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Original Article

IntroductIon

Lung cancer is the leading cause of cancer‑related mortality 
worldwide and represents a severe public health issue.[1] 
Non‑small cell lung cancer (NSCLC) is the major form and 
accounts for over 80% of all cases of lung cancers.[2] Despite 
great treatment advances have been made over the past 
decades, the 5‑year overall survival rate is only 16% for all 
stages of NSCLC.[3] The initiation and progression of NSCLC 
are due to dysregulation of oncogenes and tumor‑repressor 
genes. However, the molecular mechanisms underlying 
NSCLC have not been fully elucidated yet. Hence, it is 
important to identify new molecular mechanisms underlying 
the development of NSCLC and uncover novel therapeutic 
targets to improve the prognosis of patients with this disease.

MicroRNAs (miRNAs) are a class of short and noncoding 
RNA molecules that play critical roles in several biological 
processes such as proliferation, angiogenesis, apoptosis, cell 

differentiation, DNA damage repair, and stress responses.[4] 
Previous studies suggested that aberrant expression of miRNAs, 
such as miR‑128‑3p, miR‑608, miR‑15a, and miR‑16, 
contributes to the pathogenesis of NSCLC.[5‑7] However, 
articles about the role of iR‑125b‑1‑3p in NSCLC are limited.

In this study, we evaluated the expression of miR‑125b‑1‑3p 
in NSCLC tumor tissues and cell lines. Then, we forced 
expression of miR‑125b‑1‑3p in NSCLC cells to investigate 
its functions. Bioinformatic analysis was applied to identify 
the potential targets of miR‑125b‑1‑3p. Moreover, the 
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effects of miR‑125b‑1‑3p on STAT3 signaling pathway were 
evaluated as well.

Methods

Ethical approval
This study was approved by the Ethics Committee of the 
First Affiliated Hospital of Wenzhou Medical University. 
Informed consents were obtained from all participants.

Patient samples and cell culture
From January 2015 to October 2017, 21 pairs of NSCLC 
biopsies and matched adjacent nontumor tissues were 
collected from patients at the First Affiliated Hospital 
of Wenzhou Medical University. All of the NSCLC 
patients were pathologically confirmed and tumor node 
metastasis (TNM) staging classifications were determined 
by the Union for International Cancer Control/American 
Joint Committee on Cancer 7th edition for the lung. None 
of the patients received antitumor treatment before. Clinical 
characteristics of the patients are summarized in Table 1. All 
the samples were divided into a miRNA high expression 
group (n = 10) and low expression group (n = 11) using the 
median miR‑125b‑1‑3p as the cutoff point. The NSCLC cell 
lines such as A549, H450, H1299, and 16‑HBE normal lung 
bronchus epithelial cells were purchased from the American 
Type Culture Collection. Cells were cultured in RPMI‑1640 
medium (Hyclone, Logan, UT, USA) supplemented 
with 10% fetal bovine serum (Thermo Fisher Scientific, 
Rockford, IL, USA), 100 U/L penicillin, and 100 µg/ml 

streptomycin (Sigma‑Aldrich, St. Louis, MO, USA). Cells 
were maintained at 37°C in a humidified atmosphere 
containing 5% CO2.

RNA extraction, complementary DNA synthesis, and 
the quantitative real‑time polymerase chain reaction
Total RNA was extracted using TRIZOL reagent 
(Invitrogen, Waltham, MA, USA) followed by reverse 
transcription. Complementary DNAs were then used as 
templates for quantitative real‑time polymerase chain 
reaction with iQ™ SYBR® Green Supermix (Bio‑Rad, 
Hercules, CA, USA). U6 was used as the control for 
normalization. Relative mRNA expression levels were 
calculated using the 2−ΔΔCT method. All experiments were 
repeated at least three times.

Oligonucleotides
MiR‑125b‑1‑3p mimic, a mimic control, miR‑125b‑1‑3p 
antisense, and an antisense control were synthesized by 
the GenePharma Company (Suzhou, Jiangsu, China). 
A549cells were plated in six‑well plates (4 × 105 cells/well) 
for 24 h before transfection with miRNA or a plasmid 
using RNAiMAX (Life Technologies, Carlsbad, CA, USA) 
according to the manufacturer’s instructions.

Cell Counting Kit‑8 assay
The Cell Counting Kit‑8 (CCK‑8) assay was used to determine 
the viability of cells transfected with miR‑125b‑1‑3p mimic, 
mimic control, miR‑125b‑1‑3p antisense, and antisense 
control for 24, 48, or 72 h. All experiments were repeated 
at least three times.

Clonogenic assay
For the colony formation assay, 500 cells were plated in 
six‑well plates and cultured in medium containing 10% fetal 
bovine serum. The medium was refreshed every 3 days. 
After incubation for 14 days, cells were fixed with methanol 
and stained with 0.1% crystal violet (Sigma‑Aldrich, St. 
Louis, MO, USA). Visible colonies were counted manually. 
Triplicate wells were measured for each group.

Cell migration and invasion assays
For migration assay, cells were seeded in a serum‑free medium 
in the upper Transwell chambers (Corning, New York, USA). 
Twenty‑four hours later, cells were fixed with methanol and 
stained by 0.1% crystal violet. Migrated cells were counted 
under microscope and statistically analyzed. For invasion 
assay, Transwell chambers were coated with Matrigel 
(BD Bioscience, San Jose, CA, USA) to growth the cells for 
24 h. Residual cells on the upper Transwell chamber were 
counted and statistically analyzed.

Cell apoptosis assays
An Annexin V‑FITC/propidium iodide (PI) Double 
Staining Kit (BD Biosciences, San Jose, CA, USA) 
was used to detect cellular apoptosis according to the 
manufacturer’s instructions. Cells were collected, washed 
with cold phosphate‑buffered saline, and resuspended at 
1 × 106 cells/ml in 1 ml binding buffer. Next, 5 µl Annexin 
V‑FITC and 5 µl PI were added and incubated for 15 min at 

Table 1: Correlation between miR‑125‑1‑3p expression 
level and clinicopathological characteristics in NSCLC 
patients, n

Characteristics Low level 
(n = 11)

High level 
(n = 10)

t P

Gender
Male 4 6 0.582 0.279
Female 7 4

Age
<60 years 5 5 0.074 0.835
≥60 years 6 5

Tumor size
<3 cm 4 4 0.387 0.864
≥3 cm 7 6

TNM stage
I, II 4 5 0.489 0.528
III, IV 7 5

Histological grade
Well/moderate 6 7 0.593 0.466
Poor 5 3

T stage
T0–T2 2 7 4.324 0.017
T3–T4 9 3

Lymph node metastasis
Yes 8 2 7.332 0.016
No 3 8

TNM: Tumor node metastasis; NSCLC: Non‑small cell lung cancer.
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room temperature in the dark. Cells were detected by flow 
cytometry. All experiments were repeated three times.

Western blotting analyses
Cellular extracts were prepared by washing cells with 
phosphate‑buffered saline and lysing in a lysis buffer 
containing a protease inhibitor. Protein concentrations were 
measured using Bradford protein assay kit (Beyotime, Haining, 
Jiangsu, China). Equal amounts of protein were loaded, separated 
by SDS‑PAGE gel electrophoresis, and then transferred to 
PVDF membrane. Then, the membrane was blocked with 
5% milk for 1 h at room temperature, they were incubated 
with following primary antibodies: caspase‑3 (#14220), 
Bcl‑2 (#2872),  Mcl‑1 (#94296),  Bax (#2774), 
S1PR1 (#11424), p‑STAT3 (#4113), STAT3 (#9196), and 
glyceraldehyde‑3‑Phosphate Dehydrogenase (#2118) 
(Cell Signaling Technology, Danvers, MA, USA), followed 
by incubation with horseradish peroxidase‑conjugated 
secondary antibodies: antimouse (#7076) and antirabbit 
(#7074; Cell Signaling Technology, Danvers, MA, 
USA). Protein bands were visualized using an enhanced 
chemiluminescent substrate (Thermo Scientific, Rockford, 
IL, USA). Protein bands were quantified by densitometric 
analysis using Quantity One software (Bio‑Rad Laboratories, 
San Diego, CA, USA).

Caspase‑3 activity assay
Caspase‑3 activity was determined using a Caspase‑3 
Colorimetric Activity Assay Kit (Beyotime, Haining, 
Jiangsu, China) according to the manufacturer’s guidelines. 
Briefly, cells were collected, washed, lysed, and centrifuged. 
Sample lysates containing 50 µg of protein were assayed 
for caspase‑3 activity. Absorbance was measured at 405 nm 
using a microplate reader (BioTek, Winooski, VT, USA).

Luciferase assays
The sequence in the 3’‑untranslated region (UTR) of the 
human S1PR1 gene targeted by miR‑125b‑1‑3p was predicted 
using microRNA.org (http://www.microrna.org/). The 3’‑UTR 
of S1PR1 and a sequence with mutations of two nucleotides 
in the miR‑125b‑1‑3p target site were cloned into a pGL3 
promoter vector to generate the recombinant constructs: 
wild‑type and mutant 3’‑UTRs, respectively. For the luciferase 
assay, A549 cells were co‑transfected with wild‑type and 
mutant 3’‑UTRs of S1PR1 and the miR‑125b‑1‑3p mimic or 
scrambled controls (NC). Luciferase activity was analyzed 
using the Dual‑Luciferase Reporter Assay System according 
to the manufacturer’s instructions (Promega, Madison, 
WI, USA) at 48 h posttransfection.

Statistical analyses
All statistical analyses were performed using SPSS 18.0 
software (IBM, Chicago, IL, USA). Data from at least three 
independent experiments, each performed in triplicate, were 
presented as means ± standard deviation (SD). Significant 
differences between groups were estimated using a one‑way 
analysis of variance (ANOVA). A P < 0.05 was considered 
as statistically significant.

results

Expression levels of miR‑125b‑1‑3p in non‑small cell 
lung cancer samples and cell lines
Twenty‑one pairs of NSCLC biopsies and matched 
adjacent nontumor tissue were analyzed. In addition, we 
detected miR‑125b‑1‑3p expression levels in NSCLC cell 
lines (A549, H450, and H1299) and in 16‑HBE normal 
lung bronchus epithelial cells. The results showed that 
miR‑125b‑1‑3p was downregulated significantly in the 

Figure 1: Expression levels of miR‑125b‑1‑3p in 21 pairs of NSCLC tissues and three different NSCLC cell lines. (a) Expression level of 
miR‑125b‑1‑3p in 21 pairs of NSCLC biopsies and matched adjacent nontumor tissue. (b) Expression levels of miR‑125b‑1‑3p in 16‑HBE 
normal lung bronchus epithelial cells and NSCLC cell lines. *P < 0.05, †P < 0.01, compared to the 16‑HBE normal lung bronchus epithelial 
cells. NSCLC: Non‑small cell lung cancer.
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NSCLC samples (t = 5.112, P = 0.009; Figure 1a) and in 
cell lines compared to the control group (H450, t = 2.156, 
P = 0.036; H1299, t = 4.278, P = 0.007; and A549, 
t = 5.462, P = 0.006, respectively, Figure 1b). For further 
analysis, all the samples were divided into a miRNA high 
expression group (n = 10) and low expression group (n = 11) 
using the median miR‑125b‑1‑3p as the cutoff point. 
The results showed that miR‑125b‑1‑3p expression was 
not correlated with age (t = 0.074, P = 0.835), gender 
(t = 0.582, P = 0.279), tumor size (t = 0.387, P = 0.864), 
and TNM stages (t = 0.489, P = 0.528), but it was correlated 
with tumor stage (t = 4.324, P = 0.017) and lymph node 
metastasis (t = 7.332, P = 0.016; Table 1).

Effect of miR‑125b‑1‑3p on cell growth, migration, 
invasion, and apoptosis in vitro
A549 cells were transfected successfully with miR‑125b‑1‑3p 
mimic, mimic control, miR‑125b‑1‑3p antisense, and 
antisense control. The expression levels of miR‑125b‑1‑3p 
were upregulated (4.1 ± 0.23 folds vs. control, t = 5.125, 

P = 0.001) and decreased (15.20 ± 0.07% of control, 
t = 2.123, P = 0.021) after transfection with miR‑125b‑1‑3p 
and miR‑125b‑1‑3p antisense, respectively [Figure 2a]. 
The CCK‑8 and colony formation assays revealed that 
overexpression of miR‑125b‑1‑3p significantly inhibited 
the proliferation of A549 cells compared to the controls 
(37.8 ± 9.1%, t = 3.191, P = 0.013; Figure 2b and 2c). The wound 
healing and Transwell invasion assays showed the migration 
and invasion cell numbers of the miR‑125b‑1‑3p mimic 
group were significantly decreased to 42.3 ± 6.7% (t = 6.321, 
P = 0.003) and 57.6 ± 11.3% (t = 4.112, P = 0.001) of control, 
respectively [Figure 2d and 2e]. In addition, overexpression 
of miR‑125b‑1‑3p significantly induced more apoptosis 
compared with the control group (2.76 ± 0.78 folds, 
t = 3.772, P = 0.001; Figure 2f).

MiR‑125b‑1‑3p regulates apoptosis‑related proteins
Apoptosis‑related proteins were detected using Western 
blotting to further reveal the mechanism by which 
miR‑125b‑1‑3p‑induced apoptosis. Overexpression 

Figure 2: Effect of miR‑125b‑1‑3p on cell growth, migration, invasion, and apoptosis in vitro. A549 cells were transfected with miR‑125b‑1‑3p 
mimic or miR‑125b‑1‑3p antisense. (a) The relative expression of miR‑125b‑1‑3p was detected by the quantitative real‑time polymerase chain 
reaction. Cell viability (b), colony numbers (c), migration (d), invasion (e), and apoptosis (f) were assessed using the CCK‑8, clonogenic, cell 
migration, invasion assays, and flow cytometry, respectively. *P < 0.05; †P < 0.01; ‡P < 0.001. CCK‑8: Cell Counting Kit‑8.
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of miR‑125b‑1‑3p caused cleavage of caspase‑3 and 
significantly increased its activity (1.81 ± 0.42 folds vs. 
control, t = 2.323, P = 0.012; Figure 3a and 3b). At the 
same time, miR‑125b‑1‑3p overexpression downregulated 
the antiapoptotic proteins, Bcl‑2 (47.1 ± 4.2% of control; 
t = 3.182, P = 0.007) and Mcl‑1 (45.5 ± 2.8% of control, 
t = 4.112, P = 0.008) but upregulated the pro‑apoptotic 
protein, Bax (2.72 ± 0.14 folds vs. control, t = 4.791, 
P = 0.001; Figure 3c).

MiR‑125b‑1‑3p directly targets the S1PR1 gene
Potential targets of miR‑125b‑1‑3p were predicted by 
TargetScan. Figure 4a shows the potential miR‑125b‑1‑3p 
binding sites in the S1PR1 mRNA 3'‑UTR. We constructed 

mutations of the miR‑125b‑1‑3p binding site in the 
S1PR1 3'‑UTR of mRNA luciferase reporter. The 
miR‑125b‑1‑3p mimic significantly reduced the relative 
luciferase activity of the wild‑type 3'‑UTR of S1PR1 
compared with the scrambled control (34.3 ± 2.4% of 
control, t = 5.143, P = 0.000) but did not affect the mutated 
luciferase reporter [Figure 4b]. In addition, protein levels 
of S1PR1 were reduced significantly in the miR‑125b‑1‑3p 
mimic group compared to the mimic control (27.4 ± 6.1% 
of control, t = 4.081, P = 0.007), while the miR‑125b‑1‑3p 
antisense group showed the opposite effect (1.22 ± 0.63 folds 
vs. control, t = 2.181, P = 0.032). This demonstrated that 
miR‑125b‑1‑3p directly targeted the S1PR1 gene [Figure 4c].

Figure 3: miR‑125b‑1‑3p regulates apoptosis‑related proteins. Caspase‑3 (a) activity, cleaved caspase‑3 levels (b), and protein levels of Bcl‑2, 
Mcl‑1, and Bax (c) were detected in A549 cells transfected with miR‑125b‑1‑3p mimic or miR‑125b‑1‑3p antisense. *P < 0.01. †P < 0.001. 
compared to the control group.
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Figure 4: miR‑125b‑1‑3p directly targets the S1PR1 gene. (a) Wild‑type 
and mutations of miR‑125b‑1‑3p binding sites in the S1PR1 mRNA 
3′‑UTR (red mark: seed region). (b) The luciferase assay was performed 
in A549 cells transfected with wild‑type and mutant 3′‑UTRs in the 
S1PR1 gene together with miR‑125b‑1‑3p mimic or scrambled controls. 
(c) S1PR1 protein levels were detected by Western blotting in A549 cells 
transfected with miR‑125b‑1‑3p mimic or miR‑125b‑1‑3p antisense. 
*P < 0.05, †P < 0.01, ‡P < 0.001. UTR: Untranslated region.
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MiR‑125b‑1‑3p affecting the STAT3 phosphorylation 
status
The effects of miR‑125b‑1‑3p on the phosphorylation 
level of STAT3 were determined by Western blotting. We 
first transfected A549 cells with S1PR1 siRNA to knock 
down S1PR1 expression. Figure 5a shows that S1PR1 
was successfully downregulated in the S1PR1 siRNA 
group (12.33 ± 0.14% of control, t = 3.621, P = 0.004) and 
the miR‑125b‑1‑3p mimic group (48.38 ± 0.12% of control, 
t = 2.163, P = 0.022). At the same time, the phosphorylation 
level of STAT3 was obviously decreased in the S1PR1 
siRNA (16.42 ± 0.14% of control, t = 3.021, P = 0.015) and 
miR‑125b‑1‑3p mimic groups (16.71 ± 0.17% of control, 

t = 4.162, P = 0.026), respectively [Figure 5a and 5b]. 
Conversely, the level of phosphorylated STAT3 obviously 
increased in the anti‑miR‑125b‑1‑3p group compared with 
the control groups (2.64 ± 0.84 folds, t = 5.332, P = 0.004). 
However, the total levels of STAT3 were not affected. 
Thus, miR‑125b‑1‑3p affects the phosphorylation status 
of STAT3.

dIscussIon

The prevalence of NSCLC is increasing worldwide, and 
the prognosis of NSCLC patients remains poor. Therefore, 
improved therapeutic strategies for NSCLC patients are 
vital for the management of NSCLC. In recent years, 
miRNAs have emerged as potential antitumor agents due 
to its ability to affect the development of various types of 
cancers including NSCLC.[9] Indeed, a better clarification 
of the functions of miRNAs in the pathogenesis of 
NSCLC may help in the search for more effective NSCLC 
therapies.

MiR‑125b‑1‑3p has been found to play an important role 
in cancer and immunosuppression.[10] MiR‑125b‑1‑3p 
was reportedly downregulated significantly in Kaposi’s 
sarcoma.[11] In contrast, miR‑125b‑1‑3p was found elevated 
in DICER1‑mutated pleuropulmonary blastoma.[12] This 
study found that miR‑125b‑1‑3p was downregulated 
in NSCLC cells. Those discrepancies may be due to 
different cancer types, since mounting evidences indicate 
that miRNAs are highly tissue specific and can act 
as either oncogenes or tumor suppressors.[13,14] For 
instance, miR‑205 can play a dual role, depending on 
the specific tumor type and target genes.[15] Therefore, 
further investigations of miR‑125b‑1‑3p in more cancer 
types are necessary. Noteworthy, we also revealed that 
miR‑125b‑1‑3p exerts antitumor effects at least partly 
through induction of apoptosis. Dysregulated apoptosis is 
a common cause of cancer, and the treatment of NSCLC 
is usually impeded by the intrinsic or acquired resistance 
to apoptosis induced by anticancer agents.[16] Many studies 
revealed that miRNAs could overcome the resistance 
to chemotherapy in NSCLC. For example, miR‑101 
could enhance paclitaxel (PTX)‑induced apoptosis in 
NSCLC.[17] MiR‑216b was able to sensitize NSCLC cells 
to cisplatin‑induced apoptosis.[18] Moreover, miR‑129‑5p 
could also overcome resistance to cisplatin in NSCLC 
cells.[19] Hence, it would be interesting to investigate 
whether miR‑125‑1‑3p also possesses the ability to 
overcome chemoresistance in NSCLC.

To understand the functional mechanism of miRNAs, it 
is critical to identify targets involved in their regulation. 
SIPR1 was further identified as a direct functional 
target of miR‑125‑1‑3p in NSCLC cells. S1PR1 is 
a G‑protein‑coupled receptor of the bioactive lipid, 
sphingosine‑1‑phosphate (S1P).[20,21] Tumor cells secrete 
S1P, promoting growth, survival, motility, and metastasis 
through binding to S1PRs in a autocrine/paracrine manner.[22] 
A very recent study showed that upregulation of S1PR1 could 
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lead to the proliferation and invasion of NSCLC cells.[23] 
Considering S1PR1 is the predominant one compared with 
other S1PRs in NSCLC cells, the ability of miR‑125‑1‑3p 
to repress S1PR1 might be applied as a promising strategy 
against NSCLC.

Aberrant STAT3 signaling is often observed in various 
cancers including the NSCLC. Inhibition of STAT3 signals 
would reduce cell proliferation and increase apoptosis 
of cancer cells. Many studies have been conducted to 
investigate the correlation between miRNAs and STAT3. 
For instance, miR‑206 could inhibit STAT3 signaling 
and thereby attenuates the growth and angiogenesis of 
NSCLC cells.[24] MiR‑124 inhibits the proliferation of 
NSCLC cells and functions as a tumor suppressor through 
targeting STAT3.[25] MiR‑9600 regulates tumor progression 
and promotes PTX sensitivity in NSCLC through altering 
expression of STAT3.[26] These studies suggest that STAT3 
is subjected to the regulation of various miRNAs. In this 
study, we found that miR‑125‑1‑3p was also involved in 
the STAT3 signaling pathway. Although the mechanisms 
of how miR‑125‑1‑3p affects the STAT3 signaling are not 
fully revealed in this study. Given that S1PR1 is crucial for 
the activation of STAT3 in cancer cell.[27] MiR‑125‑1‑3p 
may affect the STAT3 signaling through the regulation of 
S1PR1, and further investigations are needed to test this 
hypothesis.

There are limitations of this study. First, the number of 
samples in this analysis is relatively small. Second, there 
is a lack of survival analysis due to unable to collect 

the survival data of patients. Third, the investigation 
was performed based on cell lines and future in vivo 
analysis is needed. In summary, we revealed that 
miR‑125b‑1‑3p was downregulated and function as 
a tumor suppressor in NSCLC. S1PR1 was identified 
as a direct target of miR‑125b‑1‑3p in NSCLC cells. 
Moreover, STAT3 signaling pathway was also affected 
by the miR‑125b‑1‑3p. Our findings may help the 
development of novel therapeutic targets for the treatment 
of NSCLC patients.
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miR‑125‑1‑3p通过抑制S1PR1基因抑制非小细胞肺癌细胞

摘要

背景：微小RNA作为潜在的肿瘤治疗靶点目标，近年来引起了诸多研究者的关注。迄今为止，有诸多miRNA被发现在非小细
胞肺癌(NSCLC)中起到重要作用。本次研究目的探索miR‑125‑1‑3p在NSCLC中的作用及功能。
方法：MiR‑125b‑1‑3p在21个NSCLC患者组织以及NSCLC细胞系中的表达水平采用RT‑PCR进行检测。利用miR‑125b‑1‑3p mimic 
或者 miR‑125b‑1‑3p antisense转染NSCLC A549细胞系用来过表达或沉默miR‑125b‑1‑3p。CCK‑8, 划痕实验，侵袭实验以及流
式细胞分别用来检测miR‑125b‑1‑3p对细胞增殖，迁移，侵入以及凋亡的影响。Western blotting用来检测凋亡相关蛋白，S1PR1
蛋白以及STAT3蛋白的磷酸化状态。
结果：MiR‑125b‑1‑3p在NSCLC组织以及细胞系中表达下调。过表达miR‑125b‑1‑3p后可以抑制NSCLC细胞的增殖 (37.8 ± 9.1%, 
t = 3.191, P = 0.013)，迁移 (42.3 ± 6.7%, t = 6.321, P = 0.003) 以及侵袭 (57.6 ± 11.3%, t = 4.112, P = 0.001)。与此同时，过
表达miR‑125b‑1‑3p可以同时诱导NSCLC细胞凋亡 (2.76 ± 0.78 fold, t = 3.772, P = 0.001)。抑制miR‑125b‑1‑3p则取得相反的表
型结果。S1PR1被发现是miR‑125b‑1‑3p的调控基因。过表达miR‑125b‑1‑3p能够抑制S1PR1蛋白的表达 (27.4 ± 6.1% of control, 
t = 4.083, P = 0.007)。此外过表达miR‑125b‑1‑3p (16.7 ± 0.17% of control, t = 4.162, P = 0.026) 以及沉默S1PR1蛋白 (16.4 ± 0.14% 
of control, t = 3.023, P = 0.015) 后能够抑制STAT3蛋白的磷酸化。
结论：我们的发现揭示了miR‑125b‑1‑3能够通过抑制S1PR1，从而在NSCLC中起到抑癌基因的作用。




