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A B S T R A C T   

Background: Patients with multiple sclerosis (MS) frequently switch their Disease-Modifying 
Agents (DMA) for effectiveness and safety concerns. This study aimed to develop and compare 
the random forest (RF) machine learning (ML) model with the logistic regression (LR) model for 
predicting DMA switching among MS patients. 
Methods: This retrospective longitudinal study used the TriNetX data from a federated electronic 
medical records (EMR) network. Between September 2010 and May 2017, adults (aged ≥18) MS 
patients with ≥1 DMA prescription were identified, and the earliest DMA date was assigned as the 
index date. Patients prescribed any DMAs different from their index DMAs were considered as 
treatment switch. . The RF and LR models were built with 72 baseline characteristics and trained 
with 70% of the randomly split data after up-sampling. Area Under the Curves (AUC), accuracy, 
recall, G-measure, and F-1 score were used to evaluate the model performance. 
Results: In this study, 7258 MS patients with ≥1 DMA were identified. Within two years, 16% of 
MS patients switched to a different DMA. The RF model obtained significantly better discrimi
nation than the LR model (AUC = 0.65 vs. 0.63, p < 0.0001); however, the RF model had a similar 
predictive performance to the LR model with respect to F- and G-measures (RF: 72% and 73% vs. 
LR: 72% and 73%, respectively). The most influential features identified from the RF model were 
age, type of index medication, and year of index. 
Conclusions: Compared to the LR model, RF performed better in predicting DMA switch in MS 
patients based on AUC measures; however, judged by F- and G-measures, the RF model performed 
similarly to LR. Further research is needed to understand the role of ML techniques in predicting 
treatment outcomes for the decision-making process to achieve optimal treatment goals.   

1. Introduction 

Multiple sclerosis (MS) is a central nervous system inflammatory disease resulting in demyelination and axonal degradation.1 MS is 
mainly diagnosed in the reproductive age of women and affects about 0.9 million individuals in the United States (US).2–4 Diagnosis of 
MS is associated with functional impairments, lower health-related quality of life (HRQoL), and a significant economic burden.5–7 

Meanwhile, research has found that over 65% of all healthcare-related costs among MS patients were attributed to prescription drugs.6 

There is no specific autoimmune target for MS management; therefore, none of the medications for MS are curative.8 Accordingly, the 
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introduction of disease-modifying agents (DMA) has changed the management landscape by reducing relapse rates, improving pa
tients' HRQoL, and delaying the development of disability.9–11 

In recent years, treatment options are quickly evolving in MS patients with the introduction of several DMAs.12 Specifically, the US 
Food and Drug Administration (FDA) had authorized 21 DMAs to treat MS.10 With many treatment options for MS, deciding on the 
initial DMA therapy plan can be challenging.13 More importantly, each medication failure might result in cumulative neurologic 
damage, emphasizing the importance of an appropriate therapy plan for newly diagnosed individuals.14 If the initial DMA is ineffective 
for MS patients, other DMAs are often prescribed. The findings from the 2019 Milliman MS report suggested that 25.8% of patients 
switched to another DMA within 12 months after their initial DMA.15 Several considerations, including tolerability, safety, and 
effectiveness, influence the decision to change the current DMA for MS patients.11 Moreover, previous studies based on the traditional 
regression models identified that age, sex, year of index, relapse, and MS severity were associated with treatment switching among MS 
patients.16–18 

Machine learning (ML) algorithms are gaining traction as viable alternatives to traditional regression approaches for prediction and 
categorization. ML models are increasingly being used in healthcare to generate evidence for improving the quality of care.19–22 

Moreover, ML-derived individual treatment options were proven to generate better outcomes in various diseases.23–25 However, 
applications of ML models in MS were limited to predicting the onset, subtypes, and progression of MS with clinical data.26–29 To the 
best of our knowledge, ML algorithms have not been applied to examine the treatment-related considerations in MS. Identifying the 
subpopulation at high risk for treatment switching helps to guide clinical decisions, which is critical for improving health outcomes in 
MS patients. ML prediction model has the potential to obtain improved accuracy for treatment switching in MS. Hence, this study 
aimed to develop and validate the ML model to predict DMA switching and further compare the ML model with the traditional 
regression model for treatment switching among patients with MS. 

2. Methods 

2.1. Study design and data sources 

This retrospective cohort study used the TriNetx, a federated electronic medical record (EMR), from 2009 to 2019 to evaluate 
treatment switching in MS. TriNetX data consisted of electronic health records for over 84 million patients from 55 healthcare or
ganizations (HCO).30 In the TriNetX data, both inpatient and outpatient records from the HCOs were included. Overall, the de- 
identified information in patients' demographic characteristics, diagnoses, procedures, lab tests, vital signs, and prescriptions was 
combined to assess the utilization of healthcare services. This study was deemed exempt under Category 4 from the Institutional 
Review Board at the University of Houston. 

2.2. Study population 

Patients with at least one injectable (including glatiramer acetate and interferon beta) or oral DMA prescription (including fin
golimod, dimethyl fumarate, and teriflunomide) were identified during the study period (September 2010–May 2017). Considering the 
data availability, the DMAs approved before 2017 were considered in this study. Patients' DMA prescription records were identified 
using RxNorm (produced by the National Library of Medicine) or Healthcare Common Procedure Coding System (HCPCS) codes.31 The 
date of the earliest DMA prescription was identified as the index date. Next, patients were selected if they had at least one MS diagnosis 
within 12 months before or after the index date (identified by the International Classification of Diseases Ninth/Tenth Revision Clinical 
Modification [ICD-9/10-CM] codes: 340 or G35).32 Patients with any DMA different from their index drug within 24 months from the 
index date were considered as treatment switching, and the rest of the patients were flagged as non-switching. 

This study did not include patients <18 years old at the index date. Also, patients who were prescribed any DMAs during 12 months 
washout period were excluded to eliminate the prevalent bias. Moreover, to ensure that patients were continuously involved within the 
system during the study period, patients with no outpatient visit and no prescription visit within either 12 months pre-index date or 24 
months post-index date were excluded. Due to the higher rate of relapse reduction and lower disability progression, infusion DMAs 
were considered as the high-efficacy treatment. 33,34 Accordingly, patients with any infusion DMA prescriptions (Alemtuzumab, 
Mitoxantrone, Natalizumab, Ocrelizumab) within 12 months before the index date to the earlier date of the DMA switching or 24 
months after the index date were excluded. 

2.3. Conceptual framework and measurement of variables 

A total of 72 variables were selected for training the ML modelbased on a review of existing literature that identified factors 
assocated with treatment switching in MS.13,18,31,35 These factors were further conceptualized based on the Andersen Behavioral 
Model (ABM) of Health Services Use, which provides a strong conceptual foundation for predicting treatment switching.36 According 
to the ABM, healthcare utilization depends on predisposing, enabling, and need factors. Predisposing factors that explain patients' 
predisposition to use healthcare services include demographic and socioeconomic factors. Enabling factors affect an individual's ability 
to access healthcare services. Finally, need factors reflect perceived and actual health status. 

The following factors were included in this study for model training: (1) Predisposing factors: age, sex, race, and ethnicity; (2) 
Enabling factors: time-period (year of the index date); and (3) Need factors: Elixhauser Comorbidities, MS-related symptoms (speech 
symptoms, brainstem symptoms, general symptoms, cerebellar symptoms, difficulty in walking, pyramidal symptoms, sensory 
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symptoms, bladder/bowel symptoms or sexual dysfunction, visual symptoms, and cerebral/cognitive symptoms), MS symptomatic 
medication use (fatigue medications, spasticity drugs, antidepressants, analgesics, bladder dysfunction medications, anticonvulsant 
medications, and cognition medications), relapse drugs use, and healthcare utilization (emergency room visits, inpatient visits, 
outpatient visits, and use of magnetic resonance imaging [MRI] procedures).37 To ensure the differences between the approval date of 
DMAs would not impact the results, the year of the index data was included in the analysis. All of the above factors were measured 12 
months before the index date to capture patients' clinically relevant characteristics. 

2.4. Machine learning methods 

This study used a 70% random sample for the training purpose, in which the model was trained to predict treatment switching. The 
remaining 30% of the data was used for testing purposes to evaluate the model performance. The non-switching class vastly out
numbered the switching class in the training dataset, with the ratio of switching to non-switching being about 1 to 6, resulting in a class 
imbalance problem. The imbalanced data might lead to biased prediction toward the non-switching class for machine learning 
classifiers.38,39 Thus, the up-sampling method that duplicated random records from the minority class (switching cohort) to generate 
balanced cohorts was applied to create more balanced data, facilitating the classifiers to deal with the switching and non-switching 
classes.40 Another advantage of the up-sampling method is that it can outperform the down-sampling method, which reduces the 
sample size and increases the risk of overfitting.41 The up-sampling method was implemented using the R package “caret”.35 All of the 
analyses were conducted in R version 3.6.0 (R core team, Vienna, Austria). 

2.4.1. Random forest (RF) model 
The RF model is one of the most popular predictive approaches due to its higher prediction accuracy than other classification and 

regression models.42 The tree-based ML method applied the decision tree framework to segregate values of predictors in a series of 
binary splits. The RF model is a supervised tree-based ensemble learning method that creates many decision trees inferred from 
bootstrap samples using bagging approaches.43 Further, using the random feature selection, the ensemble's predictions are aggregated 
(majority vote) to make the final prediction.43 Thus, the RF model is more resistant to the over-fitting issue than the classification and 
regression tree model.44,45 Compared to traditional regression models, the critical advantage of the RF algorithm that it is a very 
flexible algorithm that can evaluate more predictor variables that are not limited by model assumptions, such as multicollinearity.46 

This study implemented the RF model with the R package “randomForest”.47 

There were three critical hyperparameters in the RF model that this study focused on: (1) the number of trees (ntree), which 
indicated the number of trees that the algorithm creates before taking the most votes or averaging the predictions; (2) the number of 
variables randomly sampled at each split (mtry), which could influence the model's error rates, stability, and accuracy of single trees; 
(3) the maximal number of leaf nodes for each tree (maxdepth), which impacts the balance and complexity of trees.48 The optimal 
values for the above parameters were tuned in the 10-fold cross-validation and then used to decide the final model. Since a large 
number of trees are built, the RF model will not require a substantial tuning process; in this study, a model consisting of 200 distinct 
trees (ntree) was generated, sufficiently large enough for out-of-bag error (OOB) to settle down.49 The default of 

̅̅̅
n

√
(n means the total 

number of predictors at each node) is used for the selected features at each node (mtry = 16).43 Moreover, the maximal number of leaf 
nodes for each tree was tuned in a grid ranging between 10 and 200, and the optimal number of terminal node trees was obtained at 50. 
The most influential predictors were identified based on the mean decreased accuracy and mean decreased Gini of the RF model.50 

2.4.2. Logistic regression (LR) model 
The LR model is a traditional regression method for classification, primarily for dichotomous outcomes. The assumptions of the LR 

model (e.g., linearity assumption, multicollinearity, and homoscedasticity) are challenging to be satisfied because the underlying data- 
generating model is unknown. In the LR model, the 10-fold cross-validation was applied to get the best value based on the misclas
sification error to optimize the values for the punishment parameter (λ) while keeping the minimized model deviance. The important 
predictors for switching were identified based on the statistical significance. In this study, the LR model was implemented with the 
“glmnet” package.51 

2.5. Statistical analysis 

Using the testing data, this study assessed the LR and the RF model with the area under the receiver operating characteristic curve 
(AUROC).52 The Receiver Operating Characteristics (ROC) curve plot shows the sensitivity (true positive rate) as a function of the 
specificity (false negative) rate for a variety of thresholds. The area under the curve (AUC) for the LR and the RF machine learning 
classifiers were compared using the 2-sided DeLong test.53 In addition, considering the imbalanced data, the F-measure and G-measure 
were introduced for evaluating these models from the testing data.54 The F-measure has been widely employed in most ML appli
cations, especially for a binary outcome.55 The F-measure was calculated by the harmonic mean of precision and recall that could 
integrate precision and recall into a single measurement that accounts for both perspectives.56 G-measure (

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Precision × Recall

√
) aimed 

to evaluate the model performance in predicting the majority and minority groups.57,58 Also, the G-measure is a measurement that 
aims to evaluate the model performance by preventing the overfitting of the negative class and underfitting of the positive class in the 
model.59 Accordingly, both measures could provide additional justification for unbalanced data. The F- and G- measures for the RF 
classifier and the LR model were compared based on absolute difference.57,58 Other performance measurements (accuracy, specificity, 
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Fig. 1. Study design diagram.  
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Table 1 
Patients baseline characteristics.   

Patients with treatment switching Patients without treatment switching p-value  

1161 (16.00%) 6097 (84.00%)   

N % N %  

Predisposing Factors 
Age Category 

Mean, SD 42.83 11.90 47.09 12.12 <0.0001 
Younger adults (18–44 years) 646 55.64% 2602 42.68% <0.0001 
Middle-aged adults (45–64 years) 471 40.57% 3001 49.22% <0.0001 
Old adults (≥65 years) 44 3.79% 494 8.10% <0.0001 

Sex 
Female 883 76.06% 4634 76.00% 0.9705 
Male 278 23.94% 1463 24.00% 0.9705 

Race 
African American 123 10.59% 573 9.40% 0.2045 
Whites 955 82.26% 5061 83.01% 0.5333 
Others 83 7.15% 463 7.59% 0.5984 

Ethnicity 
Hispanic or Latino 50 4.31% 219 3.59% 0.2374 
Not Hispanic or Latino 1031 88.80% 5455 89.47% 0.499 
Unknown 80 6.89% 423 6.94% 0.9537 

Enabling Factor 
Time-period (of index date) 

2010–11 148 12.75% 1108 18.17% <0.0001 
2012–13 391 33.68% 1576 25.85% <0.0001 
2014–15 461 39.71% 2364 38.77% 0.5497 
2016–17 161 13.87% 1049 17.21% 0.0052 

Index Drug 
Injectable DMA 817 70.37% 3807 62.44% <0.0001 

Interferon beta 1a 253 21.79% 1154 18.93% 0.0237 
Interferon beta 1b 55 4.74% 235 3.85% 0.1592 
Peginterferon beta 18 1.55% 41 0.67% 0.0023 
Glatiramer acetate 491 42.29% 2377 38.99% 0.0348 

Oral DMA 344 29.63% 2290 37.56% <0.0001 
Fingolimod 100 8.61% 796 13.06% <0.0001 
Dimethyl fumarate 202 17.40% 1170 19.19% 0.1531 
Teriflunomide 42 3.62% 324 5.31% 0.0155 

Need Factors 
Elixhauser Comorbidities 
Congestive heart failure 7 0.60% 43 0.71% 0.6992 
Cardiac arrhythmia 29 2.50% 218 3.58% 0.0634 
Valvular disease 12 1.03% 74 1.21% 0.6032 
Pulmonary circulation disorders 3 0.26% 36 0.59% 0.1561 
Peripheral vascular disorders 10 0.86% 69 1.13% 0.4158 
Hypertension uncomplicated 121 10.42% 781 12.81% 0.0238 
Hypertension complicated 8 0.69% 40 0.66% 0.8988 
Paralysis 37 3.19% 228 3.74% 0.3575 
Other neurological disorders 158 13.61% 705 11.56% 0.0484 
Chronic pulmonary disease 59 5.08% 306 5.02% 0.9283 
Diabetes uncomplicated 50 4.31% 265 4.35% 0.9514 
Diabetes complicated 20 1.72% 84 1.38% 0.3647 
Hypothyroidism 68 5.86% 364 5.97% 0.8813 
Renal failure 7 0.60% 50 0.82% 0.4423 
Peptic ulcer disease, excluding bleeding 7 0.60% 62 1.02% 0.1828 
AIDS/HIV 4 0.34% 12 0.20% 0.3253 
Lymphoma 0 0.00% 3 0.05% 0.4497 
Metastatic cancer 2 0.17% 10 0.16% 0.9494 
Liver disease 0 0.00% 20 0.33% 0.0507 
Solid tumor without metastasis 14 1.21% 98 1.61% 0.309 
Rheumatoid arthritis/collagen related disorders 26 2.24% 127 2.08% 0.7338 
Coagulopathy 4 0.34% 62 1.02% 0.027 
Obesity 49 4.22% 275 4.51% 0.6611 
Weight loss 5 0.43% 71 1.16% 0.0244 
Fluid and electrolyte disorders 41 3.53% 234 3.84% 0.6161 
Blood loss anemia 0 0.00% 14 0.23% 0.1022 
Deficiency anemia 14 1.21% 98 1.61% 0.309 
Alcohol abuse 8 0.69% 53 0.87% 0.5376 
Drug abuse 7 0.60% 86 1.41% 0.0249 
Psychoses 9 0.78% 76 1.25% 0.1713 

(continued on next page) 
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Table 1 (continued )  

Patients with treatment switching Patients without treatment switching p-value  

1161 (16.00%) 6097 (84.00%)   

N % N %  

Depression 233 20.07% 1056 17.32% 0.0247 
Elixhauser Comorbidities Score 
Mean, SD 0.22 4.01 0.47 4.67 0.0577 
≤0 926 79.76% 4902 80.40% 0.6146 
1–4 47 4.05% 277 4.54% 0.4541 

≥5 188 16.19% 918 15.06% 0.3234 
Other Comorbidities 

Cancer 30 2.58% 202 3.31% 0.1955 
Metabolic Disorder 

Thyroid disorders 92 7.92% 439 7.20% 0.3853 
Nutritional deficiencies 140 12.06% 840 13.78% 0.1163 
Lipid disorders 92 7.92% 568 9.32% 0.1306 
Mental Illness 
Anxiety 116 9.99% 582 9.55% 0.6368 
Mood disorders 238 20.50% 1084 17.78% 0.0277 

Other Neurological disorders 
Paralysis 35 3.01% 227 3.72% 0.2356 
Epilepsy, convulsions 37 3.19% 195 3.20% 0.9839 
Headache; including migraine 197 16.97% 805 13.20% 0.0007 
Eye disorders 133 11.46% 528 8.66% 0.0024 
Ear and sense organ disorders 36 3.10% 183 3.00% 0.8561 

Circulatory/vascular disorders 
Heart diseases 27 2.33% 220 3.61% 0.0271 
Cerebrovascular disease 18 1.55% 117 1.92% 0.3942 

Respiratory disorders 
Chronic obstructive pulmonary disease and bronchiectasis 3 0.26% 53 0.87% 0.0292 

Genitourinary disorders 
Diseases of the urinary system 166 14.30% 896 14.70% 0.7253 
Diseases of skin and subcutaneous tissue 24 2.07% 125 2.05% 0.9701 

Musculoskeletal disorders 
Non-traumatic joint disorders 121 10.42% 588 9.64% 0.4132 
Spondylosis; intervertebral disc disorders; other back problems 194 16.71% 1076 17.65% 0.4406 
Other connective tissue diseases (including fibromyalgia) 320 27.56% 1575 25.83% 0.2187 
Ill-defined conditions 

Nausea, vomiting/abdominal 49 4.22% 234 3.84% 0.5371 
MS-Related Symptoms 

Bladder/bowel symptoms or sexual dysfunction 182 15.68% 989 16.22% 0.6436 
Brainstem symptoms 140 12.06% 603 9.89% 0.0255 
Cerebellar symptoms 6 0.52% 59 0.97% 0.135 
Cerebral/Cognitive symptoms 133 11.46% 600 9.84% 0.0942 
Difficulty walking 130 11.20% 474 7.77% 0.0001 
General symptoms 232 19.98% 1252 20.53% 0.6691 
Pyramidal symptoms 95 8.18% 522 8.56% 0.6713 
Sensory symptoms 235 20.24% 1002 16.43% 0.0016 
Speech symptoms 16 1.38% 112 1.84% 0.2763 
Visual symptoms 146 12.58% 612 10.04% 0.0096 
None of the above 506 43.58% 2883 47.29% 0.0205 

MS Severity Score 
Mean, SD 0.93 1.55 0.85 1.51 0.09 

MS Symptomatic Medication Use 
Analgesics 382 32.90% 1811 29.70% 0.0296 
Antidepressants 342 29.46% 1580 25.91% 0.0122 
Bladder dysfunction medications 92 7.92% 554 9.09% 0.2024 
Cognition medications 10 0.86% 41 0.67% 0.4801 
Fatigue medications 160 13.78% 771 12.65% 0.2889 
Other anticonvulsant medications 135 11.63% 570 9.35% 0.0162 
Spasticity drugs 388 33.42% 1922 31.52% 0.2037 
None of the above 414 35.66% 2472 40.54% 0.0018 

Relapse Drugs 
Any corticosteroids 277 23.86% 1103 18.09% <0.0001 

All-Cause Healthcare Utilization 
Any emergency room visits 159 13.70% 762 12.50% 0.2614 
# of emergency room visits 0.30 1.10 0.24 0.86 0.0786 
Any inpatient visits 101 8.70% 429 7.04% 0.0459 
# of inpatient visits 0.16 0.82 0.12 0.63 0.1053 
Length of stays 0.61 3.06 0.52 3.51 0.4005 

(continued on next page) 
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precision, and recall) in evaluating the RF and the LR model were also reported based on a confusion matrix using the caret package.60 

Furthermore, this study compared switching and non-switching cohorts for their baseline characteristics. Additionally, to ensure 
the power of validation, each baseline characteristic was compared between the training and testing data. All analyses were conducted 
using server SAS statistical software version 9.4 (SAS Institute Inc., Cary, NC, USA) at a 0.05 level of significance. 

Table 1 (continued )  

Patients with treatment switching Patients without treatment switching p-value  

1161 (16.00%) 6097 (84.00%)   

N % N %  

Any outpatient visits 1161 100.00% 6097 100.00%  
# of outpatient visits 10.07 12.01 8.98 12.67 0.0051 

MS-related Healthcare Utilization 
Any emergency room visits 95 8.18% 470 7.71% 0.5807 
# of emergency room visits 0.14 0.68 0.12 0.51 0.2711 
Any inpatient visits 79 6.80% 358 5.87% 0.2207 
# of inpatient visits 0.11 0.65 0.08 0.42 0.2103 
Length of stays 0.47 2.69 0.41 2.97 0.4662 
Any outpatient visits 1040 89.58% 5363 87.96% 0.1173 
# of outpatient visits 4.45 5.20 4.01 5.08 0.0077 
Any MRI procedures 358 30.84% 1566 25.68% 0.0003 
# of MRI procedures 0.44 0.76 0.34 0.68 <0.0001 

Vital Sign 
BMI 

Underweight, <18 379 32.64% 1993 32.69% 0.9767 
Healthy, 18–25 11 0.95% 62 1.02% 0.828 
Overweight, 26–29 267 23.00% 1490 24.44% 0.2935 
Obese, ≥30 217 18.69% 1076 17.65% 0.3947 
Not recorded 287 24.72% 1476 24.21% 0.7096 

Blood Pressure Diastolic 
Normal 539 46.43% 3159 51.81% 0.0008 
Abnormal 361 31.09% 1692 27.75% 0.0205 
Not recorded 261 22.48% 1246 20.44% 0.1155 

Blood Pressure Systolic 
Normal 539 46.43% 3159 51.81% 0.0008 
Abnormal 227 19.55% 1043 17.11% 0.0444 
Not recorded 395 34.02% 1895 31.08% 0.0481 

Lab Test 
Hemoglobin [Mass/volume] 

Normal 576 49.61% 2833 46.47% 0.0489 
Abnormal 107 9.22% 599 9.82% 0.5215 
Not recorded 478 41.17% 2665 43.71% 0.1096 

Leukocytes [#/volume] 
Normal 546 47.03% 2583 42.37% 0.0033 
Abnormal 114 9.82% 495 8.12% 0.0555 
Not recorded 501 43.15% 3019 49.52% <0.0001 

Hematocrit [Volume Fraction] 
Normal 546 47.03% 2490 40.84% <0.0001 
Abnormal 113 9.73% 549 9.00% 0.4294 
Not recorded 502 43.24% 3058 50.16% <0.0001 

Platelets [#/volume] 
Normal 633 54.52% 2882 47.27% <0.0001 
Abnormal 29 2.50% 143 2.35% 0.7543 
Not recorded 499 42.98% 3072 50.39% <0.0001 

Creatinine [Mass/volume] 
Normal 511 44.01% 2606 42.74% 0.4225 
Abnormal 61 5.25% 372 6.10% 0.2639 
Not recorded 589 50.73% 3119 51.16% 0.791 

Monocytes [#/volume] 
Normal 592 50.99% 2874 47.14% 0.016 
Abnormal 15 1.29% 42 0.69% 0.0329 
Not recorded 554 47.72% 3181 52.17% 0.0054 

SD: Standard deviation. 
DMA: Disease Modifying Agent. 
AIDS/ HIV: Acquired Immunodeficiency Syndrome/ Human Immunodeficiency Virus. 
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3. Results 

3.1. Cohort characteristics 

This study identified 7258 MS patients who were prescribed ≥1 DMA between September 2010 and May 2017 after applying the 
inclusion/exclusion criteria. (See Fig. 1) Overall, 1161 (16%) of MS patients switched to a different DMA within two years. From this 
study sample, 5079 (69.98%) MS patients were selected for the training data, and 2179 (30.02%) MS patients were set into the testing 
data. Additionally, after applying the up-sampling method, 8566 MS patients (4283 patients in each cohort) were considered in 
building up the RF and ML model. 

3.2. Study population characteristics 

Patients who switched to different DMAs were younger than those who did not (mean age: 42.83 vs. 47.09, p < 0.0001, Table 1). A 
higher percentage of patients from the non-switching cohort had oral DMA as their index medication (29.63% vs. 37.56%, p < 0.0001). 
The most prevalent comorbidities among patients who switched were connective tissue diseases (27.56%), mood disorders (20.50%), 
and depression (20.07%). Patients who switched had a higher proportion of brainstem symptoms (12.06% vs. 9.89%, p = 0.0255), 
walking difficulties (11.20% vs. 7.77%, p = 0.0001), sensory symptoms (20.24% vs. 16.43%, p = 0.0016), and visual symptoms 
(12.58% vs. 10.04%, p = 0.0096), as well as being more likely to be prescribed at least one MS symptomatic medication (64.34% vs. 
59.46%, p = 0.0018), and corticosteroids (23.86% vs. 18.09%, p < 0.0001). Patients from the switching cohort had more outpatient 
visits (10.07 vs. 8.98, p = 0.0051), and more of them had at least one MRI procedure during the baseline period (30.84% vs. 25.68%, p 
= 0.0003). No significant differences were observed in patients' characteristics between the testing and training datasets (Supple
mental Table 1). 

3.3. Important predictors of switching 

From the RF model, the top five most influential predictors identified in this study were: age, type of index medication, year of 
index, number of outpatient visits, and Body mass index (BMI) (See Fig. 2). Meanwhile, age, year of index, Elixhauser Comorbidities 
Score, type of index medication, BMI, comorbidities conditions (cerebral/cognitive symptoms, eye disorders, nutritional deficiencies, 
hypertension, other neurological disorders, diabetes, thyroid disorders, heart diseases, and spondylosis), lab test (hemoglobin level, 
platelet count, and monocyte count), and healthcare utilization (inpatient visits, MS-related inpatient, and MS-related outpatient) 
were statistically significant factors associated with the treatment switching in the LR model. 

3.4. Comparison of random forest model and logistic regression 

The RF model improved the AUC (0.65 vs. 0.63, p < 0.0001) using the testing data compared to the LR model. However, the RF 
model had a similar G-Measure score as the LR model (0.73 vs. 0.73); the RF model had an almost equal F-Measure score as the LR 
model (0.72 vs. 0.72). Other performance measurements for both models varied: for RF: the accuracy was 0.61, specificity was 0.63, 
precision was 0.89, and recall was 60%; for LR, the accuracy was 0.63, specificity was 0.57, precision was 0.87, the recall was 61%. The 
AUCs observed in training data were comparable to the AUCs observed in testing data in both models. Details of all performance 
measures can be found in Table 2. 

4. Discussion 

ML methods have been broadly applied to predict healthcare utilization (e.g., readmissions and inpatient mortality). 23–25,53 In MS, 
ML models have been applied to predict the onset of MS, MS subtypes, and the progression of MS.26–29 However, studies utilizing the 
ML approach to evaluate treatment considerations are very limited. To the best of our knowledge, this study is the first attempt to 

Fig. 2. Top 10 Most Influential Predictors from the Random Forest Model.  
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leverage ML methods, namely RF, to predict treatment switching in MS patients. This study developed and compared the RF model 
with the LR model to predict treatment switching among MS patients using national electronic medical record data. Accurately 
identifying MS patients at risk of switching to inform targeted intervention may improve MS patients' health outcomes. Literature has 
supported that ML-derived individual treatment selections were proven to generate better disease outcomes.23–25 A previous study 
found that patients who took the RF model suggested epilepsy treatment had considerably higher success rates and lower healthcare 
utilization than those who took different treatments.23 Thus, personalized and evidence-based medicine might be achieved using ML 
approaches for treatment selection and optimizing patient outcomes. 

This study adds to existing research regarding the utility and value of ML for treatment considerations. The AUC observed in this 
study for the RF model was 0.65, an improvement over the AUC of 0.63 observed in the LR model. A previous study found involving the 
RF model found an AUC of 0.70 for epilepsy treatment, but the treatment change was different from our study, which included any 
regimen changes or a complete withdrawal.23 However, the AUC indicated an acceptable model performance distinguishing between 
switchers and non-switching patients. Additionally, in the case of predicting treatment switching among MS patients, it is preferable to 
have a greater sensitivity than specificity since identifying patients at risk for treatment switching could assist providers in their 
treatment decision-making process. As a result, in the interest of healthcare providers who aimed to determine the true positives 
correctly, a higher sensitivity is preferred , especially when evaluating the model performance. 

There is an ongoing debate about the comparative performance of traditional regression approaches compared to ML models.61 

Thus, this study applied several performance metrics to evaluate the relative performance of the RF model vs. the LR model in pre
dicting treatment switching for MS patients. When data is imbalanced, the ROC curve, which plots sensitivity against specificity, was 
marked as a more robust measurement than accuracy.62,63 However, misinterpreting specificity might also deceive the AUC when 
evaluating ML models in imbalanced data.64 Considering the limitations of AUC, F- and G-measures were identified as more valuable 
tools because of the ability to detect the true positives correctly.63 In this study, the RF reported fair scores for F- and G- measures. 
Although findings showed that the RF offered a notable improvement over LR based on AUC, RF performed similarly to LR judged by F- 
and G-measures. 

Predictive factors are valuable in identifying targets to optimize treatment selection and associated health outcomes in patients 
with MS. Results from the LR model can help identify the factors and the strength of association with treatment switching among MS 
patients. Additionally, one of the advantages of applying the RF algorithm is that the model could generate this desired ranking by its 
relative importance.65 Among all the factors, the RF model identified the most critical factor in this study was age. This finding is 
consistent with previous studies that recognize the importance of age on the treatment patterns in MS patients.13,16–18 A systematic 
review found that age could impact MS progression, immunosenescence, and DMA selection and engagement.66 Also, the progression 
of the disease is observed to be slower among older MS patients than among young and middle-aged MS patients, which might decrease 
the need for treatment switching among older patients. Furthermore, adverse drug events, such as severe infections, are more 
commonly observed among the older population.67 Additionally, the risk-benefit consideration of selecting DMA could be influenced 
by age-related comorbidities, leading to potential treatment switching among older MS patients.66 

Moreover, the type of index medication and the year of the index date were observed as the other two top important factors in 
predicting treatment switching, which could be explained by the introduction of the first oral DMA in 2010.18 This might also be due to 
the prescriber's experience and the availability of oral DMAs on the market. Many MS patients switched from injectable to oral DMAs 
after the launch of oral DMAs.49,68 Also, evidence from clinical trials and real-world data showed that oral DMAs were associated with 
reduced relapse rates, delayed MS progression, and higher treatment adherence rates than injectable DMAs.69–72 In addition to de
mographic and clinical factors, the RF model revealed the association between BMI and treatment switching among MS patients. 
Several studies have evaluated the influence of nutrition and diet on the pathophysiology of MS.73–76 For instance, obese MS patients 
were reported with higher disease activity than normal or underweight patients.76,77 Thus, consideration of BMI could add value to 
making treatment decisions for MS patients based on the literature and findings from this study. Consistent with the results from the RF 
model, the LR model also found that the abovementioned top important factors were statistically significantly associated with 
treatment switching among MS patients. 

4.1. Strength and limitations 

To our knowledge, this is the first study that applied ML methods to examine DMA treatment switching among MS patients. Using a 
predictive analytics framework to evaluate treatment switching can help manage MS care better and more efficiently. Factors 
considered in this study involved both demographic and clinical characteristics that are generally richer in the EMR than in claims 

Table 2 
Model Performance: Random Forest vs. Logistic Regression.   

Test 
AUC 

95% CI Accuracy Specificity Precision Recall 
(Sensitivity) 

F-1 G- 
measure 

p-value Train 
AUC 

Logistic 
Regression 0.6318 0.6007–0.6229 63% 57% 87% 61% 72% 73% Reference 0.6748 

Random Forest 0.6513 0.6204–0.6823 61% 63% 89% 60% 72% 73% <0.0001 0.7900 

AUC: Area under the ROC (Receiver Operating Characteristics) curve. 
CI: Confidence interval. 

J. Li et al.                                                                                                                                                                                                                



Exploratory Research in Clinical and Social Pharmacy 11 (2023) 100307

10

data. This study also considered healthcare utilization and lab test when predicting treatment switching. In addition, the study's 
findings can provide real-world insights into patients' treatment patterns and the factors that could influence treatment switching in 
MS. 

This study, however, also had some limitations that need to be considered. First, medical records from the TriNetX data were 
mainly gathered from academic hospitals, which may restrict the generalizability of our findings. Secondly, though the rate of 
treatment switching was low compared to prior research using claims data, the study finding was consistent with previous analyses 
using electronic medical records.18 Thirdly, this study developed and compared models in predicting any DMA switching among 
patients with MS; future studies should compare the treatment switching with different types of DMAs to improve MS care. Fourth, this 
study evaluated the model performance with an internal validation dataset; more work is needed applying those models with an 
external dataset to implement the model when predicting treatment switching. Furthermore, several sociodemographic, clinical, and 
behavioral characteristics, such as insurance status, prescribers, and patients' preferences, were not available in the TriNetX data, 
which might result in residual confounding and limit the further investigation of our findings. The TriNetX data lacked information on 
MS activity and duration of MS. Nevertheless; our analysis included the MS severity score, which had previously been validated as a 
proxy for the disease severity and the disability status.78,79 

5. Conclusion 

The RF model developed in this study provided a better prediction for treatment switching in MS compared to the LR model based 
on the AUC. The important contributing factors the RF model identified for treatment switching were age, type of index DMA, and 
time-period of the initial DMA. These factors may help identify targets to optimize treatment selection and associated health outcomes 
in patients with MS. More research is needed to understand the role and impact of ML algorithms in therapy selection for improving MS 
care. 
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