoside formed six conventional hydrogen bonds at Glu166,

His172, Leu141, Asn142, His163, and Thr190, one pi-pi T-shaped bond at His41, and one pi-

alkyl bond at MET49. Besides, a multiplex of cleomiscosin A and Mpro was equalized by four

conventional hydrogen bonds at Cys145, Glu166, Gly143, and Ser144, one alkyl bond at

Met165, in addition to a pi-alkyl bond at Pro168. After docking the co-crystallized N3 ligand

with the prepared grid, the binding affinity was -7 kcal/mol, which was comparatively lower

than the previously encountered binding affinity such as -8.4, -8.4, and -8.2 kcal/mol.

Although the N3 co-crystallized ligand resided in the binding pocket of 6LU7, the lower bind-

ing affinity regarding N3 interaction reveals the preferentiality of 6LU7, substantiating virtual

screening in tandem with docking analyses.

ADMET

Pharmacokinetics and toxicity, alongside other drug-like properties, of the screened top-most

phytochemicals, were assessed for evaluating the potency and safety (Table 2). Moreover, sev-

eral operative properties of these top phytochemicals, including carcinogenicity, hepatotoxic-

ity, p-glycoprotein inhibition, cytochrome P450 (CYP) inhibition, and central nervous system
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(CNS) permeability, were evaluated. Here, CNS permeability refers to a compound’s ability to

pass through the selectively semipermeable blood-brain barrier [47, 62]. It has been shown that

the CNS permeability value should be greater than -2 to penetrate the central nervous system

[63]. Neither toxicity nor carcinogenicity is subsistent within the selected phytochemicals. The

molecular weight (MW) of the screened molecules, cosmosiine, pelargonidin-3-O-glucoside,

and cleomiscosin A, were 432.4 g/mol, 433.4 g/mol, and 386.4 g/mol, respectively. These values

Fig 1. Chemical structure (2D) of Cosmosiine (a), Pelargonidin-3-O-glucoside (b), and Cleomiscosin A (c). The structures were drawn using the

Marvin Sketch software.

https://doi.org/10.1371/journal.pone.0273341.g001
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Fig 2. Illustration of the different binding modes of the selected compounds within the active and catalytic sites of the Mpro. The alphabetical

orders indicate the respective complexes of Cosmosiine, Pelargonidin-3-O-glucoside, and Cleomiscosin A, respectively. Cosmosiine interacted with

Thr190, Gln189, Glu166, Met165, Met49, and Cys145; pelargonidin-3-O-glucoside with Glu166, His172, Leu141, Asn142, His163, Thr190, His41,

and MET49, and Cleomiscosin with Cys145, Glu166, Gly143, and Ser144, Met165, Pro168 residues.

https://doi.org/10.1371/journal.pone.0273341.g002
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indicate that these compounds adhere to the range of MW for the Lipinski rule of five [64]. Six

donors and 10 acceptors of hydrogen bond in cosmosiine, seven donors and nine acceptors of

hydrogen bond in pelargonidin-3-O-glucoside, and two donors and eight acceptors of hydro-

gen bond in cleomiscosin A were observed. Besides, each of these hit phytochemicals showed

neither hepatotoxicity nor acute oral toxicity and followed the Lipinski rule of five.

Table 1. Non-bonding interactions between SARS-CoV-2 Mpro and the top 3 phytochemical compounds.

Complex PubChem CID Binding affinity (kcal/mol) Residues in contact Interaction type Distance in Ǻ
Cosmosiine 5280704 -8.4 THR190 Conventional Hydrogen Bond 2.47031

GLN189 Conventional Hydrogen Bond 2.53715

GLU166 Conventional Hydrogen Bond 2.78713

MET165 pi-Alkyl 5.37772

MET49 pi-Alkyl 4.53263

CYS145 pi-Alkyl 5.00892

Pelargonidin-3-O-glucoside 12302249 -8.4 GLU166 Conventional Hydrogen Bond 2.18119

HIS172 Conventional Hydrogen Bond 2.90534

LEU141 Conventional Hydrogen Bond 2.37095

ASN142 Conventional Hydrogen Bond 2.42628

HIS163 Conventional Hydrogen Bond 2.39095

THR190 Conventional Hydrogen Bond 2.58522

HIS41 pi-pi T-shaped 5.16974

MET49 pi-Alkyl 5.27065

Cleomiscosin A 442510 -8.2 CYS145 Conventional Hydrogen Bond 2.86763

GLU166 Conventional Hydrogen Bond 2.04218

GLY143 Conventional Hydrogen Bond 2.00045

SER144 Conventional Hydrogen Bond 2.44246

MET165 Alkyl 4.25281

PRO168 pi-Alkyl 5.30755

https://doi.org/10.1371/journal.pone.0273341.t001

Table 2. Pharmacological profile of the top three potential candidates derived from SwissADME, admetSAR, and pKCSM webservers.

Parameter Cosmosiine Pelargonidin-3-O-glucoside Cleomiscosin A

Molecular weight 432.4 g/mol 433.4 g/mol 386.4 g/mol

H-Bond Acceptor 10 9 8

H-Bond Donor 6 7 2

CNS -3.746 -3.628 -3.483

CYP2D6 substrate No No No

CYP3A4 substrate No No Yes

CYP1A2 inhibitor No No No

CYP2C19 inhibitor No No No

CYP2C9 inhibitor No No No

CYP2D6 inhibitor No No No

CYP3A4 inhibitor No No No

Carcinogenicity Non-carcinogenic Non-carcinogenic Non-carcinogenic

Hepatotoxicity No No No

P-glycoprotein inhibitor No No No

Acute Oral Toxicity No No No

Lipinski rule of five Yes Yes Yes

https://doi.org/10.1371/journal.pone.0273341.t002
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Biological activities of the drug candidates

Several observations required meticulous evaluation to assess the biological activities of the top

three plausible phytochemicals with significant antiviral repurposing therapeutic potential

(Table 3). Cosmosiine showed the most preeminent GPCR ligand activity when compared

with pelargonidin-3-O-glucoside and cleomiscosin A. In the case of ion channel inhibitor

activity, pelargonidin-3-O-glucoside exhibited a comparatively lower value than cosmosiine

and cleomiscosin A. As a kinase inhibitor, cleomiscosin A manifested an increased activity

than pelargonidin-3-O-glucoside, whereas cosmosiine showed the most predominant activity.

Cosmosiine also behaved as a more potent nuclear receptor-ligand compared to the other two

phytochemicals. As a protease inhibitor, cosmosiine revealed the highest activity over both

pelargonidin-3-O-glucoside and cleomiscosin A. All the screened phytochemicals exhibited

promising enzyme inhibitor activities with cosmosiine having the highest activity value, and

pelargonidin-3-O-glucoside and cleomiscosin showing almost similar activity values.

The molecular dynamics simulation study

The root mean square deviations of the simulations complexes were investigated to observe

the variations and stability of the complexes. Fig 3(a) demonstrates how the top three docked

complex, cosmosiine, pelargonidin-3-0-glucoside, cleomiscosin A showed an initial upward

trend in RMSD. Cleomiscosin A maintained stability from the 20 ns time frame, and a lower

degree of deviation in RMSD was observed for the entire simulation period. Pelargonidin-3-

0-glucoside maintained a trend similar to that of cleomiscosin A for the maximum simulation

periods. Pelargonidin-3-0-glucoside surpassed cleomiscosin A in RMSD in the 65–75-ns

period, which might have ascended due to the higher instability of this complex. However, it

quickly began to show a lower RMSD profile by maintaining a similar trend like cleomiscosin

A, which also displayed a similar RMSD pattern like these two complexes in the entire simula-

tion period. It had a slightly higher deviation at the last 85–90-ns time, although it did not sig-

nificantly deviate.

The solvent-accessible surface area (SASA) of the simulated complexes was measured to

determine how the protein volume changed, with a greater SASA profile indicating increased

protein surface area and a lower SASA profile indicating truncation of the protein complexes.

Fig 3(b) demonstrates that the cleomiscosin A complex had a higher SASA profile than the

other two complexes in the whole simulation trajectories, which correlated with the com-

plexes’ extensions. The expansion of the protein volume in SASA might have occurred due to

the breakage of internal bonding. The other two complexes, with cosmosiine and pelargoni-

din-3-0-glucoside, had lower but constant SASA profiles in the whole simulation trajectories.

The radius of gyration of the simulation complexes is related to their labile nature, where a

higher Rg profile indicates a more mobile nature of the complexes. Fig 3(c) shows that the

three top complexes had a steady Rg profile in the entire trajectory and did not deviate

Table 3. Biological activities of the top screened phytochemicals.

Compounds GPCR ligand Ion channel inhibitor Kinase inhibitor Nuclear receptor-ligand Protease inhibitor Enzyme inhibitor

Cosmosiine 0.10 -0.01 0.14 0.31 0.02 0.43

Pelargonidin-3-O-glucoside 0.03 -0.03 -0.01 0.10 -0.04 0.25

Cleomiscosin A -0.11 -0.18 -0.15 -0.07 -0.19 0.23

Note: Bioactivity score > 0 (biologically active); −5.0 < Bioactivity score < 0 (moderately active); Bioactivity score < 0 (biologically inactive).

https://doi.org/10.1371/journal.pone.0273341.t003
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significantly. The lower degree of fluctuations in the Rg descriptors for all three complexes cor-

related with the constant nature of the docked complexes.

We also analyzed the hydrogen bond from the trajectories as it had a vital role in determin-

ing the stability of the docked complexes. The top three screened complexes had regular

Fig 3. Time kinetics analysis of all the simulated systems. The alphabetical orders from (a) to (e) indicate RMSD analysis of the alpha carbon atoms

(a), protein volume with expansion analysis (b), degree of rigidity and compactness analysis (c), hydrogen bond analysis (d), and flexibility analysis of

amino acid residue (e).

https://doi.org/10.1371/journal.pone.0273341.g003
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hydrogen bonding patterns in the simulating environment, with cleomiscosin A having the

most number of hydrogen bonds [Fig 3(d)].

The complexes’ root mean square fluctuations were analyzed to determine their flexibility

across the amino acid residues [Fig 3(e)]. Majority of the amino acid residues had lower RMSF

profile except for Ser1 (Helix strand), Gly2 (Helix strand), Asn72 (Helix strand), Tyr154

(Helix strand), Thr169 (Beta turn), Ala193 (Gamma turn), Arg222 (Gamma turn), Leu232

(Helix strand), Lys236 (Helix strand), Gln244 (Helix strand), Gly278 (Beta turn), Ser301 (Beta

turn), Gly302 (Beta turn), Val303 (Beta turn), Thr304 (Beta turn), Phe305 (Beta turn), and

Gln306 (Beta turn) residues.

The docked complexes were again analyzed after 100 ns simulation and explored for their

binding interactions to evaluate their binding rigidity. The cosmosiine and the Mpro com-

plexes were stabilized by five hydrogen bonds at Gln192, Gln189, Arg188, Thr26, and

Thr190 positions, and three hydrophobic bonds (two pi-alkyl and one pi-sulfur bond) at

Met49, Met165, and Cys145 positions (Table 4). The pelargonidin-3-O-glucoside and the

Mpro complexes exhibited four hydrogen bonds at Glu166, His163, Ser144, and Leu141 after

the 100 ns simulation time. Cleomiscosin A complexes had three hydrogen bonds at Gly143,

Cys145, Asn142, and two alkyl bonds at Met165 and His41 positions.

Discussion

According to our analysis and screening via molecular docking and dynamics investigations,

three potent phytochemicals were selected, which showed higher binding affinity for Mpro at

their active sites than the other compounds, which is essential for the targeted inhibition of

Mpro. In the case of cosmosiine, after the 0 ns simulation time, we observed one interaction in

Domain 1 (Met49), three interactions in Domain 2 (Cys145, Met165, and Glu166), and two

interactions in the extended loop region (Gln189 and Thr190) connecting Domain 2 and

Domain 3 (Fig 2 and Table 1). After the 100-ns simulation time, the cosmosiine and Mpro

complex exhibited two interactions at Domain 1 (Thr26 and Met49), two interactions at

Table 4. Non-bonded interactions of the docked complexes after the 100-ns simulation time, where H, PS, PA, and A represent hydrogen, pi-sulfur, pi-alkyl, and

alkyl bonds, respectively.

Complex Interacting Residues Interaction Type Distance (Å)

Cosmosiine GLN192 H 1.91

GLN189 H 1.56

Arg188 H 2.50

THR26 H 3.09

THR190 H 2.47

MET49 PS 4.35

MET165 PA 4.47

CYS145 PA 4.22

Pelargonidin-3-O-glucoside GLU166 H 1.79

HIS163 H 2.28

SER144 H 2.87

LEU141 H 2.91

Cleomiscosin A GLY143 H 1.98

CYS145 H 2.79

ASN142 H 2.52

MET165 A 4.34

HIS41 A 4.21

https://doi.org/10.1371/journal.pone.0273341.t004
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Domain 2 (Met165 and Cys145), and four interactions at the more extended loop region

(Gln192, Gln189, Arg188, and Thr190) which connects Domain 2 and 3. Cosmosiine can

inhibit the cytotoxicity and the dysregulation associated with ACE2, IL1α, and TGFβ expres-

sions induced by the recombinant spike protein of SARS-CoV-2 [65]. It has also been found

to have several biological activities, such as induction of apoptosis, autophagy, and cell cycle

arrest [66]. Previous studies have also suggested that cosmosiine inhibits cell migration in cer-

vical cancer [67], insulin receptor phosphorylation, adiponectin secretion [68], inflammation,

and oxidative stress [69]. Moreover, cosmosiine has potential anti-inflammatory and antibac-

terial properties [69].

In the case of pelargonidin-3-O-glucoside, two interactions were observed at Domain 1

(His41 and Met49), in addition to five interactions at Domain 2 (Glu166, His172, Leu141,

Asn142, and His163) in tandem with one interaction in a longer loop region (Thr190) con-

necting Domain 2 and Domain 3 [13], after the 0 ns simulation time (Fig 2 and Table 1). The

pelargonidin-3-O-glucoside and Mpro protease complex stabilization revealed four interac-

tions at Domain 2 (Glu166, His163, Ser144, and Leu141) after the 100 ns simulation time.

Pelargonidin-3-O-glucoside, a plant metabolite, has multiple pharmacological activities in cel-

lular assays, including inhibition of peroxynitrate formation [70], interactions with erythro-

cytes and liposome membrane [71], improvement of cognitive impairment [72], nitrosative

stress [73], and anthocyanin biosynthesis mechanisms [74].

According to a previous study by Abha et al., 2011, cleomiscosin A had a more significant

binding capability with toll-like receptors (TLR-4), cluster of differentiation molecules (CDs),

and inducible nitric oxide synthase (iNOS) protein [75]. There have been no studies on its

interaction with the Mpro of SARS-CoV-2. In our study, cleomiscosin A displayed six interac-

tions at Domain 2 (Cys145, Glu166, Gly143, Met165, Pro168, and Ser144) after the 0 ns

simulation time (Fig 2 and Table 1). The stabilization of cleomiscosin A and Mpro complexes

manifested one interaction at Domain 1 (HIS41), in conjunction with four interactions

at Domain 2 (Gly143, Cys145, Asn142, and Met165) after the 100 ns of simulation time

(Table 4). Cleomiscosin A also exhibits anti-inflammatory, analgesic, and antipyretic proper-

ties [76], as well as antihepatotoxic and anti-inflammatory properties [77, 78].

During the entire simulation period, diverse common interactions concerning the simula-

tion sets for cosmosiine were identified, including Met49, Met165, Cys145, Gln189, and

Thr190, which indicates the binding stability of the complex throughout the simulation time.

Constant interactions were observed at Domain 1 (Met49), Domain 2 (Met165, and Cys145),

and the linker loop region (Gln189 and Thr190). Our findings showed that cosmosiine pre-

dominantly interacts with the active site of the Mpro enzyme through residues including

Met165, Cys145, Gln189, and Thr190, among which Cys145 is highly conserved among all

coronaviruses [14]. Furthermore, pelargonidin-3-O-glucoside displayed distinct substantial

interactions in the simulation epoch (during the 0 ns to 100 ns simulation time), including

Glu166, His163, and Leu141. Precisely, the static interactions were remarkable at Domain 2

(Glu166, His163, and Leu141). However, pelargonidin-3-O-glucoside interacts with Mpro at

the leading site through the residues Glu166, His163, and Leu141. Several stable interactions

within the entire simulation time were identified, including Gly143, Cys145, and Met165 in

the case of cleomiscosin A; stable interactions were observed at Domain 2 (Gly143, Cys145,

and Met165). Prominently, cleomiscosin A interacts with Mpro enzyme’s active site through

residues including Gly143, Cys145, and Met165. These common interactions throughout the

simulation period reveal the binding rigidity or the binding stability of the complex.

The cosmosiine and pelargonidin-3-O-glucoside compounds exihibit beta-D-glucopyrano-

syl moeity where the pelargonidin-3-O-glucoside functions as a plant metabolite and cosmo-

siine has role in non-steroidial drug, metabolite and antibacterial agents. Both ligand
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molecules are beta glucosidage and functions in metabolisams. The cleomiscosin A is a hetero-

cyclic compound which exihibit antiinflammatory activity. This compound is beta lactone and

organic heterocyclic compounds.

Similar to our findings, numerous plant-derived compounds, such as curcumin, gartanin,

robinetin [63], amentoflavone, gallocatechin gallate [79], chelidimerine, rutin, fumariline, cat-

echin gallate, adlumidine, astragalin, somniferine [80], kaempferol, herbacetin, eugenol, 6-sho-

gaol [81], triacontane, hexacosane, methyl linoleate, and methyl palmitoleate [52], formed

similar binding patterns while docking with Main protease.

Molecular dynamics simulation of the docked complexes also revealed that the three com-

pounds, cosmosiine, pelargonidin-3-O-glucoside, and cleomiscosin A, had a stable profile in

several simulated trajectories, including RMSD, RMSF, SASA, Rg, and hydrogen bond studies.

We also acquired images from various simulated trajectories, including at 25, 50, 75, and 100

ns, to investigate for changes in the binding sites or the binding rigidity at the binding pockets

(Figs 4–6). In the simulated images, the docked positions of the three complexes were stable.

The findings of the molecular docking and dynamics simulation studies suggest that these

three compounds potentially inhibit the function of the SARS-targeted CoV-2 Mpro. How-

ever, these findings must be verified in a wet-lab setting.

Fig 4. Surface view of the docked complexes in molecular dynamics simulation. The snapshots were acquired at 25,

50, 75, and 100 ns for the Cosmosiine and Mpro complex.

https://doi.org/10.1371/journal.pone.0273341.g004

Fig 5. Surface view and binding pockets of the Pelargonidin-3-O-glucoside and Mpro complex, where snapshots

at 25, 50, 75, and 100 ns were acquired.

https://doi.org/10.1371/journal.pone.0273341.g005
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Conclusion

Using a computational method, we identified effective inhibitors of the SARS-CoV-2 main

protease. The phytochemical library was tested against the main protease using molecular

docking to identify the most potent lead compounds. In addition, three of the top ligand mole-

cules in the library, namely, cosmosiine, pelargonidin-3-O-glucoside, and cleomiscosin A,

were found to bind to the active site of the targeted protein. The binding orientation and the

stiffness of the docked protein-ligand complexes were also determined using molecular

dynamics simulation. Simulation descriptors, such as RMSD, RMSF, SASA, and Rg, and

hydrogen bond descriptors aided in analyzing the inflexible character of the complexes in

atomistic environments. The toxicity and carcinogenicity of the top compounds were thor-

oughly investigated using multiple computational tools, and a possibility of no adverse or unfa-

vorable effects was observed. Because this study relies solely on computational mining, these

findings require further in silico cross docking and in vitro investigations, including enzymatic

assays, to confirm the computational findings.
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