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Ghrelin and one of its functional receptors, GHS-R1a (Growth Hormone Secretagogue Receptor 1a), were firstly studied about 15
years. Ghrelin is a multifunctional peptide hormone that affects several biological functions including food intake, glucose release,
cell proliferation . . . Ghrelin and GHS-R1a are expressed in key cells of both male and female reproductive organs in several species
including fishes, birds, and mammals suggesting a well-conserved signal through the evolution and a role in the control of fertility.
Ghrelin could be a component of the complex series of nutrient sensors such as adipokines, and nuclear receptors, which regulate
reproduction in function of the energy stores. The objective of this paper was to report the available information about the ghrelin
system and its role at the level of the hypothalamic-pituitary-gonadal axis in both sexes.

1. Introduction

Ghrelin was initially discovered as a ligand for the growth
hormone secretagogue receptor (GHS-R1a) [1], and the
story of its discovery has been well described in some reviews
[2–4]. The peptide named “ghrelin” is a term derived from
the Proto-Indo-European word “ghre” meaning “grow” and
the name can also indicate the abbreviation for GH, followed
by “relin” a suffix meaning releasing substance. Ghrelin
is a peptide hormone secreted mainly by the stomach,
although its expression has been detected in many other
organs exerting both endocrine and paracrine effects [5–7].
Ghrelin has initially been reported to induce GH secretion
[1]. In addition to mediating GH release through the growth
hormone secretagogue receptor (GHS-R), ghrelin is involved
in a series of biological functions including regulation of
food intake [8], sleep [9], body weight [10], gastrointestinal
motility [11], cardiovascular functions [12], cell proliferation
[13], production of proinflammatory cytokines [14], and
reproduction in many species. The objective of this paper
is to review the available information on the role of
ghrelin in reproductive processes including female and male
reproduction.

2. Structure and Distribution of Ghrelin

2.1. Structure of Ghrelin. Ghrelin is a 28-amino acid peptide
derived from preproghrelin [1]. It has two major endogenous
forms: a des-acylated form (des-acyl ghrelin) and a form
acylated at serine 3 (ghrelin). This posttranslational acylation
is essential for the hormone biological activity [1, 4, 15]. The
ghrelin structure, particularly that of the acyl-modification
regions, is highly conserved throughout vertebrate species
[1].

2.2. Distribution of Ghrelin. Ghrelin is found in mammalian
species as well as nonmammalian species. The majority of
ghrelin is synthesized by an endocrine cell population, the
X/A-like cells, in the stomach mucosa [16]. Ghrelin is then
released to the general circulation. The des-octanoylated
ghrelin and n-octanoylated ghrelin are both found in rat
stomach [17]. The small intestine also synthesizes ghrelin
to a lesser extent with the amount of ghrelin produced
diminishing with increasing distance from the pylorus [16,
18]. The expression of ghrelin has also been reported
in pancreas, lymphocytes, placenta, kidney, lung, heart,
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pituitary, brain, ovary, and testis [5–7]. Thus, ghrelin is a
ubiquitous protein.

2.3. Regulation of Ghrelin Expression and Secretion. Circulat-
ing ghrelin levels increase with fasting and return to basal
levels after refeeding in rodents and humans [19–25]. The
plasma ghrelin concentration in cows decreases significantly
one hour after feeding, and then recovers to prefeeding
levels [26]. Starvation also increases plasma ghrelin level in
prepubertal gilts [27]. Nutrient contents and also hormones
are important factors for the regulation of ghrelin expression
and release. For example, in the female rat stomach, estrogen
decreases ghrelin mRNA expression [28]. In contrast, the
ghrelin mRNA level in the rat stomach increases after
the administration of insulin and leptin [17]. In cultured
whole porcine follicles, GH stimulates both ghrelin synthesis
and secretion, whereas IGF-I shows less influence [29]. In
rodents, growth hormone-releasing hormone upregulates
ghrelin mRNA in the pituitary [30].

3. Ghrelin Receptor

3.1. Structure. The ghrelin receptor is a G-protein-coupled
receptor (GPCR) firstly identified in pigs and humans
in 1996 [31]. It belongs to the rhodopsin-like seven-
transmembrane domain (7TM) receptor family that includes
the orphan GPR39 as well as receptors for the peptides
motilin, neurotensin, and neuromedin [32]. It has a high
degree of homology ranging from 93% to 99% identified by
using molecular analysis of human, pig, dog, rat, and mouse
species [31–35]. Cloned before the discovery of the peptide,
the ghrelin receptor was initially described as the receptor
for a number of synthetic GH secretagogues and is therefore
also called the growth hormone secretagogue receptor (GHS-
R1a) [31, 36]. However, some evidence indicates that several
ghrelin effects are mediated not by GHS-R1a but by other
types of receptors not yet identified [37]. An inactive
alternative splice variant of the GHS-R subtype, termed
GHS-R1b, has also been found [31]. Unlike GHS-R1a, GHS-
R1b is not activated by the synthetic GHSs or ghrelin and it
is unclear whether it is a functional receptor [38].

3.2. Distribution. The GHS-R1a receptor mRNA is mainly
expressed in the pituitary [31] and in several structures of the
brain of mammalian and nonmammalian species [39–42].
However, it is also present in the thyroid, pancreas, spleen,
myocardium, adrenal gland, ovary, and testis [43]. These
data suggest direct actions of ghrelin in these tissues.

3.3. Signaling Pathways. Ghrelin endocrine activities depend
entirely upon the acylation and are mediated by GHSR-
1a. The des-acyl ghrelin does not bind to GHSR-1a. Upon
ghrelin binding to its receptor, different negative feedbacks
of GHSR-1a have been described. After acute treatment
of porcine pituitary cell cultures with ghrelin, Luque et
al. found that ghrelin downregulated GHS-R expression
[44]. Ghrelin binding to GHS-R1a also results in a rapid

attenuation of the receptor responsiveness. This desensiti-
zation is the result of the uncoupling of the receptor from
heterotrimeric G proteins and of the internalization of the
cell surface receptors to intracellular compartments [45, 46].
Ghrelin is able to activate various signaling pathways. In
GHS-R1a-expressing mammalian cells [1, 31] or in rat and
human pituitary cells [47, 48], biphasic Ca2+ increases, due
to a transient Ca2+ release from the intracellular store and
a Ca2+ influx through voltage-dependent L-type calcium
channel, which are observed as the signal transduction.
Ghrelin has also been shown to increase AMPK (Adenosine
Monophosphate-activated kinase) activity in the hypothala-
mus [49] and reduce it in the liver [50, 51]. It has also been
reported that ghrelin could activate the MAPK 44- and 42-
kDa extracellular signal-regulated protein kinases (ERK1/2)
and the Akt [43–50] in different cell lines [52–55]. Ghrelin is
also able to regulate the expression of several transcription
factors including the nuclear factor κB, (NFκB), PPARγ,
SREBP-1, and cEBP [56, 57].

4. Physiological Functions of Ghrelin in
Reproductive Tissues

About ten years ago, several experiments suggested that
ghrelin could act as a modulator of the male and female
reproductive functions. Indeed, many in vivo and in vitro
studies showed that ghrelin was able to exert its action at
different levels of the hypothalamic-pituitary-gonadal axis.

4.1. Ghrelin and Gonadotropin-Releasing Hormone Secretion
(GnRH). The hypothalamus has been identified as the main
source of ghrelin in the central nervous system. Furthermore,
as previously described, the GHS-R1a receptor mRNA has
been found in many areas of the brain. In rats, systemic
administration of ghrelin reduces in vivo the GnRH pulse
frequency. The involvement of NPY in the mediation of the
effects of ghrelin on pulsatile GnRH secretion is indicated
by the complete abolition of the effects of ghrelin by
the NPY-Y5 receptor antagonist [58]. GnRH secretion by
hypothalamic fragments from ovariectomized females is also
significantly inhibited by ghrelin [59]. In mammalian and
nonmammalian species, ghrelin affects gonadotropin release
acting at the level of the hypothalamus as well as directly on
the pituitary gland [60].

4.2. Ghrelin and Gonadotropin Secretion. In pituitary, ghrelin
suppresses LH pulse frequency in rats, sheep, monkeys [61–
63], and humans [64]. Furthermore, ghrelin delays pubertal
onset in male rats [59]. In rats, ghrelin is able to downreg-
ulate Kiss1 expression in the hypothalamic medial preoptic
area and this could be a contributing factor in ghrelin-related
suppression of pulsatile LH secretion [65]. In contrast, in
women during the menstrual cycle, administration of ghrelin
does not affect basal and GnRH-induced LH and FSH
secretion [66]. Opposite effects of ghrelin on LH secretion
mammals and several fish species have been described.
Indeed, ghrelin has been shown to stimulate LH release in
goldfishes [67–69] and recently in carps [70]. Recent studies
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indicate that synthetic goldfish ghrelin stimulates LH release
[71]. However, the specific mechanism and the role of this
activation are still unknown.

There is evidence in rats and humans that ghrelin can
suppress not only LH but also FSH secretion in males and
females [63]. A significant decrease of FSH was observed
after seven days of continuous ghrelin infusion in male rats
[64] and in the metestrus of female rats after one injection.
However, in rats, ghrelin did not affect FSH secretion in the
proestrous and estrous periods of the estrous cycle in females,
and in gonadectomized male and female rats after single
injection [64] and after chronic intermittent administration
[64]. In women during the menstrual cycle, administration
of ghrelin did not affect basal and GnRH-induced LH and
FSH secretion [66].

The reported effects of ghrelin on LH and FSH secretion
suggest that this peptide plays a key role in the reproductive
functions. Beside central actions on the reproductive func-
tions, some evidence indicates that ghrelin could exert direct
effects on the female and male gonads.

4.3. Ghrelin in Female Reproduction. Emerging evidence
strongly indicates that the ghrelin and ghrelin receptor
(GHS-R1a and GHS-R1b) are present in the mammalian
and nonmammalian ovary. For example, ghrelin is found
in human, rat, pig, sheep, and chicken ovary [72–76]. In
sheep ovary, ghrelin is expressed throughout the estrous cycle
and pregnancy and the relative mRNA levels depend on the
stage of the cycle, with the highest expression during the
development of the corpora lutea (CL) and minimal expres-
sion in the regressing CL. A similar pattern is seen during
pregnancy [77]. More precisely, in rodent ovary, expression
of ghrelin has been demonstrated in steroidogenically active
luteal and interstitial hilus cells. Expression of the functional
ghrelin receptor has been reported in oocytes as well as
follicular, luteal, and surface epithelium and interstitial hilus
cells in rat ovary [72, 75, 78]. These observations indicate
that ovarian follicular and luteal cells are potential targets for
systemic or locally produced ghrelin, because they express
the functional type 1a of GHS-R. They also highlight the
plausibility for a role of ghrelin in the direct control of
ovarian cell functions. In vivo administration of ghrelin
in rats affects folliculogenesis as attested by alterations of
some morphometrical and intracellular indexes in ovarian
state. Indeed, it decreases the mean diameter of follicles, the
number of corpora lutea, luteal cells, and oocyte and the
diameter of the theca layer and the zona pellucida as well as
the whole ovarian volume in the treated animals [79].

4.3.1. Effect of Ghrelin on Ovarian Steroidogenesis (Figure 1).
In cultured human granulosa luteal cells, ghrelin exerts
an inhibitory effect on steroidogenesis (progesterone and
estradiol production) in the absence or in the presence of
hCG by acting through its functional GHS-R1a [80, 81].
Moreover, the granulosa cells from ghrelin-treated rabbits
secrete not only less progesterone and estradiol but also
less IGF-1 and prostaglandin F than granulosa cells from
untreated animals [82]. In contrast to previous reports, in

cocultured granulosa and theca cells from porcine follicles,
ghrelin induced estradiol secretion by modifying aromatase
activity [29, 37]. Also, Ghrelin(1–18) administration in
chicken causes not only an increase in progesterone and
oestradiol but also secretion of arginine vasotocin and IGF-1
[76, 83].

4.3.2. Effect of Ghrelin on Ovarian Cell Proliferation and
Apoptosis (Figure 1). In chicken ovarian cells, in vitro ghrelin
treatments induce markers of proliferation [MAP kinase;
PCNA (proliferating cell nuclear antigen), a marker of
the S/phase of the cell cycle, and cyclin B1, a marker of
the G2/phase] and decrease the expression of markers of
apoptosis (caspase-3, bax, and bcl-2) [76, 84]. Moreover,
granulosa cells from ghrelin-treated rabbits have higher
expression of PCNA and lower expression of TdT (terminal
deoxynucleotidyl transferase), than those from control ani-
mals.

4.3.3. Effect of Ghrelin on Oocyte Maturation and Embryo
Development (Figure 1). It has also been reported that
ghrelin inhibits early embryo development in mice [85]. In
porcine oocytes cultured in vitro, ghrelin does not improve
meiotic maturation. In contrast, it may have some inhibitory
effects on the organization of microtubules and microfil-
aments of porcine oocytes [86]. On the contrary, some
data suggest that ghrelin could enhance blastocyst viable
from porcine oocytes fertilized in vitro and parthenogenetic
embryos while exerting a negative effect on the structural
integrity of the blastocysts [87]. Thus, the effects of ghrelin
on the development of the embryo are not clear.

In addition, in rats, high levels of ghrelin receptor (GHS-
R) mRNA are detected in various peripheral fetal tissues
beginning on embryonic day 14 and lasting until birth.
Maternal ghrelin regulates fetal development during the late
stages of pregnancy [88].

4.4. Ghrelin in Male Reproduction. The testis is a complex
endocrine organ where different cell types interplay to
produce germ cells, under the control of several extragonadal
and intragonodal hormones and growth factors. Some evi-
dence suggests that ghrelin participates in such a regulatory
network [59, 89–91] (Figure 1).

Expression of ghrelin has been demonstrated in rodents
and sheep by immunostaining mainly in Leydig cells [91].
Ghrelin is also present in the human testis and particularly in
Leydig and Sertoli cells but not in germ cells [92]. In human
testis, the expression of ghrelin by Leydig cells is apparently
linked to the degree of cell differentiation [92]. Furthermore,
it is inversely correlated with the serum testosterone levels
in patients with normozoospermia, obstructive azoospermia,
or varicocele suggesting that ghrelin has an indirect effect
on spermatogenesis [93]. In contrast to human and rodent
data, in adult sheep testis, strong ghrelin immunostaining
is evident not only in Leydig and Sertoli cells but also
in germ cells, with an indication of increased ghrelin
immunoreactivity in germ cells during the mitotic phases
and the meiotic prophases of the spermatogenic cycle [74].
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Figure 1: Schematic representation of the ghrelin effects at the level of the hypothalamic-pituitary-gonadal axis. Ghrelin, mainly produced by
the stomach, can act through its functional receptor GHS-R1a in endocrine or/and local manner in all male and female reproductive tissues
including hypothalamus, pituitary, ovary, and testis. It is well known that ovarian steroid production (oestradiol and progesterone) can
modulate pituitary and hypothalamus secretions. Furthermore, GnRH produced by the hypothalamus controls LH, and FSH secretion that is
known to regulate gonad functions. In mammalian species, ghrelin treatment inhibits GnRH, LH and FSH secretion at the hypothalamic and
pituitary levels (red arrows). Opposite effects have been described in several species of fish. In the gonads, ghrelin exerts also inhibitory effects
by altering steroidogenesis and germ cells production or viability in ovary and testis. In contrast, ghrelin treatment reduces proliferation of
Leydig cells whereas it increases those of granulosa cells. SCF pathway: Stem Cell Factor pathway. ↓: decrease, ↑: increase, and ⊥: inhibition.

Thus, there are some differences between species in the
localization of ghrelin protein in the testis.

Expression of the functional ghrelin receptor, GHS-
R1a, has been shown in Sertoli and Leydig cells as well
as seminiferous tubules in rats [79]. Some changes in
the balance between 1a and 1b isoforms of GHS-R gene
have been described in rat testis. Indeed, changes in the
alternative splicing of the gene are observed throughout
postnatal development [94]. Specifically, during pubertal
development, a shift in the pattern of splicing of GHS-R
gene takes place in rat testis, favouring the expression of the
biological active type 1a form of the receptor and indicating
that the balance between receptor subtypes may represent
a novel mechanism for the regulation of ghrelin sensitivity
in gonads. In humans, GHS-R1a has been located in germ
cells, mainly in pachytene spermatocytes, as well as in Leydig
and Sertoli cells [92]. In adult sheep, GHSR-1a protein was
detected in Leydig cells as well as in Sertoli and germ cells
within the tubules, and the pattern of GHSR-1a mRNA
expression across the testis indicated that the mRNA was
present in the interstitial area and around the periphery of
the tubules.

4.4.1. Effect of Ghrelin on the Seminiferous Tubule Functions
(Figure 1). These latter data suggest that ghrelin could

regulate spermatogenesis by an autocrine or/and a paracrine
manner. In this sense, intratesticular injection of ghrelin
(15 μg for 2 days) in adult rats inhibited mRNA expression
of the gene encoding stem cell factor (SCF), a key signal
for germ cells production and a putative regulator of Leydig
cell development. Such an inhibitory action of ghrelin on
SCF has also been detected in vitro using cultures of staged
seminiferous tubules [5]. The testicular SCF is a Sertoli cell
product that has been involved in Leydig cell development
and survival and is acting as a survival factor for the
different cell types in the seminiferous epithelium such
as spermatogonia in adult rats [95]. Thus, the actions of
ghrelin on tubular SCF mRNA could have an impact on
the regulation of spermatogenesis and also on Leydig cell
proliferation.

4.4.2. Effect of Ghrelin on Testicular Steroidogenesis (Fig-
ure 1). In vitro, ghrelin significantly also inhibits in a
dose-dependent manner both hCG- and cAMP-stimulated
testosterone release by Leydig cells [91]. This inhibitory effect
of ghrelin on testosterone secretion has been associated with
decreases in the hCG-stimulated expression levels of the
mRNAs for several key factors in the steroidogenic pathway
(StAR, P450scc, 3ß-HSD, and testis-specific 17β-HSD type
III) [91]. In vivo, the effects of ghrelin on plasma levels of
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testosterone in rats depend on the nutritional state. Indeed,
in fed rats, ghrelin administration induces a slight decrease
in testis mass without detectable changes in final plasma
levels of testosterone, whereas in food-restricted animals,
where endogenous ghrelin levels are known to be increased,
a chronic administration of ghrelin induces overt decrease in
plasma testosterone [96]. Thus, high levels of ghrelin could
contribute to male reproductive axis alterations in situations
of energy deficit.

4.4.3. Effect of Ghrelin on Cell Proliferation (Figure 1). It has
also been demonstrated by in vivo intratesticular injection of
ghrelin that ghrelin is able to inhibit the proliferative rate of
immature Leydig cells both during puberty development and
after selective ablation of pre-existing mature Leydig cells by
administration of EDS (ethylene dimethane sulfonate) [5].
Ghrelin and its type 1a GHS-R are expressed in testicular
tumors. The expression of ghrelin but not that of GHS-R1a
in Leydig tumor cells is apparently linked to the degree of cell
differentiation [92].

Ghrelin is able to modulate key testicular functions such
as seminiferous tubule gene expression, testosterone secre-
tion, and Leydig cell proliferation. Thus, this peptide could
operate as a novel regulator of testicular development.

5. Conclusions

In conclusion, ghrelin is a peptide hormone mainly secreted
from the stomach into the circulation, but it can be synthe-
sized by other tissues such as reproductive tissues suggesting
local actions (autocrine and/or paracrine). Its functional
receptor, GHS-R1a, is also expressed at different levels of
the hypothalamic-pituitary-gonadal axis. As described in this
paper, ghrelin may participate in the regulation of different
aspects of the female and male reproductive functions
from germ cell production to embryo development. These
actions appear to be species-specific. Ghrelin through its
various biological functions including energy metabolism
by promoting fat deposition and food intake could be a
key signal between energy status and control of fertility
(nutrient-gene expression). However, further studies are
required to gain insights into the understanding of the fine
mechanisms of ghrelin action.
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[6] O. Gualillo, F. Lago, J. Gómez-Reino, F. F. Casanueva, and
C. Dieguez, “Ghrelin, a widespread hormone: insights into
molecular and cellular regulation of its expression and mech-
anism of action,” FEBS Letters, vol. 552, no. 2-3, pp. 105–109,
2003.

[7] A. J. van der Lely, M. Tschöp, M. L. Heiman, and E. Ghigo,
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[12] M. J. Iglesias, R. Piñeiro, M. Blanco, et al., “Growth hormone
releasing peptide (ghrelin) is synthesized and secreted by
cardiomyocytes,” Cardiovascular Research, vol. 62, no. 3, pp.
481–488, 2004.

[13] R. Granata, F. Settanni, L. Biancone, et al., “Acylated and
unacylated ghrelin promote proliferation and inhibit apop-
tosis of pancreatic β-cells and human islets: involvement
of 3′, 5′-cyclic adenosine monophosphate/protein kinase A,
extracellular signal-regulated kinase 1/2, and phosphatidyl
inositol 3-kinase/Akt signaling,” Endocrinology, vol. 148, no.
2, pp. 512–529, 2007.

[14] D. D. Taub, “Novel connections between the neuroendocrine
and immune systems: the ghrelin immunoregulatory net-
work,” Vitamins and Hormones, vol. 77, pp. 325–346, 2007.

[15] Y. Nishi, H. Hiejima, H. Hosoda, et al., “Ingested medium-
chain fatty acids are directly utilized for the acyl modification
of ghrelin,” Endocrinology, vol. 146, no. 5, pp. 2255–2264,
2005.

[16] Y. Date, N. Murakami, M. Kojima, et al., “Central effects of a
novel acylated peptide, ghrelin, on growth hormone release in
rats,” Biochemical and Biophysical Research Communications,
vol. 275, no. 2, pp. 477–480, 2000.

[17] K. Toshinai, M. S. Mondal, M. Nakazato, et al., “Upregulation
of ghrelin expression in the stomach upon fasting, insulin-
induced hypoglycemia, and leptin administration,” Biochem-
ical and Biophysical Research Communications, vol. 281, no. 5,
pp. 1220–1225, 2001.

[18] H. Ariyasu, K. Takaya, T. Tagami, et al., “Stomach is a major
source of circulating ghrelin, and feeding state determines
plasma ghrelin-like immunoreactivity levels in humans,”
Journal of Clinical Endocrinology and Metabolism, vol. 86, no.
10, pp. 4753–4758, 2001.



6 International Journal of Peptides
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