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The last decades have witnessed a vast amount of interest and research in feature
representation learning from multiple disciplines, such as biology and bioinformatics.
Among all the real-world application scenarios, feature extraction from knowledge
graph (KG) for personalized recommendation has achieved substantial performance for
addressing the problem of information overload. However, the rating matrix of
recommendations is usually sparse, which may result in significant performance
degradation. The crucial problem is how to extract and extend features from additional
side information. To address these issues, we propose a novel feature representation
learning method for the recommendation in this paper that extends item features with
knowledge graph via triple-autoencoder. More specifically, the comment information
between users and items is first encoded as sentiment classification. These features
are then applied as the input to the autoencoder for generating the auxiliary information of
items. Second, the item-based rating, the side information, and the generated comment
representations are incorporated into the semi-autoencoder for reconstructed output. The
low-dimensional representations of this extended information are learned with the semi-
autoencoder. Finally, the reconstructed output generated by the semi-autoencoder is
input into a third autoencoder. A serial connection between the semi-autoencoder and the
autoencoder is designed here to learn more abstract and higher-level feature
representations for personalized recommendation. Extensive experiments conducted
on several real-world datasets validate the effectiveness of the proposed method
compared to several state-of-the-art models.

Keywords: personalized recommendation, autoencoder, semi-autoencoder, representation learning, collaborative
filtering

1 INTRODUCTION

The success of machine learning algorithms and artificial intelligence methods heavily depends on
the feature representation learning of original data (Bengio et al., 2013; Zhuang et al., 2017a). In
recent decades, feature representation learning has attracted a vast amount of attention and research
from multiple disciplines, such as biomedicine and bioinformatics (Wei et al., 2019; Li et al., 2021),
computer vision (Kim et al., 2017), knowledge engineering (Liu et al., 2016), and personalized
recommendation (Zhuang et al., 2017b; Zhu et al., 2021). In real-world applications, feature
representation learning is considered to obtain the different explanatory factors of variation
behind the data (Locatello et al., 2019).
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For nearly three decades, effective computational methods
have accelerated drug discovery and played an important role in
biomedicine, such as predicting molecular properties and
identifying interactions between drugs/compounds and their
target proteins. In early years, quantum mechanics
(Hohenberg and Kohn, 1964), such as density functional
theory (DFT), was used to determine the molecular structure
and calculate properties of interest for a molecule. However, the
quantum computational method usually consumes tremendous
computational resources and takes hours to days to calculate the
molecular properties (Ramakrishnan et al., 2015), which hinders
their applications to the fields of high-throughput screening.
Nowadays, the powerful ability to learn representation and
efficiently recommend algorithms has received significant
attention. A key challenge is to learn useful molecular
representation information from the huge molecular dataset.

Among all the informatics-related application scenarios, with
the rapid development of the Internet, there is an urgent demand
for personalized recommendation to tackle the information
overload problem (Zhang et al., 2017). Notably, many
successful recommendations systems share aspects of feature
representation learning and have been widely applied in many
online services such as electronic commerce (Ma et al., 2020) and
social networks (Botangen et al., 2020). Existing methods for
recommendation systems can roughly be categorized into three
classes: content-based recommendation, collaborative filtering
(CF), and hybrid methods (Batmaz et al., 2019). The content-
based recommendation methods learn the descriptive features of
items, calculate the similarity between new items and user-liked
items based on these features, and generate the final
recommendation (Lops et al., 2019). The collaborative filtering
methods discover the inclinations of users by considering the
user’s historical behavior and produce recommendations (Dong
et al., 2021). Hybrid recommendation methods leverage multiple
approaches together and try to combine the advantages of these
approaches.

Recently, collaborative filtering methods have achieved
superior performance for the advantages of effectiveness and
efficiency, which have far-ranging consequences in practical
applications of recommendation systems (Su and
Khoshgoftaar, 2009). Most of the traditional collaborative
filtering methods are based on matrix factorization (MF),
which combines good scalability with predictive accuracy (Luo
et al., 2020). The main intuition behind these approaches is to
decompose the rating matrix into user and item-based profiles,
which allows the recommendation system to treat different
temporal aspects separately (Yehuda et al., 2009). However,
MF-based methods have inherent limitations in feature
representation learning for the recommendation, which
prevent further development of these approaches.

On the other hand, deep learning techniques have recently
achieved great success in the computer vision and natural
language processing fields. Such techniques show great
potential in learning feature representations. Therefore,
researchers have begun to apply deep learning methods to the
field of recommendations (Salakhutdinov et al., 2007). They use a
restricted Boltzmann machine instead of the traditional matrix

factorization to perform the CF, and Georgiev and Nakov,(2013)
expanded the work by incorporating the correlation between
users and between items. In addition, Wang et al. (2015),
proposed a hierarchical Bayesian model that uses a deep
learning model to obtain content features and a traditional CF
model to address the rating information. These methods, based
on deep learning techniques, more or less make
recommendations by learning the content features of items.
These methods are not applicable when we are unable to
obtain the contents of items. Therefore, enhancing the
effectiveness of feature learning is significant. Recent studies
have shown that deep neural networks can learn more abstract
and higher-level feature representations (Yi et al., 2018), which
has made remarkable progress in improving recommendation
performance (Chae et al., 2019). For example, He et al. (2017)
proposed a general recommendation framework called Neural
Network-based Collaborative Filtering, in which a deep neural
network is utilized for learning the interaction between user and
item features. As we can see, among all the deep neural network-
based recommendation methods, many frameworks are realized
on top of the autoencoder model, which is one of the most
successful deep neural networks and has also been actively
adopted as a CF model recently (Shuai et al., 2017; Zhuang
et al., 2017c; Chae et al., 2019; Zhong et al., 2020). For
example, Zhang et al. proposed a hybrid collaborative filtering
framework based on an autoencoder that incorporated auxiliary
information for semantic rich representations teaching (Shuai
et al., 2017).

Though the autoencoder-based methods have achieved fairly
good performance for personalized recommendation, there are
two main problems that prevent the further development of these
methods. The first is the utilization of auxiliary information from
users or items, since the rating matrix in real-world applications is
usually very sparse, which inevitably leads to a significant
recommendation performance degradation. Most existing
methods only introduce some obvious attributes, such as the
age, gender, and occupation of users, or the title, release date, and
genres of items. The key factors of collaborative filtering, such as
the reviews of items by users, have rarely been incorporated into
the autoencoder-based networks. The second problem is the
optimization of neural networks. When training models to
incorporate side information about items and users, the
dimensions of the input and output layers are required to be
equal in autoencoder-based networks, which greatly limits the
scalability and flexibility of networks.

To address these problems, we propose a feature
representation learning method for personalized
recommendation in this paper which extends items features
with knowledge graph via triple-autoencoder (KGTA for
short). Specifically, the comment information between users
and items is first encoded as sentiment classification. These
features are then applied as the input to the autoencoder for
generating the auxiliary information of items, which can be used
to introduce the comment information from users to items to
solve the incorporating problem of auxiliary information.
Secondly, the item-based rating, the side information, and the
generated comment representations are incorporated into the
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semi-autoencoder for reconstructed output. It aims to address the
second problem, that the dimensions of the input and output
layer are required to be equal. Finally, the reconstructed output
generated by the semi-autoencoder is input into a third
autoencoder for personalized recommendation. Experimental
results on several datasets demonstrate the effectiveness of our
proposed method compared to other state-of-the-art matrix
factorization methods and deep-based methods.

In summary, the main contributions of our work can be
distilled into the following:

• To incorporate the key information between users and
items, the comments from each user for item are
encoded and reconstructed as the auxiliary information

• To optimize the neural networks, a serial connection of
semi-autoencoders and autoencoders are designed to learn
more abstract and higher-level feature representations for
personalized recommendation

• Extensive experiments on several datasets were conducted
to confirm the effectiveness of the proposed method
compared to other state-of-the-art matrix factorization
methods and deep-based methods

2 RELATED WORK

In this section, we survey the related works of feature
representation learning, personalized recommendation
methods, and collaborative filtering1,2.

2.1 Feature Representation Learning
Feature representation learning refers to learning data
representations that make it easier to extract useful
information in downstream machine learning tasks (Bengio
et al., 2013). The last decades have witnessed a vast amount of
research and application on feature representation learning in
multiple disciplines. For example, in the field of biomedicine and
bioinformatics, Wei et al. (2019) developed a bioinformatics tool
for the generic prediction of therapeutic peptides. An adaptive
feature representation learning method is proposed for different
peptide types in the tool. Alshahrani et al. (2017) proposed a
knowledge representation learning method with symbolic logic
and automated reasoning, which can be applied to biological
knowledge graphs for tasks such as finding candidate genes for
diseases and protein-protein interactions. Li et al. (2021)
proposed a triplet message mechanism to learn molecular
representation based on graph neural networks, which can
complete molecular property prediction and compound-
protein interaction identification with few parameters and high
accuracy.

Besides the fields of biomedicine and bioinformatics, feature
representation learning has also been widely applied in other
fields such as computer vision (Kim et al., 2017), knowledge

engineering (Liu et al., 2016) and personalized recommendation
(Zhuang et al., 2017b). For example, Wang et al. proposed a high-
resolution representation learning network for visual recognition
problems (Wang et al., 2020), which can maintain the
representation being semantically strong and spatially precise.
Xu et al. (2018) proposed an aggregation method for node
representation learning that can adapt neighborhood ranges to
nodes. It is especially suitable for graphs that have subgraphs with
diverse local structures. Niu et al. (2020) proposed a rule and
path-based joint embedding method for representation learning
on knowledge graphs. The Horn rules and paths are leveraged in
this method to enhance the accuracy and explainability of
representation learning.

2.2 Personalized Recommendation
In recent decades, with the rapid development of the Internet,
personalized recommendations have provoked a vast amount of
attention and research (Qian et al., 2013). The advances in
personalized recommendation have far-ranging consequences
in many online services applications such as electronic
commerce (Ma et al., 2020) and social networks (Li et al.,
2017). For example, in Facebook, Gupta et al. (2020)
conducted a detailed performance analysis of recommendation
models on server-scale systems present in the data center.
Botangen et al. (2020) proposed a probabilistic matrix
factorization-based recommendation method that considers
geographic location information for designing an effective and
efficient Web service recommendation.

Good feature representations of data do contribute to many
machine learning tasks, such as personalized recommendation.
For example, Geng et al. (2015) proposed a deep method to learn
the unified feature representations for both users and images.
This representation from large, sparse, and diverse social
networks obviously improves the recommendation
performance. Liu et al. (2019) proposed a joint representation
learning method for multimodal transportation
recommendations, which aims to recommend a travel plan
that considers various transportation modes. Ni et al.
proposed a recommendation model based on deep
representation teaching (Ni et al., 2021). It contained
information preprocessing and feature representation modules
to generate the primitive feature vectors and the semantic feature
vectors of users and items, respectively.

2.3 Collaborative Filtering
In personalized recommendations, the collaborative filtering (CF)
methods aim to discover users’ preferences through the
interactions between users and items. Existing CF methods
can be roughly categorized into two classes: matrix
factorization methods and deep neural network methods.

In the matrix factorization methods, these methods have
difficulty in processing sparse data and have poor
generalization ability, but they have low time and space
complexity and good scalability. Lee et al. proposed the
classical non-negative matrix factorization (NMF) model (Lee
and Seung, 2001), which can decompose the rating matrix into
user and item profiles. Along this line, Sun et al. proposed a

1http://files.grouplens.org/datasets/movielens/ml-100k.zip.
2http://files.grouplens.org/datasets/movielens/ml-1m.zip.
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Probabilistic Matrix Factorization (PMF) model that scales
linearly with the number of observations and performs well on
very sparse and imbalanced datasets (Salakhutdinov and Mnih,
2007). In light of PMF, Salakhutdinov et al. also proposed a
Bayesian Probabilistic Matrix Factorization (BPMF) model
(Salakhutdinov and Mnih, 2008), which controlled model
capacity automatically by placing hyper-priors over the hyper-
parameters to avoid over-fitting. Koren proposed combining the
factor and neighborhood models for a more accurate
recommendation performance (Koren, 2008), which further
extends the model to exploit both explicit and implicit
feedback by the users. In recent years, to address the problem
that the attributes of users are often scarce for reasons of privacy,
Rashed et al. (2019) proposed a nonlinear co-embedding
GraphRec model, which treats the user-item relation as a
bipartite graph and constructs generic user and item attributes
via the Laplacian of the user-item co-occurrence graph.

Recently, due to the powerful ability of deep learning methods,
remarkable progress has been made in learning higher-level and
abstract representations for personalized recommendations
(Wang et al., 2015; Yu et al., 2019). These methods have
nonlinear transformation and powerful representation learning
ability, but poor interpretability, large data requirements, and
extensive hyper-parameter tuning. For example, He et al. (2017)
proposed a general recommendation framework that designs a
deep neural network to learn the interaction between a user and
item features. Meanwhile, to address the cold start problem and
improve performance for personalized recommendations, Ni et al.
(2022) proposed a two-stage embedding model to improve
recommendation performance with auxiliary information. In this
method, two sequential stages, graph convolutional embedding and
multimodal joint fuzzy embedding, are designed to fully exploit item
multimodal auxiliary information. Among all the deep learning
methods for personalized recommendation, we realize many
successful frameworks on top of the autoencoder, which is one of
the most successful deep neural networks and has also been actively
adopted as a CF model recently (Shuai et al., 2017; Zhuang et al.,
2017c; Chae et al., 2019; Zhong et al., 2020). For example, Zhuang et al.
(2017c) proposed a dual-autoencoder model for recommendation,
which simultaneously learns the user-based and item-based features
with the autoencodermodel. Zhu et al. (2021) proposed a collaborative
autoencoder model for personalized recommendation, which learns
the hidden features of users and items with two different autoencoders
for capturing different characteristics of the data.

3 PRELIMINARIES

3.1 Autoencoder
The autoencoder model aims to minimize the distance between
the input and the reconstructed output. The basic autoencoder
network (Bengio, 2009) generally consists of an input layer, an
output layer, and one or more hidden layers. Given the input as
x ∈ Rm×n, when there is only one hidden layer, the encoding and
decoding layer of autoencoder can be represented as follows:

ξ � f Wx + b( ), (1)

x′ � g W′ξ + b′( ), (2)
where W ∈ Rk×m, W′ ∈ Rm×k and b ∈ Rk×1, b′ ∈ Rm×1 are the
weighting matrices and bias vectors, respectively. f and g are the
nonlinear activation functions of the encode and decode layers,
respectively. In our experiments, the sigmoid and identity
functions are introduced as f and g. The objective function of
the autoencoder can be shown as follows:

min
W,b,W′,b′

Jr � x′ − x
���� ����2. (3)

3.2 Semi-Autoencoder
In recent years, many autoencoder-based recommendation
methods have achieved fairly good results with the advantages
of no labeling requirement and fast convergence speed. However,
the classic autoencoder model has the restriction that the
dimensions of the input and the output layer must be equal,
which has a great impact on introducing auxiliary information for
solving the sparse problem of the rating matrix.

To address this problem, a semi-autoencoder model was
proposed and generalized into a hybrid CF method for rating
prediction (Shuai et al., 2017). Compared with traditional
autoencoders, the input layer of semi-autoencoders is longer than
the output layer, so semi-autoencoders can be utilized to capture
different nonlinear feature representations and reconstructionsflexibly
by extracting different subsets from the inputs, and it is easy to
incorporate side information into the input layer effectively to improve
the item feature representation for better recommendation
performance. The whole framework of the semi-autoencoder is
shown in Figure 1, the left and right parts of Figure 1 show the
two cases in which the output layer is longer than the input layer and
the output layer is shorter than the input layer, respectively. We
observe that the basic framework of a semi-autoencoder is the same as
that of a classical autoencoder model, which also includes an input
layer, an output layer, and one ormore hidden layers. Furthermore, in
the right part of Figure 1, we can observe that the shorter output layer
is the reconstruction of certain parts of the input, and the remaining
part in the semi-autoencoder model is auxiliary information to learn
better feature representations for addressing the sparse problem of the
rating matrix.

4 METHODOLOGY

The whole framework of our proposed recommendationmethodwith
knowledge graph via triple-autoencoder (KGTA for short) is illustrated
in Figure 2, which encompasses threemain components. The first one
is the representational learning of the comment information between
users and items. The comments from users on each item are divided
into positive and negative categories. Then the first autoencoder was
introduced to reduce the dimensionality of this comment information.
The second one is the learning of all the auxiliary information. A semi-
autoencoder is utilized to incorporate the side information, the
extended features from the knowledge graph, and the generated
comment features into the item-based rating. Finally, the low-
dimensional output of the semi-autoencoder is input into the
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third autoencoder. Different from the semi-autoencoder model that
only approximates the item-based rating; the third component tries to
reconstruct all the input for the recommendation3,4.

In the following, first, the commonly used notations in this
paper are listed in Table 1, and then, the model of KGTA is
described in detail.

4.1 Notations
Some important notations used in this paper and their
descriptions are listed in Table 1.

FIGURE 1 | Illustration of a semi-autoencoder where the input and output layers can be inconsistent. The length of the input layer is longer/shorter than the output
layer in the left/right part.

FIGURE 2 | Whole framework of the proposed KGTA

3http://www.librec.net/download.html.
4http://github.com/hoyeoplee/MeLU.

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 8912655

Geng et al. Recommendation With KG via Triple-Autoencoder

http://www.librec.net/download.html
http://github.com/hoyeoplee/MeLU
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


4.2 Comment Information Features
The personalized recommendation is to predict the interest of a
user in an item based on the rating matrix information. Since
the rating matrix in real-world scenarios is usually very
sparse, many methods have introduced auxiliary
information to address this problem. However, most
existing methods only introduce some obvious attributes
and ignore the key factors, such as the comments from
users on each item, of collaborative filtering. To address
this problem, our method learns the comment information
features between users and items with the first autoencoder.
The details can be seen in the upper left of Figure 2.

In our method, we take natural language text as the input for
sentiment classification and output emotion score ∈ 1,−1{ }. −1
represents negative emotion and 1 represents positive emotion.
Our method has two stages from input sentence to output score,
which are described below.

In the first stage, we perform the following preprocessing
steps on the comment text before we feed it into the model.
First, we remove all the digits, punctuation symbols, and
accent marks, and convert everything to lowercase. Secondly,
we then tokenize the text using the WordPiece tokenizer
(Schuster and Nakajima, 2012). It breaks the words down into
their prefix, root, and suffix to better handle unseen words.
Finally, we add the [CLS] and [SEP] tokens at the appropriate
positions.

In the second stage, we build a simple architecture with just a
dropout regularization (Srivastava et al., 2014) and a softmax
classifier layer on top of the pretrained BERT layer. The upper
left corner of Figure 2 shows the overall architecture of our
sentiment classification model. There are four main stages.
The first is the processing step, as described earlier. Then we
compute the sequence embedding from BERT. We then apply
a dropout with a probability factor of 0.1 to regularize and
prevent over-fitting. Finally, the softmax classification layer
will output the probabilities of the input text belonging to
each of the class labels such that the sum of the probabilities is

1. The softmax layer is just a fully connected neural network
layer with the softmax activation function. The output node
with the highest probability is then chosen as the predicted
label for the input.

Given the rating matrix R ∈ Rm×n, where m and n denote the
number of users and items respectively. For each item, the
comments from each user are classified by sentiment using
BERT (Devlin et al., 2018) first, and then we obtain the
comment feature vector ci for each item. Since the
comment information from users to items is usually
sparse, just like the rating matrix, the first autoencoder
was introduced for feature dimensionality reduction and
representation learning. The process of the first
autoencoder can be shown as follows:

ξs � f WsC + bs( ), (4)
s � g Ws′ξs + bs′( ), (5)

where Ws ∈ Rk1×n and Ws′ ∈ Rn×k1 are the weighting matrices,
bs ∈ Rk1×1 and bs′ ∈ Rn×1 are the bias vectors, f and g are the
functions of nonlinear activation, and k1 is the feature
dimension of hidden units. The hidden features of the first
autoencoder, i.e., the low-dimensional representations of s,
are denoted as SI, which are incorporated into the second
semi-autoencoder for capturing different representations and
reconstructions by sampling different subsets from all the
inputs.

4.3 Co-Embeddings With the
Semi-Autoencoder
After obtaining the reconstructed comment features, a semi-
autoencoder is introduced to incorporate the item rating
vector ri and other auxiliary information such as attributes
vector ai, reconstructed comment features si, and the KG-
extended features li. The input of the semi-autoencoder can be
defined as con(ri, ai, si, li)

con ri, ai, si, li( ) � connection of ri, ai, si, and li. (6)
The con(RI, AI, SI, LI) ∈ Rn×(m+y+k1+k2) refers to the

connection of RI, AI, SI and LI, where RI ∈ Rn×m represents
the item-based rating vectors, AI ∈ Rn×y represents the
attribute vectors of all items, which are the obvious attributes
such as the title, release date, and genres in movie
recommendation datasets, SI ∈ Rn×k1 represents the
reconstructed comment features for all n items, LI ∈ Rn×k2

represents the language vectors collected from the knowledge
graph and autoencoder. Considering that the experiments are
conducted on MovieLens datasets, the languages of the movies
are obtained from open KGs such as DBpedia, and the languages
are encoded with the multi-hot method and input into the
autoencoder model for learning the hidden representations LI.
The process of LI learning is consistent with that of SI, the details
can be seen in the upper right of Figure 2.

Then the con(RI, AI, SI, LI) is input into the second
autoencoder, i.e. a semi-autoencoder, to learn the compressed

TABLE 1 | Important notations used in this article and their descriptions.

Notations Descriptions

R The rating matrix
A The attributes vectors of all items
S The reconstructed comment vectors of all items
L The language vectors of all items
R′ The prediction matrix R′ ∈ Rn×m

m The number of users
n The number of items
ru The column of rating matrix
ri The row of rating matrix
k The features dimension of hidden units
h The number of hidden units
xi The ith instance of original input
xi′ The reconstructed output of xi
ξ The hidden feature representation matrix
W, W′ The map and remap weight matrix
b, b′ The map and remap bias vectors
• The element-wise product of vectors or matrices
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reconstructed output, the encode stage of the semi-autoencoder
can be defined as (7)

ξ � f Wcon RI, AI, SI, LI( ) + b( ), (7)
where W ∈ R(m+y+k1+k2)×k and bI1 ∈ Rk are the weight
matrix and bias item, respectively, k is the feature
dimension of the hidden layer, and f is the sigmoid
function for nonlinear activation. Then, the decode stage
can be shown as follows:

Rsemi′ � g W′ξ + b′( ). (8)
Similarly, where W′ ∈ Rk×m and bI2 ∈ Rm are the weight

matrix and bias item of decoding layer respectively, g is the
identity function for the activation function. Notably, the SGD
(stochastic gradient descent) method is utilized in the semi-
autoencoder for model optimization. The details can be seen
in the bottom left of Figure 2.

4.4 Triple-Autoencoder for
Recommendation
From Eqs. 7, 8, we can obviously observe that the output of a
semi-autoencoder model is the reconstruction of a certain
part of the inputs. When computing the loss function, the
result of the semi-autoencoder is a reconstruction of the
rating matrix RI instead of the whole input
con(RI, AI, SI, LI), which may result in a performance
degradation for recommendation. To this end, we design
the third autoencoder model to learn the reconstruction of
the whole input, that is triple-autoencoder for the
recommendation. The encode and decode stage of the
triple-autoencoder can be shown as follows:

R′ � g Wt′f WtRsemi′ + bt( ) + bt′( ). (9)
To avoid over-fitting, the ℓ2 norm regularization of the weight

matrix Wt and Wt′ is added to the objective function, which can
be shown as follows:

Jr � Wt‖ ‖22 + Wt′
���� ����22( ). (10)

Thus, the objective function of the triple-autoencoder can be
shown as follows:

Jitem � R′ − Rsemi′( )���� ����2 + αJr, (11)
where α is the trade-off parameter that controls the balance
of regularization terms. To minimize the distance between
the input Rsemi′ and the output R′, the deviations are
minimized to obtain representations for the
recommendation. When the model converges, the output
layer of the triple-autoencoder is the prediction matrix R′
for the recommendation, the details can be shown in the
bottom right of Figure 2. Details of the proposed KGTA are
summarized in Algorithm 1.

Algorithm 1. Recommendation with knowledge graph via triple-
autoencoder (KGTA)

5 EXPERIMENTS

In this section, experiments are conducted on two datasets,
MovieLens 100K and MovieLens 1M, to evaluate the effectiveness
of our proposedKGTA. In the following, we first introduce the details
of two experimental datasets. Secondly, the compared methods,
including the MF-based and deep neural network-based methods,
are given. In addition, the evaluationmetrics such asMAE andRMSE
are also presented. Then, the comparative experimental results and
their observations are presented in detail. Finally, the main properties
such as parameter sensitivity are analyzed for certain datasets.

5.1 Datasets
The details of two real-world datasets used in the experiments are
listed in Table 2, including rating density, the number of users,
items, and ratings.

MovieLens 100K1: it is a well-known and most widely applied
dataset for evaluating recommendation performance. There are
943 users and 1,682 movies with 100,000 ratings on a scale of 1–5,
and each user rated at least 20 movies. In MovieLens 100K, item
attributes such as the title, release date, and genres of movies are
also provided for improving recommendation performance.

MovieLens 1M2: It is an enlarged version of the Movielens
100K dataset, which has also been widely applied in the
recommendation. It has 6,040 users and 3,706 movies with
1,000,209 ratings. Similar to Movielens 100K, the ratings are
scaled from 1 to 5, and auxiliary information such as movie title,
release date, and category are also provided.

5.2 Compared Methods and Evaluation
Metrics
5.2.1 Compared Methods
To evaluate the effectiveness of the proposed KGTA, the
following matrix factorization methods, meta-learning
methods, and deep neural network methods were conducted:

• Non-negative matrix factorization (NMF) (Lee and Seung,
2001). It is the basic matrix factorization method for the
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recommendation. In our experiments, we use the
generalized Kullback–Leibler divergence as the update
rules in NMF.

• Singular value decomposition plus (SVD++) (Koren, 2008).
It exploits explicit and implicit feedback from users to
combine the latent factor model and the neighborhood
model into a unified model for the recommendation.

• Meta-learned user preference estimator (MeLU) (Lee et al.,
2019). It estimates user preferences based on a small number
of items to alleviate the cold start problem for the
recommendation.

• Meta-learning method for cold start recommendation on
Heterogeneous Information Networks (MetaHIN) (Lu et al.,
2020). It creates a semantic-enhanced task constructor for
exploring rich semantics, and a co-adaptation meta-learner
with semantic- and task-wise adaptations within each task.

• Neural collaborative filtering (NCF) (He et al., 2017). It is a
general recommendation framework that uses designs a
deep neural network to learn the interaction between a
user and item features.

• Item-based recommendation via autoencoder (AutoRec)
(Sedhain et al., 2015). It is the first autoencoder
framework in the recommendation, which learns the
effective feature representations of items for collaborative
filtering.

• Hybrid Collaborative Recommendation via Semi-
Autoencoder (HCRSA) (Shuai et al., 2017). It is a hybrid

collaborative filtering framework based on the semi-
autoencoder, which incorporates auxiliary information
for semantic rich representation learning.

• Personalized recommendation with knowledge graph via
dual-autoencoder (PRKG) (Yang et al., 2021). The side
information of items is extracted from DBpedia and
encoded into low-dimensional representations in this
method, and a semi-autoencoder is introduced to
incorporate this auxiliary information for the
recommendation.

5.2.2 Implementation Details and Parameter Settings
The PREA toolkit (Lee et al., 2014) is adopted for the
implementation of MF-based methods such as NMF and
SVD++. For the methods of MeLU, MetaHIN, and HCRSA,
we re-compile the source code as 4, 5, and 6. The default
parameters of these three methods remain unchanged as
reported in the original paper in the MovieLens dataset. For
the method AutoRec, we select an item-based autoencoder that
can achieve better performance than the user-based autoencoder.
For fairness, the parameters of AutoRec and PRKG are consistent
with ours in all two datasets. In our experiments, we set α = 0.1
after some preliminary tests for all datasets. The maximum
number of iterations in gradient descent is set at 300. The
number of hidden units is set at 300 for all datasets5,6.

5.2.3 Evaluation Metrics
In the experiments, we introduced root mean square error
(RMSE) to measure the performance of our proposed KGTA
and all compared methods in the recommendation, which can be
shown as (12). It is worth mentioning that the smaller value of
RMSE indicates better results.

RMSE �

����������������∑
ru,i∈TestSet

ru,i − ru,i′( )2
TestSet| |

√√
, (12)

where ru,i and ru,i′ represent the original rating matrix and the
predication matrix, respectively.

5.3 Experimental Results
For each data set, the percentages of 50%, 60%, 70%, and 80% are
sampled into training data, respectively, and the rest are used for
test data. The experimental results of RMSE on the MovieLens
100K and MovieLens 1M datasets are recorded in Table 3 and
Figures 3, 4 respectively. Notably, all the results are obtained by

TABLE 2 | Details of the three datasets used in our experiments.

Dataset Number of users Number of items Number of ratings Rating density (%)

MovieLens 100K 943 1,682 100,000 6.3
MovieLens 1M 6,039 3,883 1,000,209 4.27

TABLE 3 | The performance of RMSE on MovieLens 100K and MovieLens 1M
datasets.

Datasets Methods Proportion of training data

MovieLens 100K - 50% 60% 70% 80%
NMF 0.991 0.976 0.965 0.960
SVD++ 0.943 0.927 0.915 0.909
MetaHIN 1.062 1.046 1.041 1.032
MeLU 1.154 1.144 1.132 1.121
AutoRec 1.023 1.003 0.981 0.964
HCRSA 0.948 0.937 0.923 0.919
PRKG 0.928 0.917 0.907 0.899
KGTA 0.859 0.847 0.840 0.832

MovieLens 1M NMF 0.928 0.925 0.921 0.918
MetaHIN 1.024 0.993 0.965 0.959
MeLU 1.082 1.038 1.008 0.973
NCF 0.914 0.911 0.909 0.907
AutoRec 0.914 0.905 0.896 0.888
HCRSA 0.903 0.892 0.884 0.874
PRKG 0.885 0.875 0.868 0.861
KGTA 0.823 0.814 0.807 0.8

The bold values provided in Table 3 represent the experimental results of our proposed
method (KGTA) and are the best results among all the comparison methods.

5https://github.com/rootlu/MetaHIN.
6https://github.com/cheungdaven/semi-ae-recsys.
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repeating the experiments 5 times and taking the average value.
From all the results, we have the following insightful observations:

• The performance of all recommended methods is improved
with the increase of training data. It is worth mentioning
that meta-learning methods such as MetaHIN and MeLU
have not changed much, which may be due to the meta-
learning methods being designed to alleviate the cold start
problem for the recommendation.

• Generally, among the three types of methods, meta-learning
methods perform the worst, probably because they are
primarily designed to address the cold start problem. The
methods for deep neural networks can achieve more
desirable performance in most cases than both meta-
learning and matrix factorization methods, which reveals
the powerful ability of deep neural networks in learning the
feature representations for personalized recommendation.

• Among all the deep neural network methods for
recommendation, our KGTA is significantly better than
NCF and AutoRec, which shows the superiority of
introducing auxiliary information for addressing the

problem of data sparsity and improving the performance
of personalized recommendations.

• In the method of HCRSA, attributes such as the title, release
date, and genre of a movie are introduced to the semi-
autoencoder model for prediction. From the results listed in
Table 3 and Figures 3, 4, we can observe that our KGTA
consistently outperforms HCRSA, which demonstrates the
superiority of incorporating the key factors of collaborative
filtering, such as the comments from users to items, to
improve the performance of personalized recommendation.

• Although both the methods introduce auxiliary
information, our KGTA outperforms PRKG by up to 7
RMSE points on two well-known datasets, which shows the
advantage of designing a serial connection of semi-
autoencoder and autoencoder for learning more abstract
and higher-level feature representations in the
recommendation.

• Overall, the proposed KGTA performs best in all groups,
which validates the effectiveness of incorporating the key
information between users and items and designing a serial
connection of semi-autoencoder and autoencoder for the

FIGURE 3 | RMSE of our KGTA and compared methods on the MovieLens 100K dataset.

FIGURE 4 | RMSE of our KGTA and compared methods on the MovieLens 1M dataset.
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FIGURE 5 | The parameter influence of the number of hidden layer neurons on our KGTA. (A) The influence performance on MovieLens 100K. (B) The influence
performance on MovieLens 1M.

FIGURE 6 | The parameter influence of the number of epochs on our KGTA. (A) The influence performance on MovieLens 100K. (B) The influence performance on
MovieLens 1M.

FIGURE 7 | The parameter influence of the length of comments on our KGTA. (A) The influence performance on MovieLens 100K. (B) The influence performance
on MovieLens 1M.
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recommendation. It should be noted that KGTA can
achieve stable performance in both MovieLens 100K and
MovieLens 1M. These results demonstrate that our KGTA
can perform well even if the dataset is sparse.

5.4 Parameter Sensitivity
In this section, we investigate the influence of parameters in our
proposed method, including the number of hidden layer neurons,
the number of epochs, and the length of comments in the
training. When one parameter is changed, the others are fixed
in the experiments. The number of hidden layer neurons is varied
from 100 to 800, the number of epochs is altered from 100 to 500,
and the length of comments is sampled from the set {3, 5, 7, 9, 11,
13, 15, 17, 19, 21, and 23}. In the experiments, the validation was
conducted on MovieLens 100K and MovieLens 1M, respectively.
For the number of hidden layer neurons and the number
of epochs, the experiments are conducted with 50%–80% of
the training data. All the results are reported in Figures 5, 6,
and we set the number of epoch = 500 for both datasets, the
number of hidden layer neurons = 300 and
thenumberofhiddenlayerneurons = 400 for MovieLens 100K
and MovieLens 1M, respectively. For the length of comments,
experiments are conducted on 50% of the training data with the
best and most stable parameters configuration of the number of
hidden layer neurons and epoch, all the results are reported in
Figure 7, and we set the length of comments = 5 for both the
datasets.

6 CONCLUSION

In this paper, we propose a feature representation learning
method with a knowledge graph via triple-autoencoder for
personalized recommendation called KGTA. We propose a
serial connection between the semi-autoencoder and
autoencoder methods. In our method, we were able to
incorporate side information distilled from DBpedia for more
useful item feature representations, and the key factors of
collaborative filtering, such as comment information between
users and items, are incorporated into the autoencoder as

auxiliary information. Moreover, the item-based rating and all
the external information are incorporated into the semi-
autoencoder to obtain low-dimensional information
representation. Finally, the reconstructed output generated by
the semi-autoencoder is input into a third autoencoder to learn
better feature representations for personalized recommendation.
Extensive experiments demonstrate the proposed method
outperforms other state-of-the-art methods in effectiveness. In
future work, we will try to achieve superior performance by
incorporating less information and utilizing an attention
network to strengthen the feature integration or without
auxiliary information from the open knowledge base.
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