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Abstract 21 

Background: Animals coexist with complex microbiota, including bacteria, viruses, and 22 

eukaryotes (e.g., fungi, protists, and helminths). While the composition of bacterial and viral 23 

components of animal microbiota are increasingly well understood, eukaryotic composition 24 

remains neglected. Here we characterized eukaryotic diversity in the microbiomes in wild baboons 25 

and tested the degree to which eukaryotic community composition was predicted by host social 26 

group membership, sex, age, and season of sample collection. 27 

Results: We analyzed a total of 75 fecal samples collected between 2012 and 2014 from 73 wild 28 

baboons in the Amboseli ecosystem in Kenya. DNA from these samples was subjected to shotgun 29 

metagenomic sequencing, revealing members of the kingdoms Protista, Chromista, and Fungi in 30 

90.7%, 46.7%, and 20.3% of samples, respectively. Social group membership explained 11.2% of 31 

the global diversity in gut eukaryotic species composition, but we did not detect statistically 32 
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significant effect of season, host age, and host sex. Across samples, the most prevalent protists 33 

were Entamoeba coli (74.66% of samples), Enteromonas hominis (53.33% of samples), and 34 

Blastocystis subtype 3 (38.66% of samples), while the most prevalent fungi included Pichia 35 

manshurica (14.66% of samples), and Ogataea naganishii (6.66% of samples).  36 

Conclusions: Protista, Chromista, and Fungi are common members of the gut microbiome of wild 37 

baboons. More work on eukaryotic members of primate gut microbiota is essential for primate 38 

health monitoring and management strategies. 39 

keywords: eukaryotes, gut microbiome, wild baboons, fungi, protists, social groups 40 

 41 

Introduction  42 

Vertebrate gut microbiota are complex and dynamic communities of bacteria, viruses, archaea, 43 

and eukaryotes [1,2]. To date, most research on vertebrate gut microbiota has focused on bacteria, 44 

in part because bacteria are both easy to characterize via 16S rRNA gene sequencing [3,4] and 45 

because bacteria are important to host health, with well-known effects on host metabolism, vitamin 46 

biosynthesis, and immune modulation [5–8]. However, vertebrate gut microbiota also contain 47 

eukaryotes, such as protists, metazoans, and fungi. Research on these eukaryotic communities 48 

remains neglected, in part because genetic and bioinformatic methods to characterize these 49 

communities are less developed than those for bacteria [9–12].  50 

To date, the best characterized eukaryotic gut communities are those found in humans and 51 

laboratory mice. Humans living in a wide range of geographic locations harbor gut eukaryotes, 52 

including protists such as Blastocystis, Entamoeba, and Enteromonas, and fungi such as 53 

Saccharomyces, Candida, Penicillium, Aspergillus, and Malassezia [13–15]. The relevance of 54 
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these taxa to host health often remains unclear [16]. Some of these protists, such as Entamoeba 55 

histolytica, Blastocystis hominis, and Aspergillus fumigatus, may have pathogenic effects on hosts 56 

[14,17–21], while many others likely have commensal relationships with their hosts, and their 57 

presence may indicate a normal, healthy gut microbiota [16,22,23]. For instance, in mice, 58 

Tritrichomonas musculis is associated with host immune modulation and protection against 59 

bacterial mucosal infections [24].  60 

In contrast, little is known about the eukaryotes living in the intestines of wild animals, 61 

including non-human primates [25–27]. Here we characterize eukaryotic members of the gut 62 

microbiota of wild baboons (Papio sp.) living in the Amboseli ecosystem in Kenya [28]. Prior 63 

work in this population has revealed several variables that influence individual exposure and 64 

susceptibility to gut bacteria, and we predicted that these same variables would also be important 65 

in predicting gut eukaryotic composition, including host social group membership [29–32], the 66 

season of sample collection [33–39], and host age [34,40–42]. For instance, social group 67 

membership influences baboon ranging patterns, resource use, and social relationships, which 68 

might influence microorganism exposure and transmission. In support, baboons from different 69 

social groups show distinct gut bacterial communities, and social group membership explains more 70 

variance in the gut bacterial microbiome than host age or sex [29]. Seasonality also shapes baboon 71 

diet, water source use, and other aspects of the environment, leading to systematic fluctuations in 72 

the abundance of several bacterial taxa as a function of the season of sample collection [43].  73 

Our objectives in this paper were to characterize common gut eukaryotes in wild baboons 74 

and test the effects of seasonality, host social group membership, host sex, and host age on baboon 75 

gut eukaryotic community composition and diversity. We accomplished this objective by 76 

leveraging two shotgun metagenomic data sets: (i) samples from 48 individual baboons living in 77 
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two social groups in July and August 2012 [29], and (ii) samples from 27 individual baboons 78 

collected during the wet (April and May) and dry seasons (September) of 2014 (two individuals 79 

were included in both data sets so the total sample size was 75 samples from 73 individual 80 

baboons). We expected that gut eukaryotic communities would be influenced by similar factors to 81 

gut bacterial communities in this population. Our results provide new insights into the gut 82 

eukaryotic composition of wild baboons, contributing useful information for understanding the 83 

biology and health of wild primates. 84 

 85 

Materials and methods 86 

Study subjects and sample material  87 

The baboons sampled in this study were studied by the Amboseli Baboon Research Project 88 

(ABRP) in the Amboseli ecosystem in Kenya. Founded in 1971, the ABRP conducts longitudinal 89 

research on known individual baboons living in several social groups [28]. Members of this 90 

population are hybrids between yellow and anubis baboons (Papio cynocephalus and P. anubis) 91 

[44–46]. The Amboseli ecosystem experiences a 5-month dry season from June through October, 92 

followed by a 7-month wet season with highly variable rainfall [47].  93 

Data on the Amboseli baboons is collected by experienced observers year-round during 5-94 

hour monitoring sessions, six days per week. During these sessions, observers collect fecal samples 95 

opportunistically from individuals, all of which are known to the observers from distinctive 96 

physical features. For each sample, the baboon’s social group membership is known from group 97 

censuses collected during each monitoring session. Age is known to within a few days’ error for 98 

all individuals born into ABRP study groups (n=64 baboons in this study), and estimated for other 99 

individuals based on observable morphological characteristics and body condition (n=9 baboons 100 
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who were all immigrant males, as males but not females disperse from their natal groups in this 101 

population). Sex is known based on morphological differences. All sampled individuals appeared 102 

healthy upon visual examination. All fecal samples are collected within a few minutes of 103 

defecation, thoroughly mixed, and preserved in 95% ethanol (2:5 feces to ethanol).  104 

We analyzed eukaryotic composition in two sets of fecal samples. The first set was used to 105 

test for social group effects on eukaryotic composition. This set included samples from 48 adult 106 

baboons living in two social groups: ‘Mica’s group’, (11 females and 8 males), and ‘Viola’s 107 

group’, (20 females and 9 males). These samples were collected within a one-month window 108 

during the dry season of 2012 (Figure 1; Supplementary Table 1; an analysis of bacterial 109 

microbiome composition from these samples was published in Tung et al. [29]). The second 110 

dataset was used to test for seasonal differences in eukaryotic composition. It included samples 111 

from 27 baboons collected during the dry season in September 2014 (n=15) and the wet season 112 

between April and May 2014 (n=12) (Figure 1; Supplementary Table 1).  Host sex and age were 113 

known for individuals in both data sets and two individuals occurred in both data sets.  114 

 115 

 116 

117 
Figure 1. Schematic of the two sets of fecal samples investigated in this study (Supplementary Table 118 

1). Shotgun metagenomic data for the first set of samples on social group membership was published in 119 

2015 by Tung et al. [29]; these data are publicly available in the NCBI’s Short Read Archive (Bioproject 120 

PRJNA271618). Shotgun metagenomic data for the second set of samples on seasonality were generated 121 

for the present study; these data are publicly available on NCBI’s Short Read Archive (Bioproject 122 

PRJEB81717). Data on host sex and age were available for samples in both data sets.  123 

 124 
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Genomic DNA extraction and sequencing 125 

Total DNA was extracted from the first (social group) set of fecal samples using the MO BIO 126 

Laboratories, Inc., Carlsbad, CA, PowerSoil DNA Isolation kit. Samples for the second (seasonal) 127 

set were extracted using Qiagen’s DNeasy PowerSoil kit (Venlo, Netherlands). Both protocols 128 

were performed according to the manufacturer's instructions.  129 

For samples in the first (social group) dataset [29], 200 ng of DNA were prepared for 130 

metagenomic sequencing on an Illumina HiSeq 2500, using Kapa Biosystems Library Preparation 131 

Kits (Kapa Biosystems, Wilmington, MA). The DNA samples were sheared to an average size of 132 

400 base pairs, followed by ligation to barcoded adapters. The libraries were subjected to 100 base 133 

pair paired-end sequencing at the UCLA Neuroscience Genomics Core. In total, 1.4 billion raw, 134 

paired-end Illumina sequences were generated, with a mean ± SD of 14.4 ± 13.7 million read pairs 135 

per sample. The raw metagenomic sequencing data are deposited in the NCBI’s Short Read 136 

Archive (BioProject PRJNA271618). 137 

For samples in the second (seasonal) dataset, 200 ng of DNA were prepared for 138 

metagenomic sequencing on the Illumina NovaSeq X, utilizing the SeqWell purePlex DNA 139 

Library Preparation Kit (SeqWell, Beverly, MA). Samples were subjected to 150 base pair paired-140 

end sequencing at the University of Minnesota Genomics Core. In total, 2.54 billion raw, paired-141 

end Illumina sequences were generated, with a mean ± SD of 94 ± 31.2 million read pairs per 142 

sample. All the raw reads for the second dataset (n = 27) are deposited in NCBI’s Short Read 143 

Archive (BioProject PRJEB81717). 144 
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 145 

Identifying dominant eukaryotic members of the baboon gut microbiome 146 

The raw data were processed using FastQC [48] to assess the quality of the reads. Duplicate reads 147 

were removed using FastUniq [49] and trimmed to remove adapter sequences and low-quality 148 

bases (PHRED score <20) using Trimmomatic (v0.39) in paired-end mode [50]. We also removed 149 

read pairs where one read was shorter than 75 base pairs after trimming.  150 

We then used two previously-developed pipelines to further filter our sequences and 151 

identify the presence/absence of eukaryotic taxa in each sample: EukDetect [51] 152 

(https://github.com/allind/EukDetect) and its descendent pipeline gutprotist-search 153 

https://github.com/allind/gutprotist-search). In brief, EukDetect aligns reads to a database 154 

consisting of conserved eukaryotic marker genes from curated whole genome assemblies [51]. 155 

Gutprotist-search, developed alongside EukDetect, complements the approach in EukDetect by 156 

using a database of NCBI sequences for particular taxonomic identifiers for eukaryotic taxa that 157 

lack genome assemblies. Because genome sequences are unavailable for many gut eukaryotes, 158 

gutprotist-search helps identify taxa that might otherwise go undetected. 159 

 Both pipelines were run using the recommended Snakemake workflow engine [51,52] 160 

with default parameters. The metagenomic reads were aligned to the EukDetect marker database 161 

and the gutprotist-search database using Bowtie2 [53], followed by stringent quality filtering 162 

based on mapping quality to retain reads with a PHRED score ≥30, ensuring high base-call 163 

accuracy. Sequence complexity was assessed using a complexity score threshold of ≥0.5 to retain 164 

only high-complexity reads, reducing spurious alignments due to low-complexity regions. 165 

Additional filtering as described in EukDetect protocol extended these steps to refine taxonomic 166 

assignments by addressing off-target alignments arising from false positives. Specifically, reads 167 
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mapping to multiple species within a genus were compared for sequence identity and coverage, 168 

with lower confidence species excluded, and the ETE3 toolkit [54] was used to validate alignment 169 

accuracy. Following recommended practice, only taxa with more than four reads aligning to at 170 

least two distinct marker genes were retained, but unfiltered results were also explored for low-171 

abundance species as recommended by the authors [51]. The EukDetect and gutprotist-search 172 

pipelines output a list of the eukaryotic taxa identified in the samples and associated relevant 173 

statistics such as the number of observed marker genes per sample per taxon, number of reads 174 

mapping to the marker genes, total marker gene coverage and identity percentage. We combined 175 

the results of these pipelines for each sample into a single table for our analyses (Supplementary 176 

Table 2). In this table, taxa were marked present (1) in a given sample if they were detected in one 177 

or both pipelines and absent (0) from a sample if they were not detected by either pipeline. Finally, 178 

the insect metazoan Callosobruchus maculatus was detected in 1 sample, but excluded from 179 

downstream analyses as it was likely acquired from food, and therefore not part of the gut 180 

eukaryotic community.  181 

 182 

Statistical analyses 183 

All statistical analyses were conducted in the R statistical environment (R version 4.3.3) [55]. We 184 

began our analyses by reporting the eukaryotic taxa that we identified across both sets of samples 185 

(N=75 samples; 48 from the first (social) set and 27 from the second (seasonal) set).  186 

Next, to test whether eukaryotic species richness differed between baboon social groups 187 

(first sample set) or season (second sample set), we calculated the Simpson’s alpha diversity index 188 

using the package vegan [56]. We then tested for differences in alpha diversity as a function of 189 

social group, season, host age, host sex, and the number of paired-end sequences generated for 190 

each sample using a linear model implemented in the stats package [55]. 191 
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To test for compositional differences between eukaryotes as a function of baboon social 192 

group or season, we calculated Jaccard distance matrices within each data set using the vegdist 193 

function in vegan [56] (Jaccard distances measure dissimilarity between samples based on the 194 

presence/absence of taxa in each sample). To visualize how eukaryotic species composition varied 195 

between social groups or seasons, we used non-metric multidimensional scaling (NMDS). To 196 

determine the proportion of variance in community composition attributable to social group or 197 

season and host sex or age, we conducted a permutational multivariate analysis of variance 198 

(PERMANOVA)  implemented in the adonis function in vegan, with 10,000 permutations [56]  199 

To test the effect of social group and season on the presence of each eukaryotic species within 200 

each data set using a binomial generalized linear model (GLM) implemented in the stats package. 201 

The presence or absence of each eukaryotic species was modeled as a response variable while the 202 

predictor variables were social group membership (Mica’s or Viola’s), season (wet or dry), host 203 

sex, host age, and read count. 204 

 205 

Ethics statement 206 

All protocols were approved by the Institutional Animal Care and Use Committee (IACUC) at the 207 

University of Notre Dame to cover behavior observations and fecal sample collections in baboons 208 

at Amboseli, under protocol number 22-05-7259. 209 

 210 

Results 211 

Metagenomic analysis reveals diverse gut eukaryotic communities in wild baboons 212 

Across both the social (n=48) and seasonal (n=27) data sets, we found genetic evidence for 21 213 

eukaryotic species (Supplementary Figure 1; Supplementary Table 3; range=0 to 7 taxa per 214 
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sample). The mean number of eukaryotic taxa per sample across both data sets was 3.10 (SD= 215 

1.60). Within each dataset, the average number of eukaryotic taxa present per sample was 3.09 216 

(SD=1.47) in the social group dataset and 3.12 (SD= 1.84) in the seasonal dataset. Information on 217 

the potential transmission mode and health relevance of each taxon is in Supplementary Table 4. 218 

Additionally, we detected genetic evidence for the metazoan arthropod, Callosobruchus maculatus 219 

in 1.33% (n=1 of samples). Because baboons frequently ingest insects, these sequences may come 220 

from a closely-related insect in the baboon diet, and are not living members of the microbiome 221 

community. Sequences attributed to C. maculatus are removed from our analyses.  222 

Overall, Protista was the most well-represented kingdom (n=68 samples; 90.7%), followed 223 

by Chromista (n=35 samples; 46.7%), and Fungi (n=22 samples; 29.3%; Supplementary Figure 224 

1). Over half of the samples in the data set (n=56 samples; 74.7%) contained at least two detectable 225 

eukaryotic taxa, while 2.7% (n=2 samples) contained 7 eukaryotic taxa, the maximum number we 226 

observed. Only 2 samples (2.67%) had no detectable eukaryotes (one in the social group data set 227 

and one in the seasonal data set). Across all samples, the five most prevalent species were 228 

Entamoeba coli (n=56 samples; 74.7%), Enteromonas hominis (n=40 samples; 53.3%), 229 

Blastocystis subtype 3 (n=29 samples; 38.7%), Iodamoeba sp (n=27 samples; 36%), and 230 

Chilomastix mensnili (n=26 samples; 34.7%; Supplementary Table 3). We also detected a set of 231 

species found in one or only a handful of samples, including (Candida blattae, Malassezia 232 

restricta, Ogatea naganashii, Preussia sp., and Aspergillus sydowii (see Supplementary Table 233 

3).   234 

 235 

Social group membership predicts gut eukaryotic diversity and composition  236 

In the first (social group membership) data set, we found significant differences in the gut 237 

eukaryotic alpha diversity for baboons in different social groups (linear model test, p=0.015; 238 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 17, 2024. ; https://doi.org/10.1101/2024.12.17.628920doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.17.628920
http://creativecommons.org/licenses/by-nc/4.0/


 

11 

Figure 2A; Supplementary Table 5). Samples from baboons living in Viola’s group exhibited 239 

higher Simpson’s diversity compared to those living in Mica’s group (Figure 2A).  240 

 241 

Figure 2. Social group membership is correlated with baboon gut eukaryotic composition. (A) 242 

Eukaryotic species diversity between Viola’s and Mica’s social groups using the Simpson’s diversity index. 243 

A linear model was used to calculate statistical significance. (B) Non-metric multidimensional scaling 244 

(NMDS) plot of gut eukaryotic composition as measured using Jaccard index dissimilarity matrices. (C) 245 
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Number of eukaryotic taxa per sample in Mica and Viola’s social groups and (D) prevalence of eukaryotic 246 

taxa in the two social groups. (E) Heatmap of the eukaryotic taxonomic composition of samples used to test 247 

for social group membership, with each column representing one fecal sample and metadata on social 248 

group, season, age class, and sex of the host. Samples are clustered using Euclidean distance of eukaryotic 249 

community composition.  250 

Eukaryotic composition was also significantly different between Viola’s and Mica’s groups, 251 

explaining 11.2% of the variation in eukaryotic composition (PERMANOVA: r2 = 0.111 p = 1x10-252 

3; Figure 2B; Supplementary Table 6). We also found a trend such that the number of paired end 253 

sequences in each sample had a small effect on eukaryotic composition (r2 = 0.045; p = 0.05). By 254 

contrast, host age and sex did not make statistically significant contributions to gut eukaryotic 255 

composition (age, p = 0.45; sex, p = 0.504; see Supplementary Table 6). 256 

On average, 50% of Viola’s and 12.5% of Mica’s samples had at least 3 eukaryotic taxa 257 

(Figure 2C). In support of the patterns of alpha diversity we observed (Figure 3A), most taxa 258 

were more prevalent in Viola’s group as opposed to Mica’s group, including Blastocystis subtype 259 

3 (coefficient: -2.03, p=0.01; Supplementary Table 7), Blastocystis. ATCC (coefficient: -1.99, 260 

p=0.08), Enteromonas hominis (coefficient: -1.77, p=0.01), Iodamoeba sp. (coefficient: -2.21, 261 

p=0.01) and Endolimax nana (coefficient: -1.82, p=0.20). Only one taxon, Entamoeba coli, was 262 

more prevalent in the Mica’s group compared to the Viola’s group (Figure 2D-E). Ogataea 263 

naganishii and Aspergillus sydowii were found at low prevalence (2%) only in samples from 264 

Mica’s group, while Preussia sp. BSL10 and Malassezia restricta were exclusively found in 265 

samples from Viola’s group (2%, Figure 2D-E). 266 

 267 

Season did not predict gut eukaryotic diversity and composition  268 

We found no significant differences in the alpha diversity of the eukaryotes between samples 269 

collected in the dry season compared to the wet season (Simpson’s diversity: effect size = 3.6%, 270 

Linear model test p = 0.23; Figure 3A). Across all 27 samples in the seasonal dataset, no 271 
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significant variation in taxonomic composition was explained by season, age, sex, or number of 272 

paired end sequences (PERMANOVA, r2 = 0.036; p = 0.48; age, p = 0.20; sex, p = 0. 64, number 273 

of paired end sequences, p = 0.13; Figure 3B).  274 

On average, 25.9% of samples collected in the dry season and 22.2% of samples collected 275 

in the wet season contained at least 3 detectable eukaryotic taxa (Figure 3C). The eukaryotic 276 

communities across all the samples in the seasonal data set were clustered according to their 277 

diversity and composition, which indicated small taxon-level distinctions between the wet and the 278 

dry seasons, despite no strong evidence for global seasonal shifts. No species differed in 279 

prevalence between seasons (Supplementary Table 7). In line with our results on the social group 280 

dataset, Entamoeba coli emerged as the most prevalent and dominant species (n= 16 samples; 281 

59.3%), followed by Enteromonas hominis (n= 11 samples; 40.7%), Blastocystis subtype 3 and 282 

Iodamoeba sp. (n= 10 samples each; 37% each), Pichia manshurica (n= 9 samples; 33.3%), 283 

Chilomastix mesnili (n= 7 samples; 25.9%), Ogatea naganishii (n= 4 samples; 14.8%), 284 

Blastocystis ATCC (n= 3 samples; 11.1%) and Byssochlamys sp. AF001 (n= 2 samples; 7.4%; 285 

Figure 3D-E) .  286 

 287 

 288 
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 289 

Figure 3. Season did not predict baboon gut eukaryotic diversity and composition. (A) Simpson’s 290 

diversity index of baboon gut microbiome composition between the wet and dry seasons. A linear model 291 

was used to calculate statistical significance. (B) Non-metric multidimensional scaling (NMDS) plot of gut 292 

eukaryotic microbiome composition as measured using Jaccard index dissimilarity matrices. (C) Number 293 

of eukaryotic taxa per sample in the dry and wet season. (D) prevalence of eukaryotic taxa in the wet and 294 
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dry seasons. (E) Heatmap of the eukaryotic taxonomic composition of samples used to test for seasonality, 295 

with metadata on social group, season, age class, and sex of the host. Each column represents one fecal 296 

sample; samples are clustered using Euclidean distance of eukaryotic community composition.  297 

 298 

Discussion 299 

Although eukaryotes are commonly found in mammalian gut microbiomes, little is known about 300 

their importance for host health or the factors that drive their prevalence in wild non-human 301 

primates. Here, we investigated the composition and diversity of the eukaryotic communities 302 

inhabiting the gastrointestinal tract of wild baboons, focusing on the explanatory power of host 303 

social group membership, season, host sex, and host age. We detected genetic evidence for several 304 

eukaryotic taxa, spanning 3 kingdoms (Fungi, Protista, and Chromista in order of prevalence) and 305 

21 species. Most of the taxa we found are considered non-pathogenic commensals and have been 306 

previously found in human populations across the world [57]. Among primates, Entamoeba coli 307 

has been identified in mountain gorillas (Gorilla beringei beringei) [58], western lowland gorillas 308 

(Gorilla gorilla gorilla) [59], red colobus (Procolobus badius tephrosceles) [60,61], red-tailed 309 

monkeys (Cercopithecus ascanius schmidti) [60,61], vervet monkeys (Cercopithecus aethiops 310 

pygerythrus) [60,61], baboons (Papio anubis), and chimpanzees [60,61]. The high prevalence of 311 

Entamoeba coli among non-human primates might be attributed to their social behavior and 312 

communal living, as Entamoeba species are known to be transmitted by intake of a mature cyst 313 

through either ingestion of contaminated water or food, or direct oral-fecal contact [62,63], in 314 

addition to the commensal relationship between the parasite and its hosts.  315 

 316 

Among the most abundant taxa identified in baboons was Blastocystis (56%). Blastocystis 317 

is a common chromista found in humans, and non-human primates such as baboons. gorillas, 318 

chimpanzees, and other mammals, as well as in birds [64–66]. Whether Blastocystis is commensal 319 
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or pathogenic is still under debate [17]. In humans, members of the Blastocystis genus are common 320 

and stable colonizers of the gut of healthy individuals [67,68]. However, Blastocystis has also been 321 

associated with some gastrointestinal disorders such as inflammatory bowel disease (IBD) and 322 

irritable bowel syndrome (IBS) in humans [69], indicating possible pathogenicity. The role of 323 

Blastocystis in non-human primates remains unclear [66]. The high prevalence of Blastocystis 324 

among the baboons included in this study, which all appeared healthy upon visual examination 325 

when sampled, suggests that Blastocystis might be a commensal member of the gut microbiome 326 

of wild baboons.  327 

 328 

The most common Blastocystis identified in the gut of the baboons in our study was 329 

Blastocystis subtype 3, found in 38.7% of the samples. Blastocystis subtype 3 has been previously 330 

found in humans and livestock [64], and is among the Blastocystis subtypes previously connected 331 

to human gut colonization [64,70]. Together, these results indicate the possibility for transmission 332 

of Blastocystis between wild baboons, livestock, and human populations, though further research 333 

is warranted to test this possibility. Transmission between species would not be surprising as both 334 

wild baboons and livestock share water holes during the dry season, and Blastocystis are 335 

commonly transmitted through shared water sources. Other taxa were less common in our samples 336 

(found in less than 10.7% of samples), and included Candida blattae, Malassezia restricta (which 337 

is a member of the normal primate skin microbiota, occasionally contributing to skin conditions), 338 

Ogatea naganashii, Preussia sp. (a non-pathogenic genus), and Aspergillus sydowii (which can 339 

cause respiratory infections in immunocompromised individuals; Supplementary Table 4). The 340 

latter was exclusively found in Mica’s group at low prevalence (2%), suggesting that, in contrast 341 
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to recent observations in wild macaques (Tibetan macaque, Macaca fascicularis, and Macaca 342 

namestrina) [71,72], Aspergillus is not a common member of the wild baboon gut microbiome.  343 

 344 

Among the variables we investigated, social group membership was the strongest predictor 345 

of eukaryotic diversity, explaining approximately 14.8% of the variation in eukaryotic community 346 

composition. Specifically, the larger social group (Viola) was characterized by greater eukaryotic 347 

diversity. This pattern may be due to the fact that individuals in larger groups interact with more 348 

hosts in larger as compared to smaller groups, and as a result they may be exposed to more diverse 349 

eukaryote communities. This result is consistent with a previous study from the Amboseli 350 

ecosystem [73] and another on geladas [74], showing that members of a larger social group 351 

exhibited higher diversity in their gut microbiota than individuals belonging to smaller groups. 352 

However, another possibility is that the increased eukaryotic diversity observed in Viola’s group 353 

is related to their home range occupancy. Viola’s home range was bigger than Mica’s at the time 354 

the samples we analyzed were collected [29], suggesting that Viola’s group could have been 355 

exposed to a wider variety of resources, substrates, and, ultimately, microbes. Other variables such 356 

as sex and age were less relevant in explaining eukaryotic diversity in our sample (1.6 % and 1.7%, 357 

respectively). Combined, these results suggest that social group membership plays an important 358 

role in eukaryotes’ ability to colonize hosts, and are in line with previous studies that reported a 359 

clear association between social group membership and the composition of bacterial communities 360 

in the gut of humans, non-human primates, carnivores, rodents, insects, and birds [29,75–83]. 361 

Physical contact, shared environment, and group behaviors might therefore influence both 362 

prokaryotic and eukaryotic diversity and composition via similar mechanisms.  363 

 364 
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We found that eukaryotic diversity was slightly higher during the wet season compared to 365 

the dry season, and that the eukaryotic composition in the gut varied across seasons. However, 366 

these trends were not large nor statistically significant. This result contrasts with previous studies 367 

that identified seasonality as highly relevant in shaping the bacterial component of the gut 368 

microbiome of human [37] and animal populations [33,35,36], including baboons [35–37,84]. 369 

However, this result may be due to the limited sample size of the second dataset used to investigate 370 

the impact of seasonality. Further investigation in larger cohorts is warranted to assess whether 371 

seasonality significantly impacts eukaryotic diversity in the gut microbiome of wild baboons. An 372 

additional limitation of our study is that the analysis of season on gut microbiome eukaryotic 373 

composition was performed on a cohort with highly heterogeneous group membership, and we 374 

could not use them to analyze the effects of social group membership due to low statistical power 375 

for this variable. Likewise, the social group membership sample set was collected entirely in the 376 

dry season and could not be used to assess seasonal variability. Therefore, the importance of these 377 

two variables in relation to each other is not clear from this study.  378 

 379 

Conclusions 380 

To our knowledge, this is the first metagenomic study to characterize the eukaryotic gut microbiota 381 

of wild baboons. Taken together, our results indicate that eukaryotes are an important part of the 382 

microbial communities inhabiting the gut of wild baboons, and that social group membership plays 383 

a role in shaping gut eukaryotic composition and diversity over time. Understanding how social 384 

factors affect microbiome composition could therefore be informative about the evolution of social 385 

behavior and its health implications, and reinforces the importance of considering social dynamics 386 

in microbiome research. 387 

 388 
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Data availability 389 

The raw metagenomic sequences for the social data set dataset and the seasonal data set presented 390 

in this study are available on NCBI Sequence Read Archive (SRA) under the BioProject accession 391 

numbers PRJNA271618 and PRJEB81717, respectively. Comprehensive metadata for the samples 392 

introduced in this study are available as the Supplementary Material. Code is available on github: 393 

https://github.com/ArchieLab/chege_etal_2024. 394 
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