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The accumulation and deposition of α-synuclein aggregates in brain tissue is the main

event in the pathogenesis of different neurodegenerative disorders grouped under the

term of synucleinopathies. They include Parkinson’s disease, dementia with Lewy bodies

and multiple system atrophy. To date, the diagnosis of any of these disorders mainly

relies on the recognition of clinical symptoms, when the neurodegeneration is already in

an advanced phase. In the last years, several efforts have been carried out to develop

new diagnostic tools for early diagnosis of synucleinopathies, with special interest

to Parkinson’s disease. The Protein-Misfolding Cyclic Amplification (PMCA) and the

Real-Time Quaking-Induced Conversion (RT-QuIC) are ultrasensitive protein amplification

assays for the detection of misfolded protein aggregates. Starting from the successful

application in the diagnosis of human prion diseases, these techniques were recently

tested for the detection of misfolded α-synuclein in brain homogenates and cerebrospinal

fluid samples of patients affected by synucleinopathies. So far, only a few studies on a

limited number of samples have been performed to test PMCA and RT-QuIC diagnostic

reliability. Neverthless, these assays have shown very high sensitivity and specificity in

detecting synucleinopathies even at the pre-clinical stage. Despite the application of

PMCA and RT-QuIC for α-synuclein detection in biological fluids is very recent, these

techniques seem to have the potential for identifying subjects that will be likely to develop

synucleinopathies.

Keywords: PMCA, RT-QuIC, α-synuclein, synucleinopathies, early diagnosis

INTRODUCTION

Protein-Misfolding Cyclic Amplification (PMCA) and Real-Time Quaking-Induced Conversion
(RT-QuIC) represent two ultrasensitive protein amplification methods for detecting pathological
protein aggregates in patients affected by protein misfolding disorders (1–3). PMCA
and RT-QuIC are assays conceptually similar to a polymerase chain reaction (PCR):
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a template (protein aggregate) grows at the expense of a substrate
(protein monomer) in a cyclic reaction characterized by a
growth step followed by an increase in template units. Currently,
the need of specific and sensitive early diagnostic tools for
synucleinopathies points out the attention on novel approaches.
Since α-synuclein (α-syn) follows aggregation mechanisms
similar to PrP, PMCA and RT-QuIC assays were tested for the
detection of misfolded α-syn in samples of patients affected by
synucleinopathies (4–9).

A critical analysis on PMCA and RT-QuIC available data
and protocols could help in evaluating whether these techniques
could be suitable for the detection of α-syn aggregates in
body fluids with high sensitivity and specificity, hopefully at a
preclinical stage (4–7). The aim of this review is to provide an
overview on existing data on PMCA and RT-QuIC assays, and
their possible application for the diagnosis of synucleinopathies.

PMCA and RT-QuIC: A Brief History
The first PMCA protocol was developed by Soto’s group
in 2001 to detect the misfolded prion protein (PrPSc) (10).
The multiplication of the template units was performed by
sonication followed by an incubation phase to let the aggregates
grow. These steps were repeated several times in a cyclic
process to allow the detection of the misfolded proteins
in the samples [e.g., brain homogenates (BH), urine, blood,
cerebrospinal fluid (CSF) and saliva]; at the end of the
process, proteinase K (PK) digestion and western blot (WB)
analysis were used to characterize and recognize the presence
of pathological aggregates. The PMCA technique was tested
in the subsequent years on biological samples coming from
animals and patients affected by transmissible spongiform
encephalopathy (11, 12). Atarashi et al., taking advantage on
PMCA method, developed the QuIC assay by introducing
some variants in the protocol (2, 13, 14). In the QuIC, the
PrPC substrate coming from hamsters BH was replaced by
recombinant PrPC and sonication was replaced with a vigorous
intermittent shaking which promoted seeded aggregation of
the monomeric substrate (13). Moreover, the WB analysis was
substituted by a real-time monitoring (hence the name RT-
QuIC) of the fluorescence emitted by the amyloid-sensitive
Thioflavin-T dye (ThT) during the aggregation process (2,
14).

Although PMCA and RT-QuIC are both highly sensitive
and specific assays, they showed different accuracy in detecting
sporadic and variant Creutzfeldt-Jakob disease (CJD), also
depending on the nature of the biological samples analyzed
(15–17). The success of RT-QuIC in diagnosing prion diseases,
led to test this assay for the detection of synucleinopathies (5–
7). For this purpose, an αSyn-PMCA assay, methodologically
very similar to a RT-QuIC was also developed by Soto’s group
(4).

α-Synuclein and Synucleinopathies
α-syn is a small protein (∼14 kDa) largely present in the
central nervous system at the pre-synaptic neuronal terminals
(18, 19). Although α-syn was discovered almost 30 years
ago, the physiological role carried out by this protein is

not completely understood. It seems to be involved in the
regulation of neurotransmitter release, synaptic plasticity and
vesicle trafficking, in brain lipid metabolism, remodeling of the
membranes, formation of membrane channels, and modification
of their activity (20–23).

α-syn is composed of 140 amino acids and it is characterized
by 3 distinct regions: N-terminal, central and C-terminal
regions. The N-terminus (1–60 residues) contains seven highly
conserved hexameric motifs, which form an amphipathic α-helix
structure typical of the lipid binding domain of apolipoproteins
(24), while the C-terminus (96–140 residues) contains multiple
phosphorylation sites and it is enriched in acidic residues. The
central domain of α-syn (61–95 residues), known as the non-
amyloid-component (NAC), is highly aggregation-prone and
plays a key role in cytotoxicity of α-syn (25–27).

At cellular level, α-syn is predominantly present as unfolded
soluble monomer with not well-defined secondary or tertiary
structures (28–30). Nevertheless, several factors like post-
translational modifications (31–33), oxidative stress (28), fatty
acids concentration (34–36), proteolysis (37, 38), phospholipids
and metal ions (28, 29) can promote the misfolding of α-syn
with the consequent formation of oligomers and amyloid-like
fibrils (39, 40). α-syn amyloid-like fibrils are composed of several
protofilaments containing cross β-sheet secondary structure in
which individual β-strands run perpendicular to the fiber axis
(41, 42). The α-syn aggregation kinetics is similar to that of the Aβ

peptide (43, 44). It is characterized by an initial lag-phase which
reflects the seed formation (nucleation phase) and a subsequent
growth phase that culminates in a steady state (45).

Aggregated α-syn is involved in the pathogenesis of different
neurodegenerative disorders known as synucleinopathies (46–
48), which include Parkinson’s disease (PD) (49), dementia
with Lewy bodies (DLB) (50) and multiple system atrophy
(MSA) (51). Fibrillary α-syn is the major constituent of Lewy
bodies (LBs) and Lewy neurites (LNs), which represent the main
histopathological hallmarks of PD and DLB (46, 47). Differently,
in MSA, aggregated α-syn is found in oligodendrocytes as glial
cytoplasmic inclusions (48).

The diagnostic value of α-syn as biomarker of
synucleinopathies has been extensively investigated (52–
56). Several studies have been performed to measure the
levels of α-syn species (total, oligomeric and phosphorylated)
in body fluids using different techniques: ELISA (57–60),
multiplex immunoassays (61, 62), and Förster’s resonance
energy transfer (63). The heterogeneity of the applied methods
partly justifies some ambiguous outcome obtained so far from
the available studies. Furthermore, the lower concentration
of the oligomeric/fibrillary α-syn species with respect to
the monomeric α-syn form and the complexity to develop
selective antibodies having high affinity and avidity to the
misfolded α-syn species, make it difficult the detection of these
species by using the most common antibodies-based assays
(52, 64, 65).

The detection of pathogenic aggregates could help in
diagnosis, both in terms of specificity and timeliness of diagnosis,
since α-syn aggregation is an early phenomenon preceding the
onset of clinical symptoms (66).
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RT-QuIC AND PMCA ASSAYS: BASIC
CONCEPTS

The RT-QuIC and PMCA techniques are based on the
amplification of a preformed quantity of misfolded proteins
present in biological fluids or tissue samples. Samples are
incubated, at a defined temperature, in a buffer solution
containing the monomeric substrate. Preformed aggregates
(seeds) work as templates polymerizing at their extremities
at the expense of the monomer (Figure 1A). By introducing
a shaking/sonication step, the grown aggregates are then
fragmented to generate more polymerization points (67).
Incubation and fragmentation cycles are repeated multiple times
to achieve an exponential amplification of the aggregates. Apart
from the basic polymerization and fragmentation processes,
also surface catalyzed nucleation should be considered in the
aggregation kinetics (68). This mechanism consists in the
formation of new nuclei of misfolded proteins on the surface of
preformed fibrils and it has been recently proposed for PrPSc (69),
Aβ peptides (68, 70), and α-syn (71).

In PMCA, WB analysis is used to detect the amplified PrPSc

(10), while in the RT-QuIC and αSyn-PMCA the detection of the
misfolded aggregates is performed by recording the fluorescence
of the ThT dye. ThT fluorescence (excitation at 450 nm and
emission at 480 nm) is enhanced upon binding to fibrils.
Compared to WB, ThT fluorescence assay has the limitation to
be sensitive only to fibrillary aggregates rich in cross-beta sheet
motifs (72). However, ThT assay in multi-well plates has the
advantage to be less time-consuming; moreover, the intermittent
shaking can be directly performed inside fluorometers and thus
easily automated. The recorded fluorescence of ThT in RT-
QuIC and αSyn-PMCA is proportional to the mass of fibrillary
aggregates present in the sample and its trend gives information
about the aggregation kinetics of the monomer. Fluorescence
acquisition allows mapping an aggregation curve describing a
lag-phase (time with stationary fluorescence), an exponential
phase (increase in fluorescence) and a plateau. A simulated
example of an ideal output of a RT-QuIC experiment is shown
in Figure 1B. The process produces sigmoid-like profiles (73,
74) whose lag-times, slopes and stationary points depend on
the experimental conditions (temperature, shaking cycles and
strength, pH, buffer, etc.). Particularly, the length of the lag-
phase correlates to the amount of seeds in the samples (75).
However, since the lag-phase is a threshold value established by
the investigator, the t50, named the time necessary to reach the
50% of the maximum fluorescence, is often used as a quantitative
and objective measurement of the amplification process. The
approximate linear relation between the t50 (or the lag-time) and
the logarithm of the seed quantities has been shown for different
pathogenic proteins like PrPsc (75) α-syn (4, 7, 76), Aβ1-40 (77),
and Aβ1-42 (78). Sometimes, deviations from the ideal lineshape,
like multiple inflection points or a decrease of the signal at the
end of the reaction are present (6, 79). These abnormalities might
be caused by sample heterogeneity (amyloids tend to form a
suspension in aqueous solution) or by the entrapment of ThT
in large aggregates, respectively (80). Thus, most of the authors
prefers to define a lag-phase threshold, in which controls do not

exhibit aggregation, while positive samples display an increase
in fluorescence intensity that exceed the established threshold
(e.g., 5–10 times higher than average baseline fluorescence) (4–
7, 75, 81). Apart from the length of the lag-phase, Kang et al. (82)
suggested that also differences in amyloid formation rate, ThT
fluorescence maxima and integrated area under the curve show
discrimination between seeded and unseeded samples, thus these
features could be also suitable for αSyn-PMCA and RT-QuIC
data analysis.

Protocols
Several physical (temperature and sonication/shaking), chemical
(ionic strength, pH, monomer concentration, detergents), and
exogenous factors were described to affect α-syn aggregation
kinetics (83, 84). Themost recent implementations in PMCA and
RT-QuIC protocols, specifically applied to the detection of α-syn
aggregates for the diagnosis of synucleinopathies, are reported in
Table 1 and discussed below.

αSyn-PMCA and RT-QuIC Substrate
In vitro aggregation assay usually requires large amounts of
highly purified monomeric α-syn as reaction substrate for
fibrils polymerization. Large quantities of recombinant α-syn are
obtained by using Escherichia coli cultures. The expressed protein
can be purified by different chromatographic procedures (7, 87–
89). The purity of α-syn preparations can be evaluated by SDS-
PAGE followed by silver staining and then confirmed by mass
spectrometry. The quality of the initial α-syn monomer solution
is a critical factor in determining the successful application of
αSyn-PMCA and RT-QuIC techniques. α-syn monomer solution
can be filtered with a 100 kDa cutoff filter device (4) in
order to remove any preformed aggregates generated during the
purification process. To use the optimal amount of substrate in
αSyn-PMCAor RT-QuIC, the concentration of the purified α-syn
is assessed by spectrophotometric measurement of absorbance at
280 nm (83, 86).

Temperature, pH, and Buffer Composition
Reaction temperature is one of the most well established factors
driving α-syn aggregation (39, 90). Generally, in PMCA or RT-
QuIC assay, the temperature is set at 37◦C. Thirty-seven degree
celsius is compatible with a balance between obtaining a short
lag-phase, a stable elongation rate, and aminor evaporation of the
sample. Similarly, the decrease of pH values toward the isoelectric
point of α-syn (pI = 4.67) contributes to the neutralization of
protein net charge, that enhances hydrophobicity and boosts
the fibrillization process (91). Moreover, the rate of aggregates
formation is enhanced by the increase in ionic strength of the
reaction buffer (84).

Interestingly, Shahnawaz et al. reported an inhibitory effect of
CSF for α-syn aggregation (4); the causes of this behavior are
not yet well understood, although Padayachee et al. observed
a similar effect also for Aβ (92). Shahnawaz et al. introduced
the buffer with the best results in terms of α-syn aggregation
timescales and sensitivity in the presence of CSF. By using
this buffer, they were able to reduce significantly the lag-
phase for positive samples and to decrease the detection
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FIGURE 1 | (A) Outline of PMCA and RT-QuIC kinetic assays. (i) An aliquot of tissue homogenate or a biological fluid containing a quantity of aggregates (blue cubes)

is dissolved in a buffer containing abundant monomer in solution (red spheres). (ii) The sample is incubated for a defined time at specific temperature. In this phase the

preformed aggregates undergo polymerization at their extremities and catalyze the formation of new nuclei on their surfaces. Monomers that undergo misfolding are

depicted as red cubes. (iii) The number of available points for polymerization is increased by performing sonication or shaking of the sample, thus fragmenting the

fibrils grown in the previous step. The steps (ii) and (iii) are repeated several times. (iv) At the end of the procedure the initial quantity of misfolded and aggregated

protein is exponentially amplified at the expense of the monomer present in solution. (B) Simulation of a PMCA or RT-QuIC experiment. The simulation was performed

by integrating differential equations describing polymerization, secondary catalyzed nucleation and fragmentation kinetics in presence of different quantities (20, 2, 0.2,

0.02, and 0.002 ng) of preformed aggregates (seeds). The simulation consisted in cycles of 30min in which fragmentation kinetics was kept active only for 1min

(shaking) and turned off for 29min (incubation). The cycles were repeated for a total time of 150 h. Normalized fluorescence intensity was calculated by considering it

proportional to the total mass of fibrillary aggregates formed at a certain time.

sensitivity threshold to femtograms of preformed α-syn seeds.
In addition, detergents can be added to reaction buffers to
ensure the complete recovery of insoluble amorphous aggregates,
together with soluble forms of α-syn fibrils when sonication
rather than shaking is used (80, 85). Notably, generation of
different species of α-syn aggregates is likely to be linked to
different synucleinopathies (93, 94). The application of PMCA
protocol allows to amplify brain-derived fibrils with conserved
conformation of the original seed (85).

Incubation and Agitation Cycles
The introduction of incubation and agitation cycles played a
key-role from the first implementation of PMCA to the last
RT-QuIC. In the first version of PMCA (10) the sample was
sonicated every hour (five pulses of 1 s each), while in the last
RT-QuIC implementations, the sonication step has been replaced
by automatic shaking in well plates. Particularly, in the works
regarding α-syn, Jung et al. (85), Herva et al. (80), and Roostaee et
al. (86) performed sonication on their samples for non-diagnostic
applications (Table 1). Conversely, Fairfoul et al. (5), Shahnawaz
et al. (4), Sano et al. (6), and Groveman et al. (7) applied
the following cycles: 1min shaking (200 rpm) with 14min of
incubation, 60 s shaking (432 rpm) with 2min of incubation, 40 s
shaking (500 rpm) with 29min of incubation, and 1min shaking
(400 rpm) with 1min of incubation, respectively. Shaking is one
of the most important promoting factors of α-syn aggregation
(83, 84). Nevertheless, it is also important to let the sample
rest for some time to promote elongation phase: Herva et al.
(80) noticed that alternating cycles of incubation and agitation
produced a shorter lag-phase compared to continuous agitation.
Furthermore, the addition of zirconia/silica beads to the samples

increases the fragmentation and diffusion rates and improves the
reproducibility of the assay (5, 80, 83).

αSyn-PMCA AND RT-QuIC STUDIES IN
DIAGNOSTIC COHORTS

Currently, only a few studies have been performed to test
the accuracy of PMCA and RT-QuIC as diagnostic tools for
synucleinopathies. Groveman et al. performed RT-QuIC on CSF
samples from 29 patients affected by synucleinopathies (12 PD
and 17 DLB) and 31 non-synucleinopathy controls [including
16 patients affected by Alzheimer’s disease (AD)] (7). Almost
all synucleinopathy CSF samples (27 out of 29) gave positive
RT-QuIC, whereas none of the non-synucleinopathy controls
met the criteria to be considered positive (93% sensitivity and
100% specificity). In this work, an end-point dilution assay was
also performed to quantify the RT-QuIC seeding activity in PD
(n = 1) and DLB (n = 3) BH and DLB (n = 5) CSF samples
by calculating the concentration of seeding activity units (SD50).
The estimated SD50 was 105-106 per mg of brain tissue and 4–54
per 15 µl of CSF. These results indicate that CSF samples have
seeding activities higher than the minimum detectable level of 1
SD50.

Fairfoul et al. tested the RT-QuIC technology on BH from
patients affected by DLB, AD, CJD, and control subjects (5).
None of the reactions seeded with BH from patients affected
by CJD or AD as well as from control subjects gave positive
results after 120 h from the beginning of the reaction. The
same group analyzed CSF samples from the OPTIMA (Oxford
Project to Investigate Memory and Ageing) cohort with the aim
to investigate RT-QuIC sensitivity. The study included patients
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with clinically and neuropathologically confirmed diagnosis of
DLB (n = 12), PD (n = 2), progressive supranuclear palsy
(PSP) (n = 2), corticobasal degeneration (CBD) (n = 3),
DLB with AD pathology (n = 17), AD with incidental LBs
(n = 13), pure AD (n = 30), and controls (n = 20). DLB
and PD patients were diagnosed with a 92 and 95% sensitivity,
respectively, and with a specificity of 100%. A sensitivity of 65%
was observed for patients affected by mixed AD/DLB pathology.
None of the patients affected by PSP, CBD, or pure AD, resulted
positive to RT-QuIC. A validation study was also carried out
in CSF samples from 20 patients diagnosed as PD, 15 control
subjects, and 3 subjects affected by rapid eye movement sleep
behavior disorder (RBD), a condition at high risk of developing
synucleinopathies. Out of 20, 19 PD patients resulted positive
(sensitivity= 95%, specificity= 100%), whereas all controls were
found negative. The three RBD also showed a positive RT-QuIC
response, suggesting the suitability of this approach for early
diagnosis.

Shahnawaz et al. used the αSyn-PMCA for detecting α-
syn aggregates in CSF samples from different synucleinopathies
(PD n = 76, DLB n = 10, MSA n = 10) and other
miscellaneous neurological disorders (n = 97) including other
neurodegenerative diseases not belonging to synucleinopathies
(AD, frontotemporal dementia, PSP, ataxia) (4). Out of 76 PD
patients, 67 (88%) resulted positive to αSyn-PMCA, whereas 61
out of 65 (94%) patients affected by other neurological disorders
resulted negative. Notably, two samples, which were clinically
diagnosed as PD after some years from sample collection,
resulted positive, indicating the ability of αSyn-PMCA to identify
patients even at the prodromal stage. All DLB patients and
8 out of 10 MSA cases were positive at αSyn-PMCA. Out of
14 AD patients, 5 showed positive results. This result might
not be considered as false-positive, since α-syn inclusions are
not rare in AD brain (95, 96). For this reason, sensitivity and
specificity were calculated by excluding AD patients from the
analysis. Sensitivity was 88.5% for PD, 100% for DLB and 80%
for MSA. Specificity was 94%, reaching 97% when considering
patients affected by neurological, but not neurodegenerative,
disorders. In this study, the possible correlation between the
disease severity and αSyn-PMCA kinetic parameters was also
investigated in PD group. A significant negative correlation
between the t50 in αSyn-PMCA and the Hoehn and Yahr scale
was found. The reduction of the lag-phase suggests the presence
of higher concentration of α-syn aggregates in CSF samples of
advanced PD cases, thus allowing the monitoring of disease
progression. However, these data need to be confirmed in a larger
cohort.

Finally, Nishida’s group investigated the presence of prion-
like seeding of misfolded α-syn in brain samples from patients
affected by DLB (n = 7), CJD (n = 3), Gerstmann-Sträussler-

Scheinker disease (n = 1), pure AD (n = 2), and controls. They
found positive results only in BH from DLB patients (6).

CONCLUSION AND FUTURE DIRECTIONS

The first trials of PMCA on PrPSc date back to 2001
but only recently the αSyn-PMCA and RT-QuIC techniques
have been applied for the amplification and detection of
aggregates of misfolded α-syn. The positive results obtained
from different studies confirm that αSyn-PMCA and RT-QuIC
are suitable assays for detecting α-syn aggregates in CSF
samples. Furthermore, the high sensitivity and specificity of these
techniques in detecting synucleinopathies, even at the pre-clinical
stage, suggest their possible use as diagnostic tools. Although
the combined analysis of α-syn aggregates with other CSF
biomarkers (e.g., Aβ42, t-Tau and p-Tau) can be used in the cases
of uncertain diagnosis (e.g., patients affected by mixed AD/DLB
pathology), in-depth investigations are still necessary to perform
a differential diagnosis among different synucleinopathies. The
study of α-syn aggregation kinetics, the characterization of the
fibrillary aggregate structure (e.g., by PK digestion, WB analysis,
X-ray scattering and solid-state NMR) (42, 97–100), as well as
the detection of other soluble or insoluble α-syn non-fibrillary
aggregates might be suitable to this purpose (42, 94, 97, 98, 101).

Furthermore, the possibility to assess the SD50 in CSF samples,
might be relevant for determining prognosis in patients even at
the early stage of disease (4, 7). So far, αSyn-PMCA and RT-
QuIC has been performedmainly in CSF samples; however, based
on the encouraging results obtained in the diagnosis of prion
disease in both human and animals (102–107), other more “easily
accessible” biological fluids like blood, plasma, serum, urine and
saliva, as well as peripheral tissues obtained from biopsies (e.g.,
nasal mucosa, gastrointestinal tract and skin) have the potential
to be used as samples for the detection of misfolded α-syn.

Further developments are still needed to standardize
operating procedures, decrease the duration of the assays, and
increase their sensitivity. To this purpose, testing different
shaking cycles and incubation temperatures will be crucial. The
reproducibility of the method has also to be improved in order
to uniform lag-times, maximum of fluorescence intensity and
lineshapes among replicates.

In conclusion, αSyn-PMCA and RT-QuIC have the potential
to be effective tools for the diagnosis of synucleinopathies. It will
be exciting to follow the growth of scientific reports about this
goal in the next future.
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