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Accumulating evidence suggests that the breakdown of immune tolerance plays an
important role in the development of myocarditis triggered by cardiotropic microbial
infections. Genetic deletion of immune checkpoint molecules that are crucial for
maintaining self-tolerance causes spontaneous myocarditis in mice, and cancer
treatment with immune checkpoint inhibitors can induce myocarditis in humans. These
results suggest that the loss of immune tolerance results in myocarditis. The tissue
microenvironment influences the local immune dysregulation in autoimmunity. Recently,
tenascin-C (TN-C) has been found to play a role as a local regulator of inflammation
through various molecular mechanisms. TN-C is a nonstructural extracellular matrix
glycoprotein expressed in the heart during early embryonic development, as well as
during tissue injury or active tissue remodeling, in a spatiotemporally restricted manner. In
a mouse model of autoimmune myocarditis, TN-C was detectable before inflammatory
cell infiltration and myocytolysis became histologically evident; it was strongly expressed
during active inflammation and disappeared with healing. TN-C activates dendritic cells to
generate pathogenic autoreactive T cells and forms an important link between innate and
acquired immunity.
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INTRODUCTION

Myocarditis is an inflammatory disease of the myocardium. It represents a public health challenge
worldwide, as it is one of the leading causes of dilated cardiomyopathy, particularly in young,
previously healthy individuals (1). Myocarditis can be triggered by a variety of infectious and non-
infectious agents (2, 3), and the subsequent autoimmune response is thought to contribute to the
disease progression to inflammatory cardiomyopathy (4, 5).

Tenascin-C (TN-C) is a non-structural extracellular matrix (ECM) expressed during embryonic
development in the heart, but is not present in the normal adult heart (6). In tissue injury,
inflammation, or active remodeling, TN-C is re-expressed in a spatiotemporally restricted manner
(6). Recently, TN-C has gained attention as a local regulator of inflammation through various
molecular mechanisms (7). Several animal studies have revealed that TN-C is involved in autoimmune
disorders, including myocarditis, arthritis, glaucoma, and encephalomyelitis (8–11). In autoimmune
myocarditis, TN-C activates dendritic cells (DCs) to generate pathogenic autoreactive T cells and
forms an important link between innate and acquired immunity (9). In this mini review, we discuss
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the mechanistic insights into the development of myocarditis and
its progression to inflammatory cardiomyopathy and focus on the
role of TN-C in their pathology.
TRIGGERS OF MYOCARDITIS

Myocarditis can occur in association with a wide spectrum of
infectious agents (such as viruses, bacteria, and protozoans),
systemic immune-mediated diseases, toxic substances, and drugs
(such as immune checkpoint inhibitors) (2, 3, 12, 13). Viruses
have been implicated as the leading trigger of myocarditis, with
cardiotropic viruses (such as coxsackievirus B3 [CVB3] and
adenoviruses), vasculotropic viruses (such as parvovirus B19),
and lymphotropic viruses (such as human herpesvirus 6), which
are common agents identified in the myocardium of patients
with myocarditis/dilated cardiomyopathy (DCM) (14–16).
However, the etiologic role of the viruses detected in
myocarditis patients is not evident (17). For example, a high
prevalence of parvovirus B19 has been observed in hearts both
with (18) and without myocarditis (19). Thus, the causative or
associative link between individual viral infections and the
pathogenesis of myocarditis is still under investigation (17). In
Latin America, infection by the protozoan parasite Trypanosoma
cruzi is the most common cause of inflammatory heart
disease (17).

Animal models of virus-induced myocarditis with CVB3
infection have been used to study how viruses trigger
myocarditis. The pathogenesis of CVB3-induced myocarditis
involves both viral cytotoxicity and subsequent host immune
responses (2). Initially, CVB3 enters cardiomyocytes by binding
to the coxsackievirus-adenovirus receptor, and causes direct
cytotoxicity to the myocardium within three to four days post-
infection (16). During the early stage of CVB3 infection, innate
immune cells are activated through pattern recognition
receptors, such as toll-like receptors (TLRs), and produce pro-
inflammatory cytokines, such as interferons (IFNs), interleukin
(IL)-1b, IL-6, IL-8, and tumor necrosis factor-a (16, 20).
Subsequently, antigen-specific responses in adaptive immune
cells are induced, eliminating the virus by up to 14 days post-
infection (16, 20). However, even after viral clearance, a subset of
individuals may develop chronic myocardial inflammation with
virus-triggered uncontrolled immune response and the
expansion of cardiac-autoreactive T cells, leading to
inflammatory cardiomyopathy.

Infection with the novel pathogen severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) may trigger myocarditis
both directly and indirectly (14, 21). Several studies have
suggested that the immune response triggered by the virus is
the major cause of cardiomyocyte injury, rather than direct
virus-mediated cytotoxicity (15, 22). In a recent series of
hospitalized coronavirus disease 2019 (COVID-19) cases
caused by SARS-CoV-2 infection, acute cardiac injury with
serum troponin elevation occurred in 7% to 27% of patients,
and elevated troponin levels were associated with increased
mortality in patients with COVID-19 (23–25). However,
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elevated troponin can be caused not only by myocarditis but
also by other heart diseases, such as ischemic heart disease,
Takotsubo syndrome, or secondary cardiac injury due to
systemic inflammation and hypoxemia due to respiratory
dysfunction (14, 26). Recently, autopsies of 21 patients who
died from COVID-19 identified multifocal lymphocytic
myocarditis in three cases (14%) (26). Viral entry to cardiac
cells using angiotensin converting enzyme 2 may directly induce
myocarditis (27). However, the exact mechanism of SARS-CoV-
2-induced myocarditis is currently unknown, and further
investigations are required.
AUTOIMMUNE MYOCARDITIS AND
INFLAMMATORY CARDIOMYOPATHY

Myosin heavy chain a isoform (MyHC-a) represents a major
cardiac autoantigen. MyHC-a immunization with immune
adjuvants or the injection of MyHC-a-loaded DCs can induce
autoimmune myocarditis in mice (28, 29). MyHC-a reactive T
cells have been found in patients with myocarditis and,
interestingly, in healthy subjects (30), suggesting that this may
be due to impaired T cell tolerance mechanisms. In the thymus,
most autoreactive T cells are eliminated through central immune
tolerance or negative selection. In this process, the presentation
of self-peptides by antigen-presenting medullary thymic
epithelial cells is crucial for determining the fate of developing
T cells. Importantly, unlike other cardiac antigens, MyHC-a is
not expressed in thymic cells in either mice or humans.
Therefore, a lack of central T cell tolerance to this protein
allows MyHC-a-reactive T cells to escape negative selection
and enter the peripheral circulation (30). MyHC-a-reactive T
cells were markedly increased in myocarditis, and adoptive
transfer of these cells induced myocarditis in the recipients,
demonstrating the effector function of MyHC-a-reactive T
cells (30). Although frequency is low, MyHC-a-reactive T cells
are present in the periphery of healthy individuals (30),
suggesting that peripheral immune tolerance is crucial to
prevent these self-reactive T cells from inducing autoimmune
myocarditis (5, 31, 32). The mechanism of peripheral immune
tolerance is complicated, and immune checkpoints, including
cytotoxic T-lymphocyte antigen 4 (CTLA-4) and programmed
cell death protein 1 (PD-1)/PD ligand 1 (PD-L1), play important
roles in maintaining peripheral tolerance to cardiac antigens
(33). After viral infection, MyHC-a-specific CD4+ T cells
expand, likely because of molecular mimicry (epitope cross-
reactivity) or epitope spreading (self-antigen exposure from
cardiomyocytes upon viral damage), and contribute to post-
infectious myocarditis (34).

Until now, the role of gut bacteria in cardiac autoimmunity
was unclear. However, recently, Gil-Cruz et al. (35)
demonstrated that the commensal gut microbe Bacteroides
thetaiotaomicron (B. theta) triggers a cross-immune response
against the bacterial protein b-galactosidase and MyHC-a,
causing inflammatory cardiomyopathy. B-galactosidase
produced by B. theta has sequence homology to MyHC-a and
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induces proliferation and T helper 17 (Th17) polarization of
MyHC-a-specific CD4+ T cells. Additionally, antibiotic therapy
prevents lethal consequences. Patients with myocarditis have
higher anti-B. theta antibody and circulating T cells from the
patients show significantly higher IFN-g production capacity
against both MyHC-a and b-galactosidase than healthy
subjects. These results suggest that targeting the microbiome
could become a new therapeutic strategy.

In contrast to the well-defined cardiac antigen-specific T-cell
responses, our understanding of the role of heart non-specific
CD4+ T cells in myocarditis is limited. Recently, Zarak-Crnkovic
et al. (36) demonstrated in a proof-of-concept study that heart
non-specific effector T cells did not affect the severity of
myocarditis, but protected the heart from adverse post-
inflammatory fibrotic remodeling and cardiac dysfunction in
the chronic stage. Moreover, bystander activation of effector T
cells suppressed the myofibroblast phenotype of mouse and
human cardiac fibroblasts (36), suggesting a dynamic and
complex role of effector T cells and the interplay between T
cells and fibroblasts in autoimmune myocarditis.
TN-C IN MYOCARDITIS AND
INFLAMMATORY CARDIOMYOPATHY

In the heart, TN-C is transiently expressed at several important
stages during embryonic development, but TN-C-deficient mice
do not show a clear phenotype (37). TN-C is rarely expressed in
normal adult hearts but is upregulated under pathological
conditions with tissue injury, tissue repair/regeneration, and
inflammation (38, 39), including myocarditis (40, 41), DCM
(42), rheumatic heart disease (43), myocardial infarction (44, 45),
hypertensive heart disease (46), and Kawasaki disease (47).
Serum TN-C levels appear to be useful biomarkers for
assessing disease activity and predicting disease prognosis.
High serum TN-C levels are a significant independent
predictor for cardiac events and have an incremental predictive
power with brain natriuretic peptide (BNP) in both myocardial
infarctions and DCM (48, 49). BNP is secreted from
cardiomyocytes in the ventricles in response to stretching
caused by increased wall tension and is broadly used as a
marker for the diagnosis and treatment of heart failure (50,
51). On the other hand, fibroblasts are a major source of TN-C in
the pathological heart (40, 52, 53). The combination of the two
biomarkers may more accurately reflect the pathological
condition of the entire heart than a single biomarker (54).

The expression of TN-C is detectable in the heart before
inflammatory cell infiltration and myocytolysis become
histologically apparent, persists during active inflammation, and
is no longer present prior to mature collagen deposition in the
healing phase in a mouse model of experimental autoimmune
myocarditis (5). A major source of TN-C in the pathological
heart consists of residential interstitial cells, primarily fibroblasts;
however, precardiac mesodermal cells, a special population of
cardiomyocytes in embryonic hearts, and several cell lines of
cardiomyocytes also have the potential to produce TN-C (54). Its
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expression level reflects the activity of myocardial inflammation
(40). We previously investigated the immunomodulatory effect of
TN-C in experimental autoimmune myocarditis. TN-C-deficient
mice were protected from severe myocarditis with lower Th17 cell
infiltration to the heart compared to wild-type mice (9). Th17 cells
are closely associated with autoimmunity, and IL-17-producing
Th17 cells play a major role in the initiation and development of
myocarditis (2, 55, 56). In human myocarditis/inflammatory
cardiomyopathy, the Th17 immunophenotype is characterized by
elevatedTh17 levelswith increases in theTh17-related cytokines IL-
6, IL-1b, transforming growth factor-b1, IL-23, and granulocyte-
macrophage colony-stimulating factor (GM-CSF) (57). Moreover,
patients with severe heart failure have greater proportions of Th17
than those with low severity heart failure (57). IL-6 is a key cytokine
that differentiates naïve CD4+ T cells into Th17 cells (58). The
stimulation of DCs with exogenous TN-C produces high levels of
IL-6 (9). Naive CD4+ T cells co-cultured with TN-C-stimulated
DCs differentiate into Th17 cells, and the IL-6 blockade inhibits
Th17 polarization (9). In addition, TN-C-stimulated DCs produce
high levels of IL-1b and GM-CSF, which facilitate Th17 generation
and maintenance (59, 60). Taken together, TN-C may promote
Th17 expansion through its ability to induce Th17-inducing
cytokine production from DCs and form an important link from
innate to adaptive immunity.

DCs are antigen-presenting cells essential for priming T cell
responses (61).Resting tolerogenicDCs that display cardiacmyosin
peptides in complexwith class IImajor histocompatibility complex
(MHC) are present in a healthy heart and are trafficked to the
cardiac draining lymph nodes. In the lymph nodes, DCs present
cardiac myosin peptides to naïve CD4+ T cells specific to those
peptides, leading to deletion, anergy, or Treg induction (32). If a
heart is damaged by tissue injury or inflammation, TN-C is
produced by fibroblasts and stimulates myocardial DCs to
migrate to the cardiac draining lymph nodes and activate cardiac
myosin-specific T cells, which then differentiate into inflammatory
effectorT cells (Figure 1). In addition topresenting antigen-derived
peptides on their MHCs with costimulatory molecules for naïve T
cell activation and expansion, DCs release a cocktail of polarizing
cytokines for the differentiation of CD4+ T cells into effector cells
(30, 62). In autoimmunediseases, DCsplay an important role in the
regulation of autoreactive CD4+ T cells (30). A model of bone
marrow-derivedDC(BMDC)-induced autoimmunemyocarditis is
helpful for understanding how DCs activate autoreactive CD4+ T
cells (28). In this model, the activation of TLRs on BMDCs loaded
with a MyHC-a peptide is essential for the induction of
autoimmune myocarditis (9, 28). TLR signaling triggers innate
immunity upon stimulation with microbial products or
endogenous danger signals (danger-associated molecular patterns
[DAMPs]) (63). In sterile inflammation, DAMPs are released from
either ECM (e.g., TN-C or biglycan) or from dying cells (e.g.,
histones, highmobility group box 1, heat-shock proteins, DNAs, or
RNAs) and stimulate TLRs (64, 65). Popovic et al. reported that an
endogenous TLR2/4 ligand biglycan enhanced the priming of
autoreactive T cells and stimulated autoimmune perimyocarditis
(66). We previously showed that TN-C provides DCs to induce
myocarditis via TLR4 activation (9). The injection of MyHC-a-
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loaded BMDCs stimulated with TN-C induced myocarditis in the
recipient mice (9). Upon stimulation with TN-C, DCs produced
large amounts of proinflammatory cytokines, including the Th17-
polarizing cytokines IL-1b, IL-6, and GM-CSF (9). Naïve CD4+ T
cells co-cultured with TN-C-stimulated DCs differentiated into
Th17 cells, but IL-6 blocking antibody inhibited Th17
polarization (9). Moreover, the blocking of TLR4 signaling
reduced IL-6 secretion from DCs with less Th17 generation (9).
TN-C-stimulated BMDCs from TLR4-deficient mice failed to
induce myocarditis in the recipients, indicating that TN-C
provides myocarditis inducibility to DCs, at least in part, via
TLR4 interaction (Figure 1) (5, 9). However, this concept is based
on limited experimental findings. Therefore, further studies are
needed to fully determine the effect of TN-C on the onset and
progression of myocarditis.
CONCLUSIONS AND PERSPECTIVES

The etiology and pathogenesis of myocarditis are not yet fully
understood. TN-C may be a key extracellular modulator that
controls immune responses in myocarditis and inflammatory
cardiomyopathy. To date, no attempt has been made to suppress
the function of TN-C during myocarditis; however, it has been
reported that the administration of an antibody against a domain of
TN-C to a rheumatoid arthritis model ameliorated disease severity.
Thus, blocking TN-C-dependent inflammatory signals may be a
potential novel therapeutic strategy for treating autoimmune
Frontiers in Immunology | www.frontiersin.org 4
myocarditis. Studies involving various animal models have
provided a plethora of information, but there remains a gap in
knowledge regarding howmyocarditis in animalmodels may differ
from that in humans. The prevalence of myocarditis will increase
together with the expanding use of immune checkpoint inhibitors
and the progression of the COVID-19 pandemic (67). As a result,
sophisticated technologies, computational models, and insights
are needed.
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FIGURE 1 | Schematic illustration showing a hypothetical mechanism by which tenascin-C (TN-C)-stimulated dendritic cells (DCs) induce Th17 differentiation. TN-C
is upregulated in the heart under pathological conditions such as tissue injury and inflammation, and stimulates myocardial dendritic cells (DCs) via toll-like receptor 4
(TLR4) activation in the heart. Activated DCs migrate to the cardiac draining lymph nodes where they activate cardiac myosin-specific T cells. DCs produce Th17-
polarizing cytokines (IL-6, IL-1, and GM-CSF) that contribute to the generation of Th17 cells. In turn, CD4+ T cells migrate back to the heart and cause autoimmune
myocarditis.
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