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Performance of landscape 
composition metrics for predicting 
water quality in headwater 
catchments
Linda R. Staponites   1,2, Vojtěch Barták   1, Michal Bílý   1 & Ondřej P. Simon   1,2

Land use is a predominant threat to the ecological integrity of streams and rivers. Understanding land 
use-water quality interactions is essential for the development and prioritization of management 
strategies and, thus, the improvement of water quality. Weighting schemes for land use have recently 
been employed as methods to advance the predictive power of empirical models, however, their 
performance has seldom been explored for various water quality parameters. In this work, multiple 
landscape composition metrics were applied within headwater catchments of Central Europe to 
investigate how weighting land use with certain combinations of spatial and topographic variables, 
while implementing alternate distance measures and functions, can influence predictions of water 
quality. The predictive ability of metrics was evaluated for eleven water quality parameters using linear 
regression. Results indicate that stream proximity, measured with Euclidean distance, in combination 
with slope or log-transformed flow accumulation were dominant factors affecting the concentrations 
of pH, total phosphorus, nitrite and orthophosphate phosphorus, whereas the unweighted land use 
composition was the most effective predictor of calcium, electrical conductivity, nitrates and total 
suspended solids. Therefore, both metrics are recommended when examining land use-water quality 
relationships in small, submontane catchments and should be applied according to individual water 
quality parameter.

It has been widely acknowledged that the ecological integrity of streams and rivers is intrinsically linked to the 
surrounding landscape1–3. Riverine systems are amongst the most productive and biodiverse ecosystems4, yet 
extreme anthropogenic pressure has threatened the essential goods and services provided by tributaries5. The pro-
tection of freshwater resources and ecosystems requires an understanding of the impacts from the encompassing 
landscape. Although land use-water quality interactions have been extensively researched, a comprehension of 
such relationships remains a complex endeavor. To discern the effects of land use on water quality, initial investi-
gations frequently employed land use composition (i.e., the proportion of each land use category) as a predictor of 
stream condition (e.g.6,7). While the composition of land use plays a crucial role on water quality, this rudimentary 
measure assumes that each proportion imposes an equal influence8. Recently, the importance of spatial scale and 
topography has been corroborated in the contemporary understanding of land use-water quality interactions8,9. 
Nevertheless, the intricate patterns and natural gradients of a terrestrial landscape, as well as scale-dependent 
mechanisms, make it difficult for empirical models to be assessed2. The integration of spatially-explicit landscape 
features and processes with land use data is crucial for providing more accurate information on how land use can 
impact concentrations of water quality parameters (WQP).

With the application of Geographic Information System (GIS) technologies, broadly-applicable weighting 
schemes have been established as methods to consider the spatial and topographic components of individual 
land use types on stream condition. Under the assumption that land located close to the stream generally has 
a larger influence on water quality than land located further away8,10–14, distance-weighted metrics have been 
implemented into studies to account for the spatial proximity of land use10,11,15–18. In this method, a distance decay 
function is used, assigning weights to observations based on the hydrologic distance to the stream or sampling 
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point to elucidate the inordinate impact of land situated close to the source. Additionally, flow accumulation has 
been incorporated into distance-weighted metrics on the basis that areas and pathways of concentrated flow have 
a higher tendency to generate runoff16,19. The concentration of overland runoff within each land use category is 
weighted according to the flow accumulation value determined by flow direction and preferential flow pathways 
from upslope areas. Such metrics are particularly suitable for examining the combined effects of land use posi-
tion and hydrological processes19. Although studies have concluded that spatially-explicit methods can improve 
predictions of stream conditions and are more effective than non-spatial methods3,11,17–19, the best weighting 
schemes were often determined according to the ecological response of various aquatic species assemblages. 
Little is known about optimal metrics for predicting the effects of land use on individual chemical parameters. 
Furthermore, it is unknown if the inclusion of additional variables and functions can enhance the accuracy of 
predictive models.

Located in Central Europe, the headwater catchments of South Bohemia, Czech Republic are a typical exam-
ple of a submontane landscape, characterized by mainly forests and meadows. Headwater streams and catchments 
are particularly important for provisional ecosystem services (e.g., drinking water extraction) and the protection 
of biodiversity (e.g., nature reserves and core zones of national parks)20. Tributaries act as both receptors and 
conveyors of landscape fluxes21, allowing upstream land use activity to influence the entire river continuum22,23. 
The development of strategic management plans within headwater catchments is, thus, imperative for improving 
downstream conditions. Quantifying and comparing the predictive power of empirical models using various 
landscape composition metrics can provide a comprehensive evaluation of the impacts of land use on water qual-
ity and better aid in the identification of landscape processes affecting this relationship19.

In this work, various landscape composition metrics are applied and augmented to explore the predictive 
power of the catchment-scale landscape on the concentration of eleven WQP within headwater streams. The 
main objectives of this study are to (1) examine the variations in performance between landscape composition 
metrics, (2) investigate how the incorporation of stream proximity, slope and flow accumulation can influence 
the predictive ability of models, and (3) identify which landscape composition metric explains the most variation 
in water quality data.

Methods
Study area.  The headwater streams of the Upper Vltava River Basin, located in the South-West of the Czech 
Republic, originate within the low-range Šumava Mountains which border Germany and Austria. Due to its oli-
gotrophic waters, this region provides refuge for many rare aquatic species24,25 and harbors sources of drinking 
water26. The region consists of a temperate climate with a mean annual precipitation of approximately 1400 mm 
and a mean annual temperature of about 4 °C27. The majority of the study area is included in the European system 
of protected areas (Natura 2000), leaving the landscape in a relatively undisturbed, semi-natural state28.

Thirty seven headwater catchments were selected, ranging in size from 0.61 km2 to 18.85 km2 with stream 
orders ≤3 (Strahler method) (Fig. 1). The topography within catchments varies from hilly mountain ranges to 
fairly flat areas with elevations ranging from ~530 m a.s.l. to 1288 m a.s.l. and sampling points averaging ~708 m 
a.s.l. (±104 SD), allowing for a representative survey of the study area. Forests are the predominant land use 
within most catchments, comprised mainly of spruce or a mixture of spruce, pine and broadleaf forest stands27,29, 
while meadows used for grazing and hay production are also prevalent. Intensive meadows can constitute as 
sources of eutrophication30, however, liquid fertilization of grasslands has been decreased or discontinued within 
parts of this region31,32. As with many other border regions within the Palearctic, this sparsely populated area has 
experienced a gradual recession in farming due to barren soils unsuitable for agricultural intensification33. Over 
time, extensive agriculture has been replaced by meadows, with only a small extent of crop fields remaining on the 
foremost fertile soils34. In order to focus on the primary land use types within the region, only catchments with at 
least 77% of forested and grassed composition, and without significant point sources of pollution, were selected.

Water sampling and chemical analysis.  A one-time, spatially intensive sampling approach was carried 
out in order to understand the relationship between land use and water quality within headwater catchments 
of the Upper Vltava watershed. A total of 37 water samples were taken within the low-order streams using con-
ventional sampling protocols. Sample collection took place on 2nd May and 3rd May, 2016 under stable weather 
conditions. The water sampling locations were used as the catchment outlet for each catchment area in order to 
consider the land area that supplies water to each sample. Grab samples of electrical conductivity (EC, μS/cm), 
dissolved oxygen (DO, mg/L) pH and water temperature (TEM, °C) were measured in the field using a portable 
meter (Hach HQ40d). Laboratory analysis was conducted for the determination of nine WQP, including chemical 
oxygen demand by dichromate (COD, mg/L), total suspended solids (TSS mg/L), ammonium ions (NH4

+, mg/L), 
nitrite nitrogen (NO2

−N, mg/L), nitrate nitrogen (NO3
−N, mg/L), total phosphorus (TP, mg/L), orthophosphate 

phosphorus (PO43−P, mg/L), absorbance wavelength 254 (A254) and calcium (Ca, mg/L). Storage, preservation and 
analysis of water samples were conducted according to the standardized methods of the Czech National Standards 
Criterion35. Dissolved oxygen (DO) was omitted from analysis since the majority of streams were highly saturated 
with oxygen and there were minimal differences in the concentration of DO between streams. Water temperature 
was also disregarded in the evaluation due to the lack of seasonal influences from the one-time sampling.

Landscape composition metrics.  GIS analysis via ArcMap 10.5.1 (ESRI) was used to acquire land use 
information. Catchment areas and streams were delineated via shapefiles provided by the Czech Digital Base of 
Water Management Data36. Detailed aerial images from 2015 were supplied by the public ArcGIS Online Map 
Service from the Czech Office for Surveying and Cadastre (www.cuzk.cz) and were used to determine the land 
use composition (i.e., the percent of each land use category) in each catchment area at a mapping scale of 1:5000, 
thus allowing for a precise analysis of the landscape structure. However, an aerial view via www.mapy.cz was used 
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as a reference in case of any discrepancies. All shapefiles and layers were created using the coordinate system 
S-JTSK Krovak East North. Land use was classified into five categories: (1) settlements, including houses, parking 
lots and other infrastructure; (2) cropland, including rows of agriculture, cultivated crops and orchards; (3) mead-
ows, including pastures, mowed areas and grass communities; (4) forests, including groups of trees and shrubs: 
and (5) water bodies including reservoirs, ponds and lakes. All catchments are primarily covered with forests and 
meadows, while small fragments of croplands, settlements and water bodies occupy less than 4% of the total study 
area. Incorporating the influence of land use types that are not present in every catchment creates problems with 
statistical analysis due to many zeros in the dataset, for that reason, croplands, settlements and water bodies were 
removed from analysis.

Following the approach proposed by Peterson19 and Peterson & Pearse11, the weighting of land use pro-
portions was based on an arrangement of site-specific explanatory variables, including the inverse Euclidean 
distance of each raster cell to the stream, the inverse flow length (i.e., the inverse distance to the stream meas-
ured along the flow path identified on Digital Elevation Model) and flow accumulation. Additionally, slope was 
included as a supplementary explanatory variable to augment metrics. It is common practice in hydrology to 
use log-transformed values of flow accumulation in many applications due to its typical exponential frequency 
distribution (e.g., topographic wetness index), thus, a logarithmic transformation was also applied to metrics con-
taining flow accumulation data. Using various, multiplicative combinations of these weights, thirteen landscape 
composition metrics were defined; each containing an inverse-distance function measured with either Euclidean 
distance or flow length, henceforth referred to as “Euclidean metrics” and “flow metrics”, with the exception of 
the unweighted metric which only considered land use composition (see Table 1 for the complete list of metrics). 
Metrics were implemented via a Python script, utilizing the functionality of Spatial Analyst toolbox for ArcGIS 
10.5 (ESRI, 2017) via ArcPy module (see Supplementary Method S1). A 5 m resolution Digital Terrain Model of 
the Czech Republic of the 5th generation (DMR 5G) was provided by the Czech Office for Surveying, Mapping 
and Cadastre and used to attain raster data for the calculation of slope, flow paths and flow accumulation.

Statistical analysis.  Outliers of COD and A254 for sites 5 and 6 were excluded from analysis due to the 
possibility of riverbank stabilization efforts affecting these parameters during the time of sampling. To investigate 
the differences between weighting schemes, Pearson’s correlation coefficient analysis was computed for all pairs 
of landscape composition metrics. A separate linear regression model was then fitted for each combination of 
WQP (response), landscape composition metric (predictor) and land use category to assess how certain metrics 
can influence land use predictions of chemical concentrations. The predictive power of the models was then com-
pared using R2 values. R statistical software (R Core Team 2018) was used for all data manipulation, computation 
and graphics.

Figure 1.  Selected catchments, sampling points and land use pattern with the main tributaries draining the 
catchments.
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Results
Variation between landscape composition metrics.  Both land use categories experienced changes 
in proportions when spatial proximity and topography were incorporated into landscape composition metrics 
(see Supplementary Tables S2 and S3). The unweighted proportions of forests and meadows within catchments 
were approximately 65 ± 20 (mean ± SD) and 32 ± 17 (mean ± SD), respectively (Table 2). For both forests and 
meadows, the Euclidian distance metric (i.e., Euclid) led to similar mean proportions as the land use composition 
metric (i.e., Unweighted). Employing more complex weighting schemes, however, led to an increase in propor-
tions of forests and a decrease in proportions of meadows, with the change varying from approximately 2 to 
8%. Additionally, standard deviations of proportions experienced substantial variations, with Euclidean metrics 
containing untransformed flow accumulation increasing in standard deviations by approximately 10% (Table 2).

Pair-wise correlations between landscape composition metrics were 0.70 ± 0.27 (mean ± SD) for forests and 
0.73 ± 0.26 (mean ± SD) for meadows (Fig. 2). Forests displayed relatively weak correlations between Euclidean 
and flow metrics (0.39 ± 0.06; see the light-colored rectangular section in the Forests portion of Fig. 2). The weak-
est correlations for meadows were observed in most pairs that included either Euclid-A or Euclid-SA (0.45 ± 0.28; 
see the light-colored stripes in the Meadows portion of Fig. 2), which indicates that metrics including inverse 
Euclidean distance in combination with flow accumulation (that is not logarithmically transformed) are the least 
similar to other metrics. The highest correlations were observed for pairs consisting of any flow metric when 
compared to the same metric enriched by log-transformed flow accumulation (0.99 ± 0.02), as well as for pairs 
of any Euclidean metric without slope compared to the same metric with slope (0.98 ± 0.02), indicating that the 
log-transformation of flow metrics as well as the addition of slope for Euclidean metrics results in limited changes 
of weighted proportions.

Landscape composition metric for predictions of water quality.  For parameters A254, NH4
+, and 

COD, no significant relationships were found between chemical concentrations and proportions of forests or 
meadows, regardless of which metric was applied (see Supplementary Table S4); hence, the results for these three 
parameters are not shown and disregarded from further analysis. Overall, the percentage of explained water 
quality variance ranged from 1 to 46% for forests and from 0.1 to 32% for meadows. The water quality variability 
principally followed the same pattern for both land use categories, albeit with lower R2 values for meadows in all 
cases; consequently, only the results obtained from forests as predictors of water quality are discussed.

Variables Abbreviation Description Equation

None Unweighted Percentage of land use; no spatial or topographic 
considerations = ×∑ =%LU 100i 1

n Ii(k)
n

Stream proximity Euclid Inverse Euclidean distance from land use to tributary = ×∑ =
∑ =

%LU 100i 1
n Ii(k)Ei

i 1
n Ei

Stream proximity, Slope Euclid-S Inverse Euclidean distance from land use to tributary 
and slope degree of land use = ×∑ =

∑ =
%LU 100i 1

n Ii(k)EiSi

i 1
n EiSi

Stream proximity,
Flow Accumulation Euclid-A Inverse Euclidean distance from land use to tributary 

and pathways of flow accumulation within land use = ×∑ =
∑ =

%LU 100i 1
n Ii(k)EiAi

i 1
n EiAi

Stream proximity,
Flow Accumulation Euclid-LogA

Inverse Euclidean distance from land use to tributary 
and logarithmically transformed pathways of flow 
accumulation within land use

= ×∑ =
∑ =

%LU 100i
i
1

n Ii(k)Ei ln(Ai)

1
n Ei ln(Ai)

Stream proximity,
Slope,
Flow Accumulation

Euclid-SA
Inverse Euclidean distance from land use to tributary, 
slope degree of land use and flow accumulation within 
land use

= ×∑ =
∑ =

%LU 100i 1
n Ii(k)EiSiAi

i 1
n EiSiAi

Stream proximity,
Slope,
Flow Accumulation

Euclid-SlogA
Inverse Euclidean distance from land use to tributary, 
slope degree of land use and logarithmically 
transformed flow accumulation within land use

= ×∑ =
∑ =

%LU 100i 1
n Ii(k)EiSi ln(Ai)

i 1
n EiSi ln(Ai)

Stream proximity Flow Inverse flow length from land use to tributary = ×∑ =
∑ =

%LU 100i 1
n Ii(k)Fi

i 1
n Fi

Stream proximity, Slope Flow-S Inverse flow length from land use to tributary and slope 
degree of land use = ×∑ =

∑ =
%LU 100i 1

n Ii(k)FiSi

i 1
n FiSi

Stream proximity,
Flow Accumulation Flow-A Inverse flow length from land use to tributary and 

pathways of flow accumulation within land use = ×∑ =
∑ =

%LU 100i 1
n Ii(k)FiAi

i 1
n FiAi

Stream proximity,
Flow Accumulation Flow-logA

Inverse flow length from land use to tributary and 
logarithmically transformed pathways of flow 
accumulation within land use

= ×∑ =
∑ =

%LU 100i 1
n Ii(k)Fi ln(Ai)

i 1
n Fi ln(Ai)

Stream proximity,
Slope,
Flow Accumulation

Flow-SA
Inverse flow length from land use to tributary, slope 
degree of land use and pathways of flow accumulation 
within land use

= ×∑ =
∑ =

%LU 100i 1
n Ii(k)FiSiAi

i 1
n FiSiAi

Stream proximity,
Slope,
Flow Accumulation

Flow-SlogA
Inverse flow length from land use to tributary, slope 
degree of land use and logarithmically transformed 
flow accumulation within land use

= ×∑ =
∑ =

%LU 100i 1
n Ii(k)FiSi ln(Ai)

i 1
n FiSi ln(Ai)

Table 1.  Variables, abbreviations and descriptions of landscape composition metrics applied to each land 
use category within a catchment. Notes: %LU = Percentage of land use category; n = total number of cells in 
the catchment; Ii(k) = presence of land use k in cell i (1 or 0); Ei = inverse Euclidean distance from cell i to the 
stream (distance +1)−1; Fi = inverse flow length from cell i to the stream (distance +1)−1; Si = slope gradient for 
cell i; Ai = flow accumulation value for cell i.
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There were substantial variations in performance between the landscape composition metrics for most WQP, 
often leading to differences in their significance (see Fig. 3 for comparison of coefficients of determination and 
Supplementary Table S4 for regression slopes and their standard errors). The unweighted metric and Euclidean 
metrics frequently exceeded corresponding flow metrics in explained variations of water quality parameters. An 
exception was with Euclidean metrics employing an untransformed flow accumulation variable (i.e., Euclid-A 
and Euclid-SA) which created inferior predictions for parameters Ca, EC, NO3

−N, pH and TSS. The R2 values 
for models incorporating Euclidean distance in combination with slope (i.e., Euclid-S), log-transformed flow 
accumulation (i.e., Euclid-logA) or both slope and log-transformed flow accumulation (i.e., Euclid-SlogA) were 
relatively similar, typically ranging in approximately 5%, with moderately lower R2 values for most models when 
including only Euclidean distance (i.e., Euclid).

Two slightly different versions of a similar pattern in variation can be identified among parameters in Fig. 2. 
For Ca, EC, NO3

−N, and TSS, the best prediction was obtained by the basic, unweighted proportions, followed 
by Euclid-S, Euclid-logA, Euclid-SlogA, yielding approximately 10% lower R2 values. For the remaining WQP, 
Euclid-S, Euclid-logA, Euclid-SlogA resulted in the highest R2 values, whereas the performance of unweighted 
metric was either similar (as seen in predictions of pH) or approximately 10 to 20% lower (as seen in predictions 
of NO2

−N, PO4
3−P and TP).

Discussion
The effects of land use on concentrations of specific WQP were investigated at the catchment scale using land-
scape composition metrics, a broadly-applicable weighting scheme that considers the combined effects of indi-
vidual land use categories with spatial and topographical variables. As in previous studies10,16,17, two conventional 
measures used in ArcGIS for calculating distance were employed (i.e., flow length and Euclidean distance), 
as well as a non-spatial composition measurement (i.e., unweighted metric), to compare the predictive ability 
between metric types. Both King10 and Peterson19 found that Euclidean distance and flow length metrics were 
very strongly correlated with one another. On the contrary, disparity was found between relationships and perfor-
mance of flow length and Euclidean distance in our study, particularly for parameters NO2-N, pH, PO4

3-P and TP. 
Results from the regression models revealed that metrics with a Euclidean distance measure predominately out-
performed metrics containing a flow length measure. The weaker performance of flow metrics in our study was 
most likely due to the artificial flow paths parallel to the stream. Such parallel flow paths are a well-known feature 
of the Single Flow with 8 Directions (SFD8) algorithm37, which is the most commonly used and often the only 
implemented algorithm in ArcGIS for the determination of outflow from a Digital Terrain Model cell. However, 
when flow length distance was combined with flow accumulation (i.e., Flow-A or Flow-SA), the predictive power 
for forests comparatively improved for certain WQP. Presumably, the low weights produced by artificially long 
flow paths are compensated by the higher flow accumulation downstream, since flow can accumulate to a greater 
extent along lengthy flow paths. Thus, caution should be taken when implementing flow length as a distance 
measure when flow accumulation is not being considered. Since any distance function can be employed into 
metrics19, future research should explore alternative flow direction algorithms which may be more accurate in 
displaying near-stream flow pathways, although it is not clear how to define a flow-based distance in the presence 
of flow divergence. Given these findings, metrics which implemented a flow length measure were removed from 
further discussion.

This study follows the methodology proposed by Peterson19 and is further augmented to examine how apply-
ing a log-transformation function for flow accumulation variables, as well as integrating a slope variable, can 
influence metric performance. When stream proximity, calculated with a Euclidean distance measure, was com-
bined with untransformed flow accumulation (i.e., Euclid-A and Euclid-SA), R2 values were often drastically 
altered, frequently diminishing significant predictions for certain WQP. Hence, there seems to be no justification 

Metric

Forests Meadows

Mean SD Mean SD

Unweighted 64.82 19.6 31.6 17.4

Euclid 65.13 24.84 31.61 22.89

Euclid-S 71.55 20.97 26.11 19.43

Euclid-A 71.36 29.81 25.93 27.44

Euclid-logA 68.18 23.19 28.8 21.64

Euclid-SA 71.97 29.53 25.24 27.05

Euclid-SlogA 71.78 21.48 25.92 20.09

Flow 67.06 18.37 29.9 16.75

Flow-S 73.01 16.97 24.82 15.51

Flow-A 66.55 21.99 29.49 19.21

Flow-logA 67.47 18.78 29.56 17.05

Flow-SA 71.54 19.51 25.27 16.44

Flow-SlogA 73.16 17.5 24.71 15.89

Table 2.  Mean and standard deviation for proportions of forests and meadows within catchments measured by 
various landscape composition metrics.
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6Scientific Reports |         (2019) 9:14405  | https://doi.org/10.1038/s41598-019-50895-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

for including flow accumulation that is not log-transformed into landscape composition metrics when predicting 
stream water quality. Moreover, the differences in performance between metrics incorporating slope gradient 
(i.e., Euclid-S), log-transformed flow accumulation (i.e., Euclid-logA), or both slope and log-transformed flow 
accumulation (i.e., Euclid-SlogA) were minor. This suggests that slope and log-transformed flow accumulation 
produced extremely similar effects and that the inclusion of both physiographic attributes adds unnecessary com-
plexity and is not vital for enhancing water quality predictions. However, when compared to slope gradient, flow 
accumulation is relatively difficult to compute, hence Euclid-S may be the more straightforward option for metric 
implementation.

Both the spatial proximity10,17,19,38,39 and the topography2,9,39–42 of land use are regarded as crucial factors 
influencing stream condition. However, the inclusion of stream proximity, exclusively, never resulted in optimal 
water quality predictions (Fig. 3). Previous studies have suggested that the predictive ability of metrics may be 
connected to the size of the catchment or watershed10,14,19 and the fact that the examined catchments within our 
study area were small in size (average catchment area ~6 km²) may be a contributing factor to this presumed 
effect. Within a small spatial extent, most land use can have direct pathways of influence2,43 and, therefore, an 
inverse distance measure may be negligible when examining small catchments. On the other hand, when stream 
proximity was combined with slope (i.e., Euclid-S), log-transformed flow accumulation (i.e., Euclid-logA) or a 
combination of both (i.e., Euclid-SlogA), the explained variability in water quality data often increased, confirm-
ing the importance of landform. Albeit small in surface area, the hilly, submontane terrain of this region may 
account for the more accurate predictions produced when slope and log-transformed flow accumulation were 
considered, thus, incorporating topographic variables into metrics may be pivotal for submontane regions. The 
influence of landscape features could be more significant when human activity is limited2, which is the case within 
our sparsely populated study area. Nevertheless, these findings are circumstantial and should not be taken out of 
context; the influence of stream proximity and topography could further increase with larger catchment sizes2,10; 
thus, the extent to which these factors have an influence requires further investigation.

While accounting for both spatial and topographic attributes improved the predictive ability of models for 
parameters of pH, TP, NO2

−N and PO43−P, the incorporation of stream proximity, slope and flow accumulation 
did not always explain the most variability in water quality data (Fig. 3). Both unweighted metrics and Euclidean 
metrics were optimal for predicting chemical loading, depending on which WQP was being considered. This 
behavior is conceivably due to the regional processes and mechanisms which govern these parameters14 and sug-
gests that the topography and spatial proximity of land use did not have an impact on the conveyance of Ca, EC, 
NO3

−N and TSS, yet that land use composition was a dominant factor impacting these parameters. The dissim-
ilar pattern found between these two groups of parameters can be attributed to the different geochemical cycles 
which can react conversely; Ca, EC, NO3

−N and TSS are relatively stable parameters, whereas pH, TP, NO2
−N and 

PO4
3−P are typically reactive or unstable44, especially in oligotrophic waters with very low concentrations which 

may produce highly variable ratios45. Hence, the factors governing land use-water quality interactions could be 
contingent on the reactiveness and stability of individual WQP. However, water quality can be influenced by 
multiple sources of contamination through dynamic pathways and at various scales and thorough information 
on the interactions between different nutrients and their mechanistic processes is lacking46. Consequently, no 
particular metric should be used to predict the chemical concentrations of every parameter. With the application 
of multiple landscape composition metrics, the relationship between land use and water quality can be examined 

Figure 2.  Pearson’s correlation coefficients between pairs of landscape composition metrics for each land use 
category.
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according to the most appropriate metric which explains the highest variability in data. However, this should not 
lead to automatic post-hoc methodological decisions based on a limited sample size, as the outperformance of 
certain metrics could just be a matter of chance. One should always have a sound theoretical justification why 
specific metrics should be preferred over others. For instance, an inverse distance measure may be more influen-
tial in large catchments, whereas flow accumulation and slope gradient might be less significant in regions with 
flat terrains; hence, potential factors such as catchment size and topography should be considered when inferring 
metrics performance.

The protection of freshwater resources and ecosystems requires an understanding of the impacts from the 
surrounding land use, yet, determining the optimal spatial extent for examining land use-water quality relation-
ships, as well as accounting for landscape attributes and processes, are currently ongoing issues facing research-
ers. Since each land use can impose a varying degree of influence on water quality, weighting specific land use 
categories according to spatial proximity and topography is an efficient way to account for the contributing, scale 
dependent responses and mechanisms throughout a landscape3,13. Still, it should not be assumed that stream 
proximity, slope gradient and flow accumulation are the only variables impacting land use-water quality inter-
actions. Recently, studies have concluded that landscape patterns39,40,47–49 and soil type42,46,50–53 can also impact 
water quality; therefore, it may be beneficial for future studies to include additional variables, such as patch size 

Figure 3.  Coefficients of determination (R2) for linear regressions of water quality parameters (WQP) for 
proportions of forests and meadows. A separate linear model was fitted for each combination of land use 
category, WQP, and landscape composition metric. The significant models are denoted with an asterisk.
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of landscape elements or soil properties. Landscape composition metrics are easily reproducible approaches that 
have seldom been implemented and explored. The ability of weighting-schemes to integrate multiple variables 
creates an opportunity for further advancement of land use-water quality assessment and the potential for more 
accurate predictive models.

This work addresses the prevalent land use categories within the study area: forests and meadows. Inevitably, 
the proportions of forests and meadows were significantly correlated for all applied metrics (see Supplementary 
Table S5), with an overall mean correlation coefficient value (±SD) of −0.97 (±0.01), resulting in both land use 
categories having similar optimal metrics for each WQP. Therefore, it is unknown how other land use categories 
would respond to the applied metrics. King10 found that an adequate range of land use percentage is necessary 
to avoid hindering the performance of certain metrics. The catchments within our study area contain 3.5–79.9% 
of meadows and 14.6–96.5% of forests, accounting for varying extents, while the proportions of croplands and 
settlements represent only small percentages within catchments, making computation problematic. Thus, their 
influence should be captured in another way than by percent composition.

Due to the one-time sample collection, the results represent water quality from a single point in time. 
However, rainfall, temperature and land use activities change depending on season, creating variations in flow 
rates, surface runoff and contaminant input to receiving waters38,40,47,54,55. Hence, seasonal effects should be incor-
porated whenever time series data is available.

Conclusions
Herein, landscape composition metrics were employed to discern the relative significance of stream proximity, 
slope and flow accumulation on predictions of water quality within headwater catchments via the incorporation 
of alternate spatial measures, functions and landscape variables. Overall, there were significant variations in per-
formance between the landscape composition metrics; land use composition (i.e., unweighted metric) and stream 
proximity measured with Euclidean distance (i.e., Euclidean metrics) predominantly outperformed stream prox-
imity measured with flow length (i.e., flow metrics) in predicting most land use-water quality relationships. 
Incorporating slope or a logarithmic transformation of flow accumulation in combination with a Euclidean dis-
tance measure of stream proximity (i.e., Euclid-S or Euclid-logA) often improved model accuracy, yet integrating 
both topographic variables (i.e., Euclid-SlogA) never resulted in optimal predictions. Euclid-S or Euclid-logA 
explained the highest variability in pH, TP, NO2-N and PO4

3-P, while the unweighted metric was most effective 
for predicting concentrations of Ca, EC, NO3-N and TSS. The results suggest that the spatial position and terrain 
of land use can govern the conveyance of reactive or unstable water quality parameters, whereas the proportions 
of land use are dominant factors for predicting more stable chemical data. Thus, the application of the unweighted 
metric as well as the Euclid-S or Euclid-logA metric is recommended for optimal model accuracy when exam-
ining the effects of land use on water quality in small, submontane catchments. With the implementation of 
landscape composition metrics, management efforts can be directed according to the parameter of concern and 
the associated, governing processes.

Data Availability
The datasets generated during and analyzed during the current study are available in the Mendeley repository, 
https://doi.org/10.17632/cf5yxs28cv.2.
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