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Halitosis is a health condition which counts cigarette smoking (CS) among its major

risk factors. Cigarette smoke can cause an imbalance in the oral bacterial community,

leading to several oral diseases and conditions, including intraoral halitosis. Although

the best approach to decrease smoking-related health risks is quitting smoking, this

is not feasible for many smokers. Switching to potentially reduced-risk products, like

electronic vapor products (EVP) or heated tobacco products (HTP), may help improve

the conditions associated with CS. To date, there have been few systematic studies

on the effects of CS on halitosis and none have assessed the effects of EVP and

HTP use. Self-assessment studies have shown large limitations owing to the lack of

reliability in the participants’ judgment. This has compelled the scientific community to

develop a strategy for meaningful assessment of these new products in comparison with

cigarettes. Here, we compiled a review of the existing literature on CS and halitosis and

propose a 3-layer approach that combines the use of the most advanced breath analysis

techniques and multi-omics analysis to define the interactions between oral bacterial

species and their role in halitosis both in vitro and in vivo. Such an approach will allow us

to compare the effects of different nicotine-delivery products on oral bacteria and quantify

their impact on halitosis. Defining the impact of alternative nicotine-delivery products on

intraoral halitosis and its associated bacteria will help the scientific community advance a

step further toward understanding the safety of these products and their potentiall risks

for consumers.

Keywords: halitosis, cigarette smoke, reduced risk products, electronic vapor product, heated tobacco product

INTRODUCTION

Halitosis—also known as fetor ex ore, fetor oris, bad or foul breath, breath malodor, and oral
malodor—is a common condition that affects 15–60% of the population worldwide, with marked
regional differences [1–3]. Halitosis is characterized by an unpleasant odor in exhaled breath [4].
The causes of halitosis are numerous and include poor oral hygiene, periodontal diseases, dry
mouth, cigarette smoking (CS)/tobacco use, alcohol consumption, dietary habits, diabetes, and
obesity. Other causes include aging, stress, the general hygiene of the body, and the use of certain
medications [5–9].
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There are two types of halitosis: extraoral halitosis (EOH) and
intraoral halitosis (IOH) [10]. A small percentage of halitosis
cases (5–10%) are of extraoral origin. This type of halitosis can be
caused by diabetes, metabolic disorders, kidney and liver diseases,
as well as certain drugs and foods [11]. The vast majority of
halitosis cases (80–90%), however, originate from the oral cavity;
this form of halitosis is caused in general by poor oral hygiene,
dental plaque, dental caries, gingivitis, stomatitis, periodontitis,
tongue coating, and in rare cases oral carcinoma [12]. Dry mouth
(xerostomia) might also promote oral malodor [13], although
a correlation has not always been observed [14]. In healthy
subjects, the most common source of oral malodor is the coating
of the tongue (43.4% of cases of IOH) [15]. Tongue coating
consists of bacteria, large quantities of desquamated epithelial
cells, blood metabolites, food debris, and leucocytes originating
from periodontal pockets, which accumulate easily because of
the anatomical structure of the tongue [16]. The principal site
of oral malodor is the dorsoposterior part of the tongue, which
is where the most of anaerobic bacteria responsible for malodor
grow [14, 16] (Figure 1).

IOH is the outcome of the production of volatile organic
compounds (VOC) mainly by bacterial metabolism in the oral
cavity. Almost 700 compounds have been detected in the oral
cavity, of which volatile sulfuric compounds (VSC) like hydrogen
sulfide and methyl mercaptan are the most abundant (90%) in
IOH owing to their low odor threshold and high volatility [17–
21]. Dimethyl sulfide is also a very abundant VSC in halitosis,
but it is associated with EOH [22]. These VSCs are the main
compounds responsible for oral malodor [23]. Other VOCs that
contribute to halitosis are short-chain fatty acids, amines, and
indols. VSCs are mainly produced by the metabolism of sulfur
amino acids by anaerobic bacteria present in the tongue coating,
and the quantity of volatiles produced is associated with the
population density of the bacteria on the tongue [24]. VSCs and
other VOCs have been shown to be deleterious to oral soft tissues
and to induce changes that may lead to carcinogenesis [25–27].
Other compounds responsible for halitosis are diamines, such
as trimethylamine, putrescine and cadaverine, produced by the
putrefaction of food by bacteria [28].

The impact of cigarettes and alternative nicotine-delivery
products on halitosis has not been systematically addressed so
far. In this document, we will review the studies conducted on
this topic and propose a framework for the systematic assessment
and comparison of the effects of cigarette smoke and alternative
nicotine-delivery products on IOH by leveraging state-of-the-art
omics technologies for breath and microbiome analysis.

ORAL MICROBIOME AND HALITOSIS

In humans, the oral cavity contains a high density and diversity
of bacteria, second only to the colon [29]. It is estimated
that the bacteria populating the oral cavity belong to around
700 taxa [30]. The composition of tongue microbiota is of
primary importance in the development of IOH [31]. The
tongue structure presents papillae, deep fissures, and crypts,
which represent a niche with low oxygen potential, ideal for

the growth of anaerobic bacteria associated with halitosis [32].
The tongue bacterial diversity in halitosis patients seems to be
higher than that of controls [5]; it has been observed that the
bacterial diversity in halitosis patients (n = 16; analyzed by
16S rRNA gene pyrosequencing and metagenomics methods)
encompasses a wide range of microbial communities, including
13 phyla, 23 classes, 37 orders, 134 genera, 266 species,
and 349 operational taxonomic units [33]. IOH is associated
with the increased activity or abundance of certain bacterial
genera, such as Fusobacterium, Porphyromonas, Prevotella, and
Tannerella, in tongue biofilms [34, 35]. A specific biofilm on
the dorsal part of the tongue seems responsible for halitosis:
A study that combined fluorescence in situ hybridization and
confocal laser microscopy analyses identified that Fusobacterium
nucleatum and Streptococcus spp. cover a significant proportion
of the bacterial biofilm in halitosis patients [36]. Another study
applied an untargeted approach and identified that Actinomyces
graevenitzii and Veillonella rogosae are closely related to the
occurrence of IOH; according to this study, Streptococcus
mitis/oralis, Streptococcus pseudopneumoniae, and Salmonella
infantis, as well as Prevotella spp. are often detected in the
tongue coating of halitosis patients [37]. The density of bacterial
population on the tongue but not the thickness of the biofilm
seems to correlate with the production of VSCs [38–40].

The prevalence of gram-negative bacteria is associated
with halitosis [41]. Among gram-negative bacteria, Prevotella,
Alloprevotella, Leptotrichia, and Peptostreptococcus are present
at a higher percentage in subjects with halitosis than in
healthy subjects [33]. Gram-negative anaerobes are the most
active producers of hydrogen sulfide; among these bacteria,
Porphyromonas gingivalis, Treponema denticola, and Tannerella
forsythia, which belong to the red complex, are associated with
periodontal diseases and positively correlated with IOH [5, 22,
42]. For example, it has been shown that hydrogen sulfide
and methyl mercaptan are abundantly produced at sites of
periodontal inflammation [43–45]. Moreover, Porphyromonas
spp., Prevotella spp., and Treponema denticola may play a
crucial role in providing amino acids to other anaerobic
bacteria to produce hydrogen sulfide and methyl mercaptan
[46]. Porphyromonas gingivalis, Prevotella intermedia, and
Fusobacterium nucleatum are the major producers of indole
and skatole (also called 3-methylindole) [47]. Gram-positive
bacteria have also a function in IOH: They can support gram-
negative anaerobic bacteria by removing sugar chains from
glycoproteins and providing necessary proteins during the
proteolytic processes [46].

CS has a major impact on the composition of the
oral microbiome. In the next section, we will discuss the
current knowledge on the connection between CS, microbiome,
and IOH.

CS, ORAL BACTERIA, AND HALITOSIS

CS is considered to be one of the major risk factors for
the development of several health conditions and diseases,
including many oral diseases. CS can contribute to halitosis
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FIGURE 1 | Different forms of halitosis and their causes. Genuine halitosis can be classified as intraoral or extraoral halitosis. Intraoral halitosis originates from volatile

organic compounds produced by oral bacteria resulting from poor oral hygiene, dental plaque, dental caries, oral diseases, tongue coating, and dry mouth. In

extraoral halitosis, the malodor is emitted from the nasal, paranasal, laryngeal, or pulmonary regions and can be caused by serious diseases like diabetes, metabolic

disorders, and kidney and liver diseases. Certain foods, beverages, and lifestyle habits, like cigarette smoking and alcohol consumption, can also contribute to

halitosis. Delusional halitosis occurs when no physical or social evidence exists for the presence of halitosis (pseudohalitosis); delusional halitosis may also be related

to a psychogenic or psychosomatic disorder (halitophobia).

by causing hyposalivation, thereby facilitating the formation
of deposits on the tongue [48]. CS can also contribute to
the onset of periodontal diseases, which are strictly correlated
with alterations in the oral microbiome composition [49, 50].
Cigarette smoke contains many toxicants that can alter the oral
microbiome through different mechanisms such as antibiotic
effects and oxygen deprivation [51]. Lower salivary pH has been
observed in smokers compared to healthy controls leading to
microbial unbalance and erosion of the enamel [52]. CS can
decrease the commensal population in the oral cavity, facilitating
the acquisition and colonization of periodontal pathogens
(Figure 2). Smokers exhibit a distinct subgingival microbial
composition than non-smokers [53], although previous studies
have reported conflicting results [reviewed in [50]], likely because
of differences in the sensitivity and specificity of the methods
used. CS has been shown to promote the cariogenic activity of
oral bacteria [54]. The tongue bacterial composition of current
smokers has been found to be different from that of non-
smokers: A recent study by Sato et al. [55] identified the anaerobe

Veillonella dispar as the most differentially abundant bacterial
species in the tongue coating of smokers vs. non-smokers. This
specific Veillonella species was reported to produce hydrogen
sulfide as a product of L-cysteine metabolism [56]. Interestingly,
Candida species have also been found to be some of the most
abundant species in smokers with halitosis [57]. Al-Zyoud and
colleagues identified a bacterial signature in the saliva of smokers
that included Prevotella, Streptococcus, and Veillonella, which are
bacterial genera that include strains associated with oral malodor;
however, the authors did not perform any investigation at the
species level or analyze for correlation with halitosis [58]. In
another study that analyzes the bacterial composition of the saliva
and tongue coating of smokers and non-smokers, the levels of
Fusobacterium nucleatum and Campylobacter rectus in smokers
were 5-fold greater than those in non-smokers and showed
positive correlation with VSC levels [59].

Halitosis is still one of the major concerns in smokers: In
a recent survey, 73% of smokers reported that they are afraid
of developing such a condition [60]. Cigarette smokers are
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FIGURE 2 | Effects of cigarette smoking on intraoral halitosis. Cigarette smoke can contribute to halitosis by causing hyposalivation, thereby facilitating the formation

of deposits on the tongue. It can also contribute to the onset of periodontal diseases and the formation of dental caries. All these effects can decrease the commensal

population in the oral cavity, facilitating the acquisition and colonization of periodontal pathogens. This leads to oral dysbiosis, which can, in turn, lead to intraoral

halitosis.

indeed reported to have a higher measured and self-perceived
incidence of halitosis than non-smokers [61]. In the literature,
cigarette smoke-related halitosis is also defined “smoker’s breath”
[14]. CS contains various components, such as acetaldehyde,
benzene, and ammonia, that can confound the measurement of
halitosis by organoleptic tests [62, 63]. Moreover, some problems
with interobserver and intraobserver reproducibility have been
described [64]. A recent study showed that smokers have a
greater probability of less objectively reporting their gingival
conditions and halitosis than nonsmokers [6–8]. Unfortunately,
most studies that have assessed halitosis in smokers have been
conducted through self-assessment surveys (Table 1). Of the
five studies that combined self-reported halitosis diagnosis and
halitosis measurement by organoleptic judges or by Halimeter
results, four did not find a positive correlation between the self-
reported halitosis and instrument/organoleptic results [70, 72,
81, 82], while the remaining one study did [85]. This difference
in self-reported halitosis and instrument/organoleptic results
may be due to the decreased olfactory sensitivity of smokers,
which biases their self-perception of breath [1]. Therefore, the
use of instruments for measuring oral malodor combined with
organoleptic judgement may provide a more accurate diagnosis.
To date, only few studies have systematically addressed the
correlation of CS with halitosis. One study in subjects with
periodontitis found that VSC levels were higher in the gingival

pockets of smokers than in non-smokers [86]. In other studies,
VSCs and organoleptic scores were significantly associated with
bacterial tongue coating and CS [81, 82]. Another study showed
that smoking was associated with self-reported halitosis but not
with VSC levels [72]. It is noteworthy that some studies have
found that smokers have poorer oral hygiene than non-smokers,
and this also could play a role in the development of IOH [71, 87].

Quitting smoking has been shown to shift the composition of
the oral bacterial population in healthy subjects to a composition
similar to that in never smokers, indicating that the cigarette
smoke-induced changes in the microbiome are reversible [88].
However, no information has been published on the correlation
of quitting CS with halitosis improvement. Interestingly, reduced
risk of halitosis is among the suggested reasons for quitting
smoking by dentist guidelines in the United Kingdom [89].

IMPACT OF ALTERNATIVE
NICOTINE-DELIVERY PRODUCTS ON
HALITOSIS

While cessation is the best practice for reducing the negative
effects of CS, only a small percentage of smokers who attempt
to quit do not relapse 6 months after [90]. The tobacco harm
reduction strategy has recently emerged as a complementary
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TABLE 1 | Studies that have investigated the impact of cigarette smoking on halitosis.

Reference Total study participants Smoking status Diagnosis of

halitosis

Conclusions

Al Ansari et al. [65] 1,551 (dentistry patients

and random subjects)

Current smokers/former

smokers

Self-reported Halitosis perception significantly higher in smokers and former

smokers than in non-smokers

Alqahtani et al. [66] 100 (peri-implantitis

patients)

Current

smokers/waterpipe users

Self-reported Significantly more smokers and waterpipe users reported

halitosis than non-smokers

AlSadhan [3] 2,343 (random subjects

from a school and

government office)

Current

smokers/waterpipe users

Self-reported Smoking and waterpipe use was significantly associated with

halitosis

Al-Zahrani et al.

[67]

38 (diabetes patients) Current smokers/former

smokers

Self-reported No significant association between smoking and halitosis,

although the study contained only one current smoker

Ayo-Yusuf et al.

[68]

896 (dentistry patients) Current smokers Organoleptic

measurement

Smoking significantly associated with high organoleptic

ratings

Babazadeh et al.

[69]

519 (adolescents) Current

smokers/waterpipe users

Self-reported Halitosis associated with poor oral health in smokers

Eldarrat et al. [70] 233 (undergraduate and

graduate students)

Current smokers Self-reported Smoking was not correlated with halitosis, although a greater

number of smokers reported halitosis than non-smokers

Jiun et al. [71] 200 (dentistry patients) Current smokers Halimeter 75% of smoking subjects show halitosis vs. 8% of

non-smokers; the difference was statistically significant

Lee et al. [72] 54 (visitors at a health

center)

Current smokers/former

smokers

Self-reported,

Halimeter

Smoking significantly associated with self-conscious and

self-reported halitosis but not associated with halitosis

diagnosed by a Halimeter

Rech et al. [73] 48 (pneumology clinic

patients and random

subjects)

Current smokers Self-reported 33% of smokers reported halitosis vs. 4.2% of non-smokers.

Halitosis more common in subjects who had smoked for

more than 20 years

Romano et al. [74] 736 (Dentistry patients) Current smokers Self-reported,

organoleptic

measurement

Heavy smoking negatively associated with the concordance

of self-reporting and organoleptic measurement of halitosis

Saadaldina et al.

[75]

460 (Dentistry patients) Current smokers Self-reported Smoking significantly associated with halitosis

Şanli et al. [76] 1,840 (ear, nose, and

throat clinic patients)

Current smokers/former

smokers

Self-reported 37.7% of smokers reported halitosis vs. 22.4% of

non-smokers

Struch et al. [77] 3,005 (random subjects

[citizens])

Current smokers/former

smokers

Self-reported Former smokers and smokers reported halitosis more often

than never smokers

Setia et al. [78] 277 (dental students) Current smokers Self-reported Halitosis reported by 80% of smokers

Silva et al. [45] 900 (random subjects

[citizens])

Current smokers Self-reported Interaction of the effects of smoking and periodontitis on

halitosis

Tubaishat et al.

[79]

580 (random subjects from

a school)

Current smokers Self-reported 58.5% of smokers reported halitosis

Barik et al. [80] 16,354 (random subjects

[citizens])

Current

smokers/smokeless

tobacco users

Self-reported 0.2% of smokers and 0.1% of smokeless tobacco users

reported halitosis

Bornstein et al.

[81]

419 (random subjects

[citizens])

Current smokers Self-reported,

organoleptic

measurement,

Halimeter

Positive correlation of smoking, tongue coating, and

periodontal screening index with halitosis; weak correlation

between self-reported halitosis and VSC measurements and

organoleptic scores

Bornstein et al.

[82]

626 (army recruits) Current smokers Self-reported,

organoleptic

measurement,

Halimeter

Positive correlation of smoking and tongue coating with

halitosis; inverse correlation between smoking and VSC

levels; no correlation between self-reported halitosis and

organoleptic scores or VSC measurements

Kayombo et al.

[83]

400 (workers) Current smokers Self-reported 25.8% of smokers reported halitosis; the association was

statistically significant

Kim et al. [84] 359,263 (adolescents) Current smokers Self-reported Smoking not statistically correlated with halitosis; smokers’

cohort was small

Miyazaki et al. [85] 2,672 (workers) Current smokers Self-reported,

Halimeter

Smoking, tongue coating, and self-diagnosis significantly

associated with VSC production

Khaira et al. [86] 33 (periodontitis patients) Current smokers Perio2000

system

Higher percentage of sites with VSCs in smokers than in

non-smokers

Data accessed in June 2021.
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approach for helping reduce the adverse effects of CS [91]. The
concept of tobacco harm reduction is to switch smokers to less
harmful products that emit significantly lower levels of toxicants
while still delivering nicotine at comparable levels to cigarettes
[92, 93]. Currently, two classes of products that have the potential
to fulfill these characteristics are being marketed: electronic
vapor products (EVP) and heated tobacco products (HTP). It
is important to conduct robust scientific studies to determine
the reduced risk potential of these products in comparison with
cigarette smoke.

So far, very few studies have investigated halitosis in relation
to such alternative products and CS. EVPs and HTPs are
generally perceived to have no impact on breath or less impact
than cigarette smoke. A recent automated data mining study
investigated more than 41,000 online forum posts related to the
effects of EVPs [94] and identified only 5 posts in relation to
halitosis and EVPs. Another survey investigated HTPs and EVPs
and found that only 9 and 6% of users, respectively, reported
halitosis vs. 86% of cigarette smokers [61]. In a study by Soule
et al., a cluster of 12 patients out of 49 EVP users reported a bad
taste in themouth, deadened taste buds/sense of taste, bad breath,
or a metallic taste in the mouth [95]; the authors did not report
the actual frequency of bad breath (halitosis).

However, as previously mentioned, self-reported halitosis
often does not correspond to objective (measured) halitosis
[81, 82, 96]. A recent microbiome study suggested that the
salivary bacterial composition of EVP users with periodontitis
varies from that of never smokers and smokers and shows more
similarities with the composition in non-smokers than smokers
[97]. Another recent study investigated the microbiome profile
in saliva and buccal samples of EVP users compared with non-
smokers/non-vapers, finding significant changes in the diversity
composition in the saliva between the 2 groups [98]. However,
these studies did not investigate the possible correlation between
a shift in the bacterial composition and halitosis. The use of
electronic nicotine-delivery products is speculated to lead to
bad breath due to the dry mouth (xerostomia) attributed to the
nicotine-related inhibition of salivary flow [99]. Xerostomia can
also lead to an imbalance in the oral bacterial population, tipping
it toward a greater prevalence of anaerobic species, which are
often related with halitosis [8]. However, no study has performed
a systematicmeasurement of halitosis-related compounds in EVP
or HTP users so far.

ASSESSMENT OF HALITOSIS

Halitosis is a source of embarrassment and social challenge, and
it significantly influences the social life of affected subjects [100].
A study conducted in the Netherlands showed that halitosis was
among the 100 most common causes of distress in the human
population [101]. Many people who experience halitosis seek
medical advice, and halitosis can be the third most common
reason for dentistry visits, behind dental caries and periodontitis
[102]. The social pressure of having a fresh breath pushes
many people to be preoccupied about this condition. However,
self-perceived oral malodor does not always reflect a clinical

condition, and it is, therefore, important to discriminate between
“genuine halitosis,” when the malodor is easily recognizable, and
“delusional halitosis,” which may instead relate to a psychogenic
or psychosomatic disorder (halitophobia) [103]. Delusional
halitosis may indicate depression or obsessive–compulsive
behavior, necessitating psychiatric care [101]. Anxiety itself
increases the oral levels of malodor-associated compounds;
consequently, many professionals do not consider self-reporting
of halitosis reliable [104]. Assessment methods are, therefore,
important for discriminating genuine halitosis from delusional
halitosis and for determining the severity of the condition.

In the context of tobacco research, systematic measurement
of the volatile compounds present in the breath of EVP and HTP
users will help understand the potentially reduced impact of these
products on breath odor in comparison with cigarette smoke.

For an exhaled breath analysis, some general rules regarding
beverage consumption and personal hygiene should be followed
to minimize any interference that may cause results to be
interpreted incorrectly. The general instructions for participants
are to avoid using a mouthwash for at least 30min prior to the
exhalation measurement, refrain from eating, smoking, drinking
(besides water), or any oral hygiene activity for 1–2 h prior to
the test [105]. In addition, participants should avoid consuming
garlic, onions, or spicy food for 2 days before their appointment
(as these foods are a source of sulfur compounds) and also refrain
from drinking alcohol or coffee for 12 h before the measurement
[21]. The potential of certain foods and beverages to mask odor
need to be considered. Hansanugrum and Barringer reported
the benefits of drinking whole milk as a way to reduce the
presence of diallyl disulfide and allyl methyl disulfide after garlic
consumption [106]. Similarly, the levels of methanethiols and
allylthiols are significantly reduced when garlic is rinsed with
a mushroom (Agaricus bisporus) extract before ingestion [107].
Enzymatic deodorization involving oxidation of polyphenolic
compounds by enzymes (e.g., alliinase) as well as the presence
of polyphenols without enzyme activity or acidic deodorization
have been proposed as tools for reducing oral malodor [108, 109].

Diagnostic methods rely primarily on organoleptic (intensity)
or hedonic (pleasant/unpleasant) assessment of breath by
trained panel. This approach is considered the standard for
halitosis diagnosis [110]. However, it can be difficult to
compare results across different trained sensory panelists, as
the methodology may vary in terms of both the definition
of odor attributes as well as the intensity ranking scale.
Analytical technique gas chromatography (GC) coupled to
mass spectromety (MS), considered as the gold standard for
VOC analysis, has been applied to identify chemical markers
associated with malodor. The findings of studies employing
these methods have led to the development of different
sensor (portable) instruments for halitosis diagnosis (Table 2)
[111]. As an example, total sulfuric compound measurements
can be monitored by using a portable Halimeter (Interscan
Corporation, Chatsworth, CA, USA), which is based on a
volumetric non-selective gas sensor. This instrument has been
shown to provide good reproducibility. However, the main
drawback of the Halimeter is that it cannot discriminate
different VSCs [110]. By contrast, OralChroma (Abimedical,

Frontiers in Oral Health | www.frontiersin.org 6 December 2021 | Volume 2 | Article 777442

https://www.frontiersin.org/journals/oral-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/oral-health#articles


Zanetti et al. A Framework for Halitosis Assessment

TABLE 2 | Comparison of direct exhaled breath measurement methods applicable in halitosis research.

Direct measurement methods

applicable in halitosis

research

Implemented in

halitosis research

Sensitivity level of detection Quantification Untargeted analysis

(biomarker research)

Organoleptic YES Only approach that can predict

the degree of odor that a gas

mixture may impart to the human

nose

NO

Exhaled breath smell is ranked from 0

(undetectable) to 5 (heavy foul odor)

NO

Sensors

Halimeter (Interscan Corporation) YES ppb YES

• Provides quantification of total

sulfuric compounds,

• Cannot differentiate between

sulfuric compounds,

• Insensitive to non-sulfuric

volatile compounds

NO

Oralchroma (Abimedical) YES ppb YES

• Quantification of H2S, CH3SH,

(CH3)2S,

• Insensitive to non-sulfuric

volatile compounds

NO

NeOse (Aryballe) YES Compound-dependent

Ammonia (LOD 20 ppb)

Hydrogen sulfide (LOD 50 ppb)

NO

• “Digital olfaction”,

• Can identify different odors on the

basis of records within an

AI database

NO

Real-time Ms techniques

SIFT-MS YES ppt

(Compound-dependent)

YES NO

(More targeted approach)

PTR-MS NO ppt

(Compound-dependent)

YES YES

(Low capability for

compound identification)

Super SESI-HR-MS NO ppt

(Compound-dependent)

NO YES

(Enhanced capabilities for

compound identification)

HR, high resolution; LOD, limit of detection; MS, mass spectrometry; ppb, parts per billion; ppt, parts per trillion; PTR, proton transfer reaction; SESI, secondary electrospray ionization;

SIFT, selected ion flow tube.

Abilit Corp., Osaka, Japan) can differentiate between hydrogen
sulfide, methyl mercaptan, and dimethyl sulfide by means of
rapid GC separation [110].

Recent developments in the analysis of odors and fragrances
include the introduction of the portable NeOse device (Aryballe
Technologies, Grenoble, France), which is based on the silicon
photonics technology [112]. Through a combination of artificial
intelligence data processing, this biosensor is able to monitor
VOCs and has the potential to reveal the distinct signature of
halitosis [113]. A recent comparison of current measurement
instruments showed that the data generated from the NeOse
biosensor correlate well with both selected-ion flow-tube (SIFT)
coupled to MS measurements and organoleptic scoring. This is
a promising insight for the future development of point-of-care
halitosis measurement methods [113].

However, these portable instruments do not provide a holistic
analysis of compounds (untargeted analysis) and do not allow the
discovery of novel chemical markers in exhaled breath.

Several indirect measurement techniques exist which address
the presence of bacteria associated with IOH rather than the
target compounds [reviewed in [114]].

A Multiomics Approach for Holistic
Understanding of Halitosis Related to the
Oral Microbiome
A holistic approach can help highlight the interrelationships

among oral bacterial species, their metabolism, and the volatile

compounds that are ultimately responsible for halitosis. The

advent of high-throughput omics technologies has allowed the

detection of a wider range of bacterial taxa associated with IOH

as well as the characterization of their metabolites. Combining
multiple omics technologies has an advantage over using a single

omics approach in that it provides a greater understanding
of the disease, from its original cause (genetic, developmental,

or environmental) to its functional consequences or relevant
interactions [115, 116]. Integration of different omics approaches

may help us gather comprehensive information on the function
of the oral microbiome in halitosis [117]. The different omics data

that are found to correlate with halitosis, such as microbiomics
and metabolomics data, can be fit into a logical framework to

discover the responsible molecular pathways that elucidate the
role of the different bacteria responsible for halitosis [118, 119].
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A multiomics approach may also be of great help in linking
environmental factors, such as CS or the use of alternative
nicotine-delivery products, to changes in the microbiome
and metabolome.

Microbiomics

In the past, microbiome investigations have often focused on
culturing techniques, which are laborious and limited to taxa
that are amenable to in vitro culturing. In recent times, there
has been a shift toward high-throughput techniques for obtaining
snapshots of the composition of themicrobiome. One of themain
classes of molecules used for this purpose are the nucleic acids. In
principle, detecting sequences distinct to a specific taxon allows
us to infer the presence and even abundance of that taxon.

PCR-basedmethods can help identify target species in samples
and have been used for investigating the link between the
microbiome and halitosis [120, 121]. In fact, primer panels
have been devised for oral microbiome investigations [122].
The method is generally limited to microorganisms for which
sequence information is available, and it only allows a limited
set of predefined organisms to be surveyed. Terminal restriction
fragment length polymorphism analysis of 16S sequences has
been used for species identification [40], especially in conjunction
with machine learning [123], but the method has not gained
popularity. The most used method currently is 16S rRNA gene
sequencing, which involves amplifying and sequencing one or
more of the hypervariable regions in the 16S ribosomal subunit
gene and assigning a taxonomic classification on the basis of
homology to known sequences. This method has been used
abundantly in halitosis research [31, 33, 124] and notably
in direct connection with the effect of CS on halitosis [58].
Amplicon sequencing offers an affordable undirected approach
for investigating the microbiome which is not limited to specific
bacteria. It is, however, limited to taxonomic profiling and cannot
directly provide information on metabolic activity.

More recently, shotgun sequencing has been used for
microbiome analysis. This method yields a snapshot of all the
DNA in a sample. Sequencing reads can then be either assigned
a provenance by homology to known microbial sequences, or
assembled into “metagenome” fragments and then used for
functional analysis, thus potentially obtaining information on
both taxonomy and metabolism. While it is more resource-
intensive than simple amplicon sequencing, shotgun sequencing
might be preferable because of its broader scope of use. Large-
scale metagenomics projects have already characterized several
niches of the human microbiome, including the oral microbiome
[125]. Other shotgun approaches have investigated the tongue
microbiome of smokers vs. non-smokers [55].

Metabolomics

Metabolomics is a fast-emerging discipline in systems biology
and represents the study of all low-molecular-weight molecules
present in a biological sample. The metabolome is the sum of
all molecules in a biological organism or system and usually
contains vast information about the end products of cellular
processes [126]. Volatilomics, breathomics, and salivaomics are

three branches of metabolomics that can be applied as the most
modern approaches for studying halitosis.

Volatilomics is focused on the analysis of the VOCs emitted
by a living organism and is integrated with breathomics and
salivaomics research [127, 128]. VOCs can be detected in the
headspace area of saliva [129] and directly in exhaled breath
[130]. It is mostly GC–MS detection that is used for studying
the VOCs present in saliva. This technique has already been
applied in halitosis research, where a study recently identified
two potential biomarkers of halitosis: 5-aminovaleric acid and
N-acetylornithine [131]. Monedeiro et al. have reported 164
VOCs in saliva, which they monitored by headspace solid-phase
microextraction coupled to GC–MS (HS-SPME-GC–MS). Of the
164 VOCs, 23 are specific to halitosis (including a large number
of sulfuric compounds) and 41 to abscesses (a greater variety
of alcohols, aldehydes, and hydrocarbons, which are biomarkers
of inflammatory processes) [132]. Another study has reported
significantly higher concentrations of salivary cortisol in subjects
with psychosomatic halitosis than in subjects with genuine
halitosis and control subjects (p < 0.05) [133]. Additionally,
salivary cysteine—a direct precursor of hydrogen sulfide—can
be considered a reliable marker for assessing the severity of oral
tissue damage in periodontitis patients [134].

Breathomics is a branch of metabolomics that explores
the compounds present in human breath by using various
analytical techniques [135–137]. This approach helps clarify the
link between breath molecules and certain diseases/conditions
[135, 138]. The list of diseases/conditions that are related
to breath molecules is not limited to halitosis but also
includes metabolic, lung, and gastrointestinal disorders [139].
The recently introduced human breathomics database (HBDB;
https://hbdb.cmdm.tw/) provides scientists a tool for identifying
and further investigating potential breath biomarkers [136]. The
database is currently updated with 913 compounds that are
related to 60 diseases (accessed in August 2021).

Exhaled breath analysis can involve two approaches: off-line
and on-line (real-time) measurement. The off-line approach
involves collection of exhaled breath, sample analysis, and data
analysis [140]. Exhaled breath collection includes collection of
the gas phase of exhaled breath by using sampling bags or
bottles (for example) and collection of exhaled breath condensate
by using a condenser. GC–MS and/or liquid chromatography
coupled to MS (LC–MS) are usually used for analysis of such
samples [127]. The GC–MS off-line analysis is usually performed
by thermal desorption of a Tenax tube in which VOCs from
the collected samples are trapped. This technique has been used
by van den Velde et al. for studying VOCs associated with
halitosis in non-halitosis subjects. During sample collection, the
authors made a distinction between alveolar and mouth air. They
instructed the subjects not to breathe for 30 s, so that they could
collect mouth air by using a manual piston and Teflon bulb.
They then used a commercially available Bio-VOC sampler to
collect exhaled alveolar air. The authors detected 14 compounds
associated with bad breath and highlighted the importance of
differentiating between alveolar and mouth air because of their
different chemical compositions [141].
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Over the last three decades, real-time exhaled breath analysis
has been used as a complementary technique to the off-line
approach [142–147]. The main difference between the off-line
and real-time analyses is that the latter provides (i) results quickly
and (ii) does not include exhaled breath sample collection and
storage, which can cause loss and degradation of compounds.
Bruderer et al. have recently reviewed the various methods
that allow real-time analysis of exhaled breath [148], including
the three main approaches: proton transfer reaction (PTR-
MS], selected-ion flow-tube (SIFT-MS), and the more recent
secondary electrospray ionization (Super SESI) MS (Table 2).
These approaches allow measurement of oral malodor directly
in the oral cavity and can also be adapted for measurement of
bacteria cultivated in vitro [149].

SIFT-MS has already been employed as a real-time analytical
method for monitoring and quantifying hydrogen sulfide,
methanethiol, and dimethyl sulfide in research related to
mitigating the effects of a dentifrice on halitosis [23]. SIFT-
MS has proven to be the technique of choice for detecting
and quantifying VSCs in exhaled air with high sensitivity
up to the low ppb levels. It is perfectly suited for targeted
analysis and can provide accurate concentration measurements.
However, the main drawback of this technique is that it
currently cannot be applied in untargeted analysis (which
would allow discovery of new biomarkers), as the mass
analyzer does not offer high-resolution accurate mass analysis
capabilities [148] (Table 2).

To our knowledge, neither PTR-MS nor Super SESI-MS has
yet been used in halitosis research. PTR-MS can be successfully
applied for targeted analysis of the VOCs present in exhaled
air, and it can provide quantification up to ppt levels [150].
The exhaled breath VOC levels measured by PTR-MS can be
affected by variations in humidity and CO2 and O2 levels [139].
The main drawback of this technique is its low-resolution mass
accuracy capability (most PTR time-of-flight mass analyzers have
a resolving power [m/1m] of>6,000) [151]. Similar to SIFT-MS,
PTR-MS is not suited for untargeted identification of chemical
markers (Table 2).

Super SESI-HR-MS is the latest among these real-time
techniques. It has the main advantages of being able to
operate at ambient pressure and couple with any ambient inlet
MS, including high-resolution accurate mass capability when
coupled to an Orbitrap mass analyzer (m/1m up to 240,000
with a Q Exactive HF series). Moreover, this instrument can
generate high-resolution accurate mass MS/MS spectra, which
are particularly useful for distinguishing between compounds
that have similar elemental formulas [148], hence allowing
detection and identification of new biomarkers related to
halitosis. The current main drawback of Super SESI-HR-MS
compared with SIFT-MS and PTR-MS is that it does not provide
absolute quantification [148] (Table 2). All real-time approaches
have the disadvantages of high cost and lack of suitability outside
a laboratory setting.

Integrative Analysis

Often, studies that employ high-throughput methods (i.e.,
omics) consider only one technique. Using multiple techniques

in parallel can yield information that is not only mutually
supportive but may also be combined into a synergistic model
that could be greater than the sum of its parts. There are
numerous in vivo interactions betweenmicrobial organisms, with
both inter- and intra-specific mechanisms that can influence
microbial growth or activity. These include crossfeeding between
species, biofilm production, quorum sensing, and interspecific
competition or “arms race.”

Some of these interactions and mechanisms have been
characterized for oral diseases such as periodontitis and
could potentially be harnessed for understanding and limiting
halitosis. For example, crossfeeding microbial species rely
on other species for their growth and even survival [152].
Additionally, crossfeeding in the oral cavity is necessary for
some pathogens at certain points in their lifecycle. Identifying
such relationships among pathogenic or halitotic species might
help us better understand the pathogenicity of these dependent
species and allow us to target upstream metabolite suppliers
for intervention.

Conversely, there is also evidence of repression networks,
whereby commensals are found to repress the growth of
pathogens [152]. For example, there is in vitro evidence of
interspecies competition suppressing a pathogen, although its in
vivo applicability remains unknown [153]. Furthermore, there
are known effector proteins which can inhibit the development
of pathogenic bacteria [154]. If a relationship can be established
between the absence of commensals and halitosis, it would open
new avenues of treatment, including supplementation of missing
commensals in treatment products. Furthermore, quorum-
sensing molecules, which can influence pathogen activity, may
offer a point of intervention for suppressing pathogen growth
and invasiveness [155]. Such molecules have been suggested as
a method of preventing other biofilm-related diseases in the oral
cavity [156].

Using an untargeted metabolomics approach, Seerangaiyan
et al. have recently identified 39 metabolites that are putatively
associated with IOH in tongue scrapes from patients [117].
The authors also proposed a list of bacterial classes that might
be associated with these metabolites. In vitro experiments
on key bacterial species associated with halitosis may also
provide an initial understanding of the malodorous compounds
that these species produce and eventually the pathways that
may be involved in this process [38]. Less-known malodorous
compounds than hydrogen sulfide and methyl mercaptan—
such as short-chain fatty acids, polyamines, and indole—do
play a role in halitosis, although not much knowledge exists
on their association with bacteria [157]. Further identification
of the bacteria responsible for producing these compounds
may help guide new therapeutic strategies. Some authors have
reported the benefit of using Annotation of Metabolite Origins
via Networks (AMON] [158] as an obvious route for identifying
the origin of metabolites through genomic information and for
visualizing potential host–microbe interplays when integrating
microbiome and metabolome datasets. Mechanistic relationships
between microbial communities and host phenotypes can be
better understood through integrated analysis of microbiome and
metabolome data.
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A FRAMEWORK FOR STUDYING
HALITOSIS IN THE CONTEXT OF CS AND
ALTERNATIVE TOBACCO PRODUCT USE

From the body of scientific publications available on halitosis in
relation to CS, it is evident that most results were produced from
self-assessment evaluations. In general, when a study employed
organoleptic assessment and instrument analysis, the results
did not correspond with the self-assessment results. Moreover,
self-assessment does not provide information on the origin
of halitosis, its intensity, or the type of compounds/bacteria
that may be responsible for this condition. In the context of
comparing the effects of different tobacco/nicotine-containing
products on halitosis, it is necessary to have a structured
approach that allows us to obtain quantitative results from which
we can glean mechanistic insights. In particular, according to
the tobacco harm reduction strategy, comparison of alternative
nicotine-delivery products with cigarettes is of paramount
importance for demonstrating a potential risk reduction [92, 93].
Any approach for studying these products should, therefore,
answer the following questions: (1) What is the impact of
alternative nicotine-delivery products on halitosis relative to
cigarette smoke; (2) how does the oral bacterial composition
differ between cigarette smokers and alternative nicotine-delivery
product users in relation to halitosis; and (3) how does the
bacterial composition influence the production of halitosis-
related compounds? To answer these questions, we should
consider a multilayer framework assessment (Figure 3).

The first layer of the assessment should aim to quickly and
cost-effectively prescreen the effects of different product extracts
on selected bacterial species with known effects on halitosis in an
in vitro system. Such a platformwould employ planktonicmodels
or biofilm models, derived from either a single bacterial species,
a synthetic community of bacteria, or a natural community of
bacteria from tongue scrapings or gingival brushes from different
donors. Donors with different grades of halitosis could also be
employed, as these are more representative of the halitotic oral
microbiome. The types of analyses that can be performed have
been demonstrated by Chatzigiannidou et al. who used both
synthetic communities and ex vivo samples to shed light on the
changes in microbiome composition and viability in response
to chlorhexidine [159]. Such methods could be extended to
investigate other compounds, as well as investigating the effects
of cigarette smoke on bacteria or bacterial communities. Other
examples of the use of this platform can be found in the Saad
and co-workers publications: they cultivated the biofilm from
tongue scrapes of halitosis patients to test efficiently toothpaste
and mouthwash formulations in vitro [160, 161].

Detection and identification of volatile compounds should
be performed in the headspace of the flasks or plates by
using MS-based instruments (SIFT-MS, super SESI-HR-MS, HS-
SPME-GC–MS) that are preferably directly connected to the
system [149, 160, 162, 163]. A perfusion matrix flow system
can maintain a tongue-derived microenvironment which can
be conveniently measured or monitored, so that it can be used
for studying VOC/VSC production. Such a dynamic system

can be maintained for several days, possibly weeks, allowing
similarity to in vivo conditions [160]. This model can be used
to replicate many of the essential biotic and abiotic features of a
real oral biofilm, including ecological stability, and the collective
microbial activity that results in VSC production following
exposure to different tobacco/nicotine-delivery products, which
can be administered at this stage in the form of liquid extracts
or aerosols. Nicotine should be used as the reference compound
for comparing the products: Cigarette smokers have been shown
to adjust their puffing pattern to obtain a certain nicotine
concentration in the blood, and the same has been shown in
EVP users [164]. This suggests that smokers who switch to
an alternative nicotine-delivery product will maintain the same
nicotine intake that they had when smoking cigarettes.

The second layer of assessment should focus on exhaled
breath analysis. The breath of cigarette smokers and users who
have switched to alternative nicotine-delivery products would be
analyzed; smokers that quit should be also employed as control
group. Real-time breath measurements (Super SESI-HR-MS) can
be performed to discover new potential biomarkers of halitosis
and to obtain a quantitative measurement of halitosis-related
compounds (SIFT-MS or PTR-MS). In addition, off-line GC–MS
can be applied as a complementary technique for qualitative and
quantitative analysis. Although these measurements can provide
a large quantity of data on compounds related to halitosis, they
cannot yet predict the degree of odor that a gas mixture may
impart to the human nose. Therefore, it is fundamental that
evaluation by organoleptic judges is incorporated in the design
of a clinical study [113].

The third layer of the investigation should focus on gaining a
mechanistic understanding of the causes of halitosis in relation
to CS or alternative nicotine-delivery product use. As the
bacterial component plays a major role in IOH, as described
previously, bacterial samples could be sampled from the tongue
surface, supra and sub-gingival plaques, saliva, swabs of oral
and nasal cavities, etc.; a multiomics approach that encompasses
microbiomics, metabolomics, and proteomics may provide a
unique opportunity to define bacterial interactions and detect
species-specific metabolite profiles. Finally, this analysis will
provide a mechanistic understanding of the different effects of
cigarette smoke and alternative nicotine-delivery products on
halitosis and allow us to identify the key metabolic/molecular
pathways associated with the use of such products. A correlation
of these results with the in vitro results from the first layer would
be useful to optimize the in vitromethods of bacterial biofilm for
research applications.

CLINICAL APPLICABILITY OF THE
FRAMEWORK AND PERSPECTIVES

The hypotheses derived from the experimental work described
above could be further validated in a clinical setting where
subjects are confined to measure halitosis changes. We
propose a randomized, controlled, open-label, three-arm parallel
group study to evaluate the effect of switching to alternative
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FIGURE 3 | The 3-layer halitosis analysis framework for cigarette smoking and alternative nicotine-delivery product use. The first layer of the proposed framework

focuses on testing the effects of the aerosols or liquid fractions of alternative nicotine-delivery products in comparison to cigarette smoke/extract in vitro. Selected

bacterial species with known effects on halitosis or tongue scrapes from halitosis patients/donors can be employed in planktonic or biofilm models; the headspace of

the flasks or plates is analyzed to detect volatile organic compounds by using MS-based instruments. The second layer focuses on validating the results from the in

vitro/ex vivo experiments with clinical measurements of the breath of cigarette smokers and users who have switched to alternative nicotine-delivery products.

Real-time breath measurements can be performed with MS-based techniques in a laboratory setting to discover new potential biomarkers of halitosis and provide

quantitative measurement of a halitosis-related compound. Evaluation by organoleptic judges is incorporated in the design of the clinical study to define the degree of

odor in the subjects. The third layer of the investigation focuses on gaining a mechanistic understanding of the causes of halitosis in relation to CS or alternative

nicotine-delivery product use by applying a multiomics approach that encompassed microbiomics and metabolomics.

nicotine-delivery products in healthy smokers suffering from
halitosis. The three study armswould comprise a group of healthy
smokers who continue to smoke, a group of healthy smokers who
switch to alternative nicotine-delivery products, and a group of
healthy smokers who quit smoking. The quitting group would be
the control, to understand whether the changes in the halitosis
profile of the switchers are more similar to the effects of quitting
smoking rather than to continuing CS. It may be necessary to
conduct a pilot study to estimate the effect size and the required
duration for the main study.

The advantage of confinement is that it would allow control
over confounding factors that might enhance or mask the
detection of halitosis, such as level of hydration, food and
beverage consumption, quantity of cigarettes or other products
used (see section Assessment of Halitosis). Subjects suffering

from caries, periodontitis or gingivitis should be excluded from
the study because their condition would make the dominant
contribution to halitosis, potentially masking the effects of
smoking or switching. Additional information regarding oral and
overall health, including age and gender, diet, and the use of
antibiotics or other medications could be used to stratify and
match subjects among the groups. Organoleptic judges could be
employed to score oral malodor at baseline and at the completion
of the study.

Devices sensing the presence of VOCs or VSCs (such as the
Halimeter) could facilitate the diagnosis of halitosis in addition
to traditional organoleptic measurements. MS-based methods
could be employed to characterize the VOC and VSC profiles
in the breath of the subjects. During the study, microbiome
samples could be collected from locations within the oral cavity:
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tongue surface, supra- and subgingival plaques, saliva, and
swabs of oral and nasal cavities. Characterization of different
microbial population of different oral locations and volatile
compounds detected in exhaled breath (layer 3 of the framework
described above) would contribute to understanding of changes
in oral bacterial populations upon switching from smoking to an
alternative nicotine-delivery product.

The findings might provide a better understanding of the
causes of halitosis and allow identification of specific biomarkers
in oral bacterial/VOC composition that could be targeted in the
development of halitosis treatments, not only in smokers and
switchers to alternative nicotine-delivery products, but also in
all halitosis patients. These findings might ultimately enable the
development of personalized solutions based on an individual’s
microbial and VOC profile.

Although the proposed framework is described in the specific
context of the study of IOH produced by oral bacteria, layers
2 and 3 would also be applicable to EOH patients. Besides the
interpretation of metabolomics results in relation to the oral
microbial population, the metabolic profile of the exhaled breath
could also provide important insights into EOH in patients with
known diseases or conditions and lead to the identification of
novel biomarkers [110]. In this way, if a metabolic signature in
the breath could be related consistently to a certain disease or
condition, MS-based methods or sensors could be employed in
diagnosis. For example, once validated, portable devices such
as NeOse could be used by dentists in daily practice [110]
and may become a useful tool to support the organoleptic
scoring by judges and ensure inter-study reproducibility of
their assessments.

CONCLUSIONS

CS is a major risk factor for halitosis. For smokers who are not
able to quit, alternative nicotine-delivery products like EVPs and
HTPs may help reduce the health risks associated with CS. To
date, only a few systematic studies have analyzed the effects of
CS on halitosis, and none has assessed the effects of EVPs and

HTPs on this condition. Self-assessment studies have shown huge
limitations owing to the lack of reliability in the participants’
judgment. This compels the scientific community to develop a
strategy for meaningful assessment of these new products in
comparison with cigarettes. In this review, we proposed a 3-
layer approach that combines the use of the most advanced
breath analysis techniques and multiomics analysis to define
the interactions between oral bacterial species and their role in
halitosis in vitro and in vivo. Such an approach will allow us
to compare the effects of different nicotine-delivery products on
oral bacteria and quantify their impact on halitosis. Our proposed
framework has the potential to quantify and mechanistically
address the impact of alternative nicotine-delivery product use
in comparison with cigarette smoke on halitosis. The results
from such a comprehensive analysis could be used to design
treatments for mitigating the potential side effects of alternative
nicotine-delivery products on breath odor. Finally, the proposed
framework will be an important step for further defining the
safety and risks associated with the use of these products
for consumers.
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