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Abstract: Chemical investigation of the Antarctic lichen-derived fungal strain Acremonium sp. SF-
7394 yielded a new amphilectane-type diterpene, acrepseudoterin (1), and a new acorane-type
sesquiterpene glycoside, isocordycepoloside A (2). In addition, three known fungal metabolites,
(−)-ternatin (3), [D-Leu]-ternatin (4), and pseurotin A (5), were isolated from the EtOAc extract
of the fungal strain. Their structures were mainly elucidated by analyzing their NMR and MS
data. The absolute configuration of 1 was proposed by electronic circular dichroism calculations,
and the absolute configuration of the sugar unit in 2 was determined by a chemical method. The
inhibitory effects of the isolated compounds on protein tyrosine phosphatase 1B (PTP1B) were
evaluated by enzymatic assays; results indicated that acrepseudoterin (1) and [D-Leu]-ternatin (4)
dose-dependently inhibited the enzyme activity with IC50 values of 22.8± 1.1 µM and 14.8 ± 0.3 µM,
respectively. Moreover, compound 1 was identified as a competitive inhibitor of PTP1B.

Keywords: Acremonium sp.; terpenoids; Antarctic fungal metabolites; PTP1B

1. Introduction

The fungal genus Acremonium has been identified in various sources such as soil,
plants, and marine organisms [1]. Secondary metabolites derived from Acremonium species
have been reported to contain steroids, terpenoids, meroterpenoids, polyketides, alkaloids,
and peptides, which show a variety of biological activities, especially anti-bacterial, anti-
fungal, and cytotoxic effects [1]. Some examples of these biologically active metabolites
include cephalosporin antibiotics [2], cytotoxic heptelidic acid chlorohydrin [3], anti-fungal
acremoxanthone A [4], and antibiotic cephaibol B [5]. In the course of our ongoing search
for bioactive secondary metabolites from Antarctic-derived fungal strains [6,7], the EtOAc
extract obtained from cultures of Acremonium sp. SF-7394 was subjected to several separa-
tion steps such as column chromatography (CC) using Sephadex LH-20, reversed phase
(RP) C18, and silica gel as a stationary phase, and RP C18 preparative HPLC. As a result,
two novel fungal metabolites including an amphilectane-type diterpene, acrepseudoterin
(1), and an acorane-type sesquiterpene glycoside, isocordycepoloside A (2), were isolated.
Additionally, three known fungal metabolites including two cyclic heptapeptides, (−)-
ternatin (3) [8], [D-Leu]-ternatin (4) [9], and pseurotin A (5) [10] were identified (Figure 1).
The evaluation of the inhibitory effects of the isolated compounds on the enzyme activity
of protein tyrosine phosphatase 1B (PTP1B) was also conducted in this study. Details
of the isolation, structure elucidation, and biological evaluation of these compounds are
described herein.
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matic ring, four methyl groups (all were doublets in the 1H NMR spectrum), five meth-
ylene units (one of which was oxygenated), and five methines. This information accounted 
for four units of unsaturation, suggesting that the compound must possess two additional 
ring systems. A detailed analysis of the 2D NMR data was next performed to establish the 
planar structure of 1. The direct connectivity between hydrogens and carbons in the mol-
ecule was established by analyzing the HMQC data, and the spin systems in the molecule 
were defined by interpreting the COSY data. The COSY spectrum of 1 indicated that the 
two methyl groups (CH3-16 and CH3-17) were correlated with the methine proton, H-15; 
this methine proton was further connected to the methylene protons H2-14 that in turn 
showed a correlation with the methine proton at δH 3.35 (H-1). Analysis of the COSY data 
further extended the sequential spin system from H-1 to H-7; the two methyl groups, CH3-
18 and CH3-19, were located at C-3 and C-7, respectively, based on COSY correlations 
between the respective protons. In addition, the presence of an isolated oxy-methylene 
unit (H2-20) and two mutually ortho-coupled aromatic hydrogens were evident in the 
COSY data. The connectivity between these spin systems and quaternary carbons was 
established by analyzing the HMBC spectrum (Figure 2). HMBC correlations of the aro-
matic hydrogens H-9 and H-10 with the carbons in the aromatic/olefinic carbon region 
allowed the complete assignment of carbon chemical shifts for the 1,2,3,4-tetrasubstituted 
benzene ring. Moreover, the HMBC correlation of H-10 to the oxygenated methylene car-
bon (C-20) connected this carbon to C-11. HMBC correlations of H-7 with C-8 and C-9 and 
H-4 with C-8 and C-13 provided the connection between C-7 and C-8, and between C-4 
and C-13, respectively. Finally, the HMBC correlation of H-2 with C-12 provided evidence 

Figure 1. Chemical structures of compounds 1–5.

2. Results and Discussion

The HRESIMS of compound 1 exhibited a sodium adduct ion at m/z 309.2196 [M +
Na]+, indicating a molecular formula of C20H30O (calcd for C20H30ONa, 309.2194) and
therefore the presence of six degrees of unsaturation in the molecule. Analysis of the 1H,
DEPT, and 13C NMR spectra of 1 (Table 1) revealed the presence of a 1,2,3,4-tetrasubstituted
aromatic ring, four methyl groups (all were doublets in the 1H NMR spectrum), five
methylene units (one of which was oxygenated), and five methines. This information
accounted for four units of unsaturation, suggesting that the compound must possess two
additional ring systems. A detailed analysis of the 2D NMR data was next performed to
establish the planar structure of 1. The direct connectivity between hydrogens and carbons
in the molecule was established by analyzing the HMQC data, and the spin systems in the
molecule were defined by interpreting the COSY data. The COSY spectrum of 1 indicated
that the two methyl groups (CH3-16 and CH3-17) were correlated with the methine proton,
H-15; this methine proton was further connected to the methylene protons H2-14 that
in turn showed a correlation with the methine proton at δH 3.35 (H-1). Analysis of the
COSY data further extended the sequential spin system from H-1 to H-7; the two methyl
groups, CH3-18 and CH3-19, were located at C-3 and C-7, respectively, based on COSY
correlations between the respective protons. In addition, the presence of an isolated oxy-
methylene unit (H2-20) and two mutually ortho-coupled aromatic hydrogens were evident
in the COSY data. The connectivity between these spin systems and quaternary carbons
was established by analyzing the HMBC spectrum (Figure 2). HMBC correlations of the
aromatic hydrogens H-9 and H-10 with the carbons in the aromatic/olefinic carbon region
allowed the complete assignment of carbon chemical shifts for the 1,2,3,4-tetrasubstituted
benzene ring. Moreover, the HMBC correlation of H-10 to the oxygenated methylene
carbon (C-20) connected this carbon to C-11. HMBC correlations of H-7 with C-8 and C-9
and H-4 with C-8 and C-13 provided the connection between C-7 and C-8, and between
C-4 and C-13, respectively. Finally, the HMBC correlation of H-2 with C-12 provided
evidence for the connection between C-12 and the only remaining connection site C-1.
Therefore, the tricyclic planar structure of 1 was assigned as shown to possess a hexahydro-
1H-phenalene ring system. The carbons in compound 1 were numbered according to the
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precedent pseudopterosins [11]. The structure of 1 is recognized as a new amphilectane-
type diterpenoid [12,13], and the name acrepseudoterin is proposed for compound 1.

Table 1. NMR spectroscopic data (400 MHz, pyridine-d5) for Compound 1.

Position δC, Type δH (J in Hz) HMBC NOESY

1 32.9, CH 3.35, m 4

2 34.7, CH2
1.85, dt (2.2, 13.2)

1.46, m 1, 3, 4, 12

3 29.1, CH 1.68, m
4 45.6, CH 2.10, m 3, 6, 13, 18 1, 7

5 28.7, CH2
α 2.15, m
β 1.25, m 18, 19

6 33.0, CH2
2.04, m
1.41, m

7 34.6, CH 2.98, m 6, 8, 9, 13, 19 4
8 141.2, C
9 126.2, CH 7.25, d (7.8) 7, 11, 13
10 126.9, CH 7.79, d (7.8) 8, 12, 20
11 138.1, C
12 139.4, C
13 136.4, C

14 46.4, CH2
1.57, td (3.4, 8.0)

1.33, m
15 26.1, CH 1.72 m
16 21.2, CH3 1.00, d (6.4) 14, 17
17 24.8, CH3 0.85, d (6.4) 14, 15, 16
18 21.5, CH3 1.03, d (6.4) 2, 3, 4 5α
19 24.4, CH3 1.31, d (6.6) 6, 8 5α

20 62.1, CH2
5.18, dd (3.2, 12.9)
5.03, dd (3.2, 12.9)

20-OH 6.66, br t
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The relative and absolute configuration of 1 was determined by analyzing the NOESY
data (Figure 2) and electron circular dichroism (ECD) calculations (Figure 3). The NOESY
spectrum of 1 showed correlations of H-4 with H-1 and H-7, indicating that these protons
are positioned on the same face of the ring system. On the other hand, NOESY correla-
tions of H-5αwith H3-18 and H3-19 demonstrated the placement of these methyl groups
on the opposite face of the ring system, addressing the relative configuration of all the
stereocenters in the molecule. The absolute configuration of 1 was proposed by TDDFT
(time-dependent density functional theory) computational calculations. The experimental
ECD (electronic circular dichroism) spectrum for 1 showed a positive Cotton effect near
250 nm and a negative Cotton effect near 230 nm. After the geometry optimization of each
enantiomer of 1 to obtain minimum energy conformers, TDDFT calculated the ECD spectra
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for the enantiomers; (1S, 3R, 4R, 7R)-1 (1a) and (1R, 3S, 4S, 7S)-1 (1b) were generated. Com-
parison of the experimental and calculated ECD spectra indicated that the experimental
ECD curve of 1 was almost identical to that calculated for 1b (Figure 3), suggesting a 1R,
3S, 4S, 7S absolute configuration for 1.
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Amphilectane-type diterpenoids possess a structurally interesting tricyclic carbon
skeleton and are divided into two groups based on their shared structural characteristics.
The pseudopterosin group possesses a tricyclic ring system containing an aromatic ring,
while the amphilectane groups possesses a perhydrophenalene ring [13]. Amphilectane-
type diterpenoids belonging to the pseudopterosin group such as pseudopterosins [11],
helioporin E [14], and pseudopteroxazole [15] generally possess a fully substituted benzene
ring and an isobutenyl group. In addition, most compounds of this class were isolated from
marine invertebrates, as monoglycosylated forms with various biological activities such as
anti-cancer, anti-malarial, and anti-inflammatory effects [11,13]. However, to the best of
our knowledge, amphilectane-type diterpenoids with a tetrasubstituted benzene ring, as in
1, have not been reported yet. Therefore, compound 1 represents a new amphilectane-type
diterpenoid of fungal origin possessing unique structural features.

The molecular formula of compound 2 (C21H34O7) was determined on the basis of its
HRESIMS and NMR data, indicating five units of unsaturation. Analysis of 1H, 13C, and
DEPT NMR data of 2 (Table 2) indicated the presence of three methyl groups, six methylene
units (two of which are oxygenated), eight sp3 methines (six of which are oxygenated
including one acetal), one sp2 methine, and three quaternary carbons (one of which is
sp2 carbon). As only the resonances for a trisubstituted olefin (δ 121.5 and δ 141.2) were
observed in the NMR data to account for unsaturation units, it was deduced that the
compound must possess four rings to fulfill the required units of unsaturation. There
were nine 1H NMR signals in the region for oxygenated sp3 hydrogens. This observation,
together with five sp3 oxygenated methines, including one acetal (δ 95.4, δ 75.6, δ 74.5 δ 74.1
and δ 72.1) and one oxygenated methylene (δ 62.9) signal in the 13C NMR spectrum, were
suggestive of a hexose moiety. This was also supported by contiguous COSY correlations
of five oxymethines and one oxymethylene. Further chemical shift considerations and
analysis of coupling constants among respective oxymethines (Table 2), along with the
HMBC correlation of H-1′ with C-5′ confirmed the presence of a glucopyranose unit in the
molecule. Moreover, it was indicated that the aglycone of 2 must possess no exchangeable
hydrogens because the glucose unit accounts for all the exchangeable hydrogens required
by the molecular formula.
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Table 2. NMR spectroscopic data (400 MHz, pyridine-d5) for compound 2.

Position δC, Type δH (J in Hz) HMBC NOESY

1 52.3, CH 1.65, m 2, 5, 6, 10 6, 13, 14

2 21.0, CH2
2.01, m
1.76, m 1, 4, 5

3 29.4, CH2
1.86, m
1.00, m

4 34.8, CH 1.97, m 1, 3, 5, 10, 14
5 43.5, C - -
6 77.6, CH 3.51, d (5.6) 1, 5, 7, 8, 10, 12 1, 12β, 14
7 121.5, CH 5.71, brd (5.6) 5, 6, 9, 15
8 141.2, C

9 28.6, CH2
1.77, m
1.95, m 5, 7, 8

10 23.3, CH2
1.26, m

2.93, ddd (6.8, 12.8, 18.5) 4, 5, 6, 8, 9

11 76.5, C

12 75.7, CH2
α 4.57, d (12.4)
β 3.15, d (12.0) 1, 6, 11 13

13, 6
13 20.1, CH3 1.31, s 1, 11, 12
14 18.6, CH3 0.76, d (6.8) 3, 4, 5 1, 6
15 23.4, CH3 1.47, s 7, 8, 9
1′ 95.4, CH 5.57, d (3.6) 11, 3′, 5′

2′ 74.1, CH 4.09, dd (3.6, 9.6) 3′

3′ 75.6, CH 4.58, t (9.6) 2′, 4′

4′ 72.1, CH 4.22, t (9.6) 5′, 6′

5′ 74.5, CH 4.69, m

6′ 62.9, CH2
4.40, dd (12.0, 2.0)
4.31, dd (11.6, 4.8) 4′

Further structural elucidation of the aglycone of 2 was carried out by analysis of
COSY, HMQC, and HMBC data. Detailed analysis of COSY and HMBC data confirmed the
presence of a glucopyranose ring moiety in the molecule. Spin systems consisting of H-1-
H2-2-H2-3-H-4-H3-14, H-6-H-7-C-8-H3-15, and H2-9-H2-10 were identified by analyzing
the COSY data. Connections of these spin systems with the isolated oxygenated methylene
unit and quaternary carbons of the aglycone moiety in 2 were established by analyzing the
HMBC data (Figure 4). The spin system H-1-H2-2-H2-3-H-4-H3-14 was further extended by
HMBC correlations from H3-14 to C-5 and from H-2 to C-5, establishing the cyclopentane
ring in the molecule. Similarly, the spin systems H2-9-H2-10 and H-6-H-7-C-8-H3-15
were connected via C-8 and C-9 linkage by HMBC correlation from H3-15 with C-9, and
this unit was further extended to form a cyclohexene ring system on the basis of the
HMBC correlations of H2-9 and H-7 with C-5. Furthermore, HMBC correlations of H-1
with C-6, H2-10 with C-4, and H-6 with C-1 supported the spiro-connection between the
aforementioned cyclopentane and cyclohexene moieties, with C-5 being the spiro center.
HMBC correlations from the singlet signal H3-13 with C-1, C-11, and C-12 led to the
connection of the methyl group C-13 to the quaternary carbon C-11 and a connection
between C-1 and C-11. Finally, HMBC correlations of H2-12 with C-1, C-6, and C-11 led
to the assignment of the tetrahydropyran ring moiety in the molecule. Taken together,
the aglycone moiety of 2 was assigned to a spiro[4.5]decane system with an additional
six-membered ether ring, and the glucopyranose unit was located at C-11 based on the
HMBC correlation of the anomeric proton H-1′ with C-11, thus completing the planar
structure of 2 as shown.
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The relative configuration of the aglycone moiety of 2 was proposed based on the anal-
ysis of NOESY correlations (Figure 4). The signal for H-1 correlated with H-6, H3-13, and
H3-14, placing them on the same face of the molecule. Furthermore, NOESY cross-peaks
between H-6 and H3-14 supported this assignment. Therefore, the relative configuration of
1 for the aglycone portion of the molecule was established as shown. The glucose unit was
assigned to be connected through an α-linkage based on the coupling constant (J = 3.6 Hz)
of the anomeric proton (δ 5.57). To address the absolute configuration of the glucose unit in
the molecule, HPLC analysis of the diastereomeric thiocarbamoyl–thiazolidine derivatives
was performed [16]. In this analysis, compound 1 was hydrolyzed by heating in 2 M HCl
and neutralized with NH4OH. After drying in vacuo, the residue was dissolved in pyridine
and derivatized with L-cysteine methyl ester and phenyl isothiocyanate, as described in
the Experimental section. Direct HPLC analysis of the reaction mixture exhibited the peak
with a retention time at 38.0 min, corresponding to that of the thiocarbamoyl–thiazolidine
derivative of D-glucose (Supplementary Materials Figure S26). As the anomeric carbon
C-1′ is connected to C-11 via ether linkage, and there is free rotation around this bond,
the absolute configuration of the aglycone moiety of the molecule could not be assigned
with confidence.

The aglycone structure of 2 has the same carbon skeleton as cordycepol A, which
was reported as an unusual spiro[4.5]decane sesquiterpene (acorane skeleton) with an
additional pyran ring system [17]. Hence, the originally proposed relative configurations at
C-1 and C-12 of cordycepol A have been revised [18]. However, the relative configurations
of C-1, C-5, and C-6 in compound 2 neither matched with those in the originally proposed
nor of revised cordycepol A. In addition, glycosylated cordycepol A has not been reported
to date. Therefore, compound 2 was identified as a unique acorane-type sesquiterpene,
and it was named isocordycepoloside A.

The structures of the remaining three known compounds, (−)-ternatin (3), [D-Leu]-
ternatin (4), and pseurotin A (5) were also elucidated by analyzing the NMR and MS data
(Supplementary Materials Figures S19–S25), along with comparisons of the data with those
in the literature [8–10].

To evaluate the biological effects of the compounds isolated in this study, the inhibitory
effects against PTP1B activity were investigated. PTP1B has been recognized as a key
negative regulator of insulin and leptin pathways and thus has become a new drug target
for the treatment of type 2 diabetes mellitus and obesity [19]. In an enzymatic assay using
a p-nitrophenol phosphate (pNPP) as an enzyme substrate, compounds 1 and [D-Leu]-
ternatin (4) inhibited the PTP1B activity in a dose-dependent manner with IC50 values
of 22.8 ± 1.1 µM and 14.8 ± 0.3 µM, respectively. The inhibitory effects of the remaining
compounds were less pronounced, displaying 12–44% inhibition rates at a concentration
of 80 µM. In this assay, ursolic acid (IC50 = 3.8 ± 0.5 µM) was employed as the positive
control. Following this, we investigated the effect of compound 1 on the kinetic profile of
PTP1B-catalyzed pNPP hydrolysis. PTP1B was incubated with different concentrations
of p-NPP in the absence or presence of compound 1. The assay was performed using the
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same method as the PTP1B assay, and the full velocity curves were determined. Kinetic
analysis revealed that the inhibition mode of compound 1 was a competitive mode as
the Lineweaver–Burk plot showed an increase in Km, without changing the Vmax value
(Figure 5). This result indicates that compound 1 might bind to the active site within PTP1B.
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3. Materials and Methods
3.1. General Experimental Procedures

ECD spectra were recorded on a Jasco J-1100 spectropolarimeter (Jasco Corp., Tokyo,
Japan). The UV spectrum was recorded on a UV-vis spectrophotometer (Mecasys, Daejeon,
Korea). IR spectra were obtained on a 630 FT-IR spectrometer (Agilent, Palo Alto, CA,
USA). Optical rotations were recorded using a Jasco p-2000 digital polarimeter (Jasco
Corp., Tokyo, Japan). HRESIMS data were obtained using an AB Sciex Triple TOF 4600
instrument (AB Sciex Pte. Ltd., Framingham, MA, USA). NMR spectra (1D and 2D) were
recorded in CD3OD (δH/δC = 3.31/49.0) and pyridine-d5 (δH/δC = 7.22, 7.58, 8.74/123.9,
135.9, 150.2) with a Jeol JNM ECP-400 spectrometer (Jeol Ltd., Tokyo, Japan), and the
chemical shifts were referenced relative to the residual solvent peaks. HMQC and HMBC
experiments were optimized for 1JCH = 140 Hz and nJCH = 8 Hz, respectively. Thin layer
chromatography (TLC) was performed on Kieselgel 60 F254 (Merck, Darmstadt, Germany)
or RP-18 F254s (Merck, Darmstadt, Germany) plates. Spots were visualized by spraying
plates with 10% aqueous sulfuric acid (H2SO4) solution, followed by heating. CC was
performed on silica gel (Kieselgel 60, 70–230 mesh, and 230–400 mesh, Merck, Darmstadt,
Germany) or YMC octadecyl-functionalized silica gel (75 µm particle size, YMC Co., Ltd.,
Kyoto, Japan). All preparative-HPLC (prep-HPLC) was operated on a Shiseido prep C18
column (20 × 150 mm; 5 µm particle size, ShiseodoCo., Ltd., Tokyo, Japan) with a flow rate
of 5 mL/min, and compounds were detected using an ultraviolet detector (absorption at
210 and 254 nm) or an evaporative light scattering detector.

3.2. Specimen Collection and Identification

The fungal strain Acremonium sp. SF-7394 was isolated from an unidentified lichen
collected from the Marian Cove (62◦13′09.16” S, 58◦45′57.67” W) on King George Island,
Antarctica in January, 2017. Voucher specimens (SF-7394) have been deposited in the
Korea Polar Research Institute. One gram of the sample was mixed with sterile seawater
(10 mL), and a portion (0.1 mL) of the sample was processed according to the spread plate
method in potato dextrose agar (PDA) medium containing sterile seawater. The isolates
were cultured (at 25 ◦C for 14 days) several times to obtain the final pure culture, and
the selected cultures were preserved at −70 ◦C. The identification of the fungal strain SF-
7394 was conducted by analyzing the ITS gene sequence. A GenBank search with the ITS
sequence of SF-7394 (GenBank accession number MK307778) indicated Acremonium rutilum
(NR_077124), Acremonium cereale (AB540571), and Acremonium persicinum (NR_131260) as
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the closest matches showing sequence identities of 93.63%, 88.81%, and 88.5%, respectively.
Therefore, the fungal strain SF-7394 was characterized as Acremonium sp.

3.3. Isolation of Compounds 1–5

The fungal strain SF-7394 was cultured in 23 fernbach flasks (1 L), each containing
200 mL of potato dextrose agar (PDA) medium with 3% NaCl, for 28 days at 25 ◦C. The
combined PDA media was extracted with EtOAc (23 L). The combined extracts were
filtered through filter paper and evaporated to dryness, resulting in a crude extract, SF-7394
(2.5 g). The crude extract was fractionated on RP C18 flash CC (4.5 × 30 cm), eluted with
a stepwise gradient of 20, 40, 60, 80, and 100% (v/v) MeOH in H2O (500 mL each) to give
six fractions, SF-7394 (2)-1-6. Fraction SF-7394 (2)-4 (307.6 mg) was subjected to silica gel
CC (3.0 × 25 cm) and eluted with CH2Cl2-MeOH (70:1–2:1) to yield subfractions (SF-7394
(2)-4-1-12). The subfraction SF-7394(2)-4-5 (34.9 mg) was isolated by a RP prep-HPLC
eluting with a gradient of 20–50% CH3CN in H2O over 30 min to give a pseurotin A (5,
10.0 mg, tR = 20.1 min). Subfraction SF7394(2)-4-8 (26.4 mg) was also purified by using a
RP prep-HPLC (60–100% MeOH in H2O (0.1% HCOOH) over 50 min) to yield compound
2 (4.2 mg, tR = 20.2 min). SF-7394 (2)-5 (786.7 mg) was first separated into five subfractions
SF-7394 (2)-5-1~5 by using Sephadex LH-20 as the stationary phase and a 1/3 (v/v) mixture
of MeOH in CHCl3 as the mobile phase on column (3.0 × 35 cm). The subfraction SF-
7394 (2)-5-2 (20 mg) was further separated on a RP prep-HPLC (40–100% CH3CN in H2O
(0.1% HCOOH) over 30 min) to provide two compounds, [D-Leu]-ternatin (4, 2.0 mg,
tR = 20.0 min) and (−)-ternatin (3, 10.1 mg, tR = 21.0 min). Similarly, the subfraction SF-
7394 (2)-5-3 (256 mg) was also purified by using a RP prep-HPLC (40–100% CH3CN in
H2O (0.1% HCOOH) over 30 min) to yield compound 1 (4.6 mg, tR = 33.8 min).

Acrepseudoterin (1): white amorphous solid; [α]20
D −15.6 (c 0.16, CH3CN); ECD (c

0.25 mM, CH3CN) λmax (∆ε) 233 (−10.3), 250 (+4.8); UV (MeOH) λmax (log ε) 215 (3.86), 269
(3.02) nm; IR (ATR) νmax 3280, 2923, 2866, 1646, 1590, 1458, 1379, 1049, 1016, 822 cm−1; 1H
NMR and 13C NMR (400 and 100 MHz, pyridine-d5) see Table 1; HRESIMS m/z 309.2196
[M + Na]+ (calcd. for C20H30ONa, 309.2194).

Isocordycepoloside A (2): colorless gum; [α]20
D +18.6 (c 0.42, CH3OH); IR (ATR) νmax

3372, 2952, 2871, 1707, 1670, 1446, 1380, 1284, 1145, 1056, 1023, 944, 920, 878, 832 cm−1; 1H
NMR and 13C NMR (400 and 100 MHz, pyridine-d5) see Table 2; HRESIMS m/z 421.2213
[M + Na]+ (calcd. for C21H34O7Na, 421.2202).

3.4. Determination of the Glucose Configuration

Compound 2 (1.0 mg) was dissolved in of 2 M HCl (200 µL) and heated at 90 ◦C for
2 h in a screw-capped vial. After hydrolysis, the reaction mixture was neutralized with 2 M
NH4OH (220 µL) and dried in vacuo.

Each monosaccharide or acid hydrolysate of 1 (1.0 mg) and D/L-cysteine methyl
ester (1.0 mg) were dissolved in pyridine (200 µL) and heated at 60 ◦C for 1 h in a screw-
capped vial. Then, phenyl isothiocyanate (5 µL) was added to the mixture and heated
further for 1 h. The reaction mixture (5 µL) was further diluted 5 times before HPLC
analysis and detected at 250 nm with a photodiode array detector. Analytical HPLC was
carried out with the isocratic elution of 25% CH3CN in 50 mM H3PO4 for 40 min, and
the subsequent washing of the column was performed with 90% CH3CN at a flow rate
of 0.8 mL/min on a Phenomenex Gemini NX-C18 (4.6 × 250 mm; 5 µm). The retention
times (tR) of the derivative prepared from standard D-glucose and L-cysteine methyl ester,
and the derivative prepared from standard L-glucose and L-cysteine methyl ester, were
38.0 and 36.9 min, respectively. The retention time of the derivative prepared from the
acid hydrolysate of 1 and L-cysteine coincided with that obtained for the derivative of
D-glucose.
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3.5. Computational Methods

The conformer distribution was conducted using an MMFF force field with Spartan
′14 software (Wave-function, Inc., Irvine, CA, USA). The geometry optimization for selected
conformers was performed at the DFT (B3LYP functional/6-31+G(d,p) basis set) level, and
ECD calculations were performed at the TDDFT (CAM-B3LYP/SVP basis set) level with a
CPCM solvent model in CH3CN using Gaussian 09 software (Gaussian, Inc., Wallingford,
CT, USA). The calculated ECD curves were simulated by SpecDis 1.64 software (University
of Wuerzburg, Wuerzburg, Germany) with a half bandwidth of 0.3 eV. The ECD curves of
conformers were weighted using the Boltzmann distribution after UV correction.

3.6. PTP1B Inhibitory Activity Assay

PTP1B (human, recombinant) was purchased from ATGen Co., Ltd. (Seongnam-si,
Korea). The enzyme activity was measured in a reaction mixture containing 1 mM p-NPP
in 50 mM Bis-Tris (pH 6.0), 2 mM EDTA, and 5 mM dithiothreitol (DTT). After incubation
at 37.5 ◦C for 30 min, the reaction was terminated by the addition of 10 N NaOH. The
amount of p-nitrophenol induced was determined by measuring the increase in absorbance
at 405 nm. The non-enzymatic hydrolysis of 1 mM p-NPP was corrected by measuring the
increase in absorbance at 405 nm obtained in the absence of the PTP1B enzyme. The kinetic
analysis of PTP1B inhibition was conducted in the presence or absence of compound 1 with
different concentrations of p-NPP as a PTP1B substrate. The Michaelis–Menten constant
(Km) and maximum velocity (Vmax) of PTP1B were determined by the Lineweaver–Burk
plot using a Graph Pad Prism® 4 software (Graph Pad Software Inc., San Diego, CA, USA).

4. Conclusions

In this study, two new terpenoid-type fungal metabolites named acrepseudoterin (1)
and isocordycepoloside A (2) were isolated from extracts of the Antarctic lichen-derived
fungal strain Acremonium sp. SF-7394 along with three previously described fungal metabo-
lites. The structure elucidation of these fungal metabolites was carried out mainly by
analysis of their NMR and MS data, and the absolute configurations of 1 and 2 were
assigned by electronic circular dichroism calculations and a chemical method. In the
biological evaluation of these metabolites, acrepseudoterin (1) and [D-Leu]-ternatin (4)
were identified as mild inhibitors of protein tyrosine phosphatase 1B (PTP1B), which is
considered as the drug target for the treatment of type 2 diabetes mellitus and obesity.
Taken together, this study supports the hypothesis that the fungal metabolites from extreme
environments including the Antarctic area could serve as valuable resources for biologically
active compounds with novel structures [20].

Supplementary Materials: The following are available online. Figure S1: 1H-NMR spectrum of 1
in pyridine-d5. Figure S2: 13C-NMR spectrum of 1 in pyridine-d5. Figure S3: HMQC spectrum of 1
in pyridine-d5. Figure S4: COSY spectrum of 1 in pyridine-d5. Figure S5: HMBC spectrum of 1 in
pyridine-d5. Figure S6: NOESY spectrum of 1 in pyridine-d5. Figure S7: Zoomed-in NOESY spectrum
of 1. Figure S8: Zoomed-in NOESY spectrum of 1 with increased intensity. Figure S9: HRESIMS
of 1. Figure S10: 1H-NMR spectrum of 2 in pyridine-d5. Figure S11: 13C-NMR spectrum of 2 in
pyridine-d5. Figure S12: HMQC spectrum of 2 in pyridine-d5. Figure S13: COSY spectrum of 2 in
pyridine-d5. Figure S14: HMBC spectrum of 2 in pyridine-d5. Figure S15: NOESY spectrum of 2 in
pyridine-d5. Figure S16: Zoomed-in NOESY spectrum of 2. Figure S17: HRESIMS of 2. Figure S18:
1H-NMR spectrum of 3 in benzene-d6. Figure S19: 13C-NMR spectrum of 3 in benzene-d6. Figure
S20: HRESIMS of 3. Figure S21: 1H-NMR spectrum of 4 in benzene-d6. Figure S22: HRESIMS of 4.
Figure S23: 1H-NMR spectrum of 5 in DMSO-d6. Figure S24: 13C-NMR spectrum of 5 in DMSO-d6.
Figure S25: HRESIMS of 5. Figure S26: HPLC traces of the thiocarbamoyl-thiazolidine derivatives L
and D-glucose, and the hydrolizate of 2.
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