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Research on the molecular biology of colorectal cancer has
increased our expectation that a better understanding of molecular
changes in colorectal tumours may improve our knowledge of
aetiology and treatment. Recently, investigators have recognised
that molecular characteristics of colorectal cancers are associated
with prognosis and therapeutic response. Studies suggest that
some of the major genetic players in colorectal neoplasia, such as
P53 mutations, are associated with poorer prognosis (Hardingham
et al, 1998). Other studies report correlations between K-ras
mutations, tumour stage, and survival (Andreyev et al, 1998;
Samowitz et al, 2000). In a population-based study of 607
colorectal cancer patients, Gryfe et al (2000) observed that high-
frequency microsatellite instability (MSI) conferred significant
survival advantage independent of other prognostic factors
including tumour stage.

Molecular studies in colorectal cancer may help us better
understand how genetic alterations could alter prognosis or impact
response to cytotoxic agents. However, there are limitations in the
analysis of molecular markers in studies of colorectal cancer
prognosis. Oftentimes, studies have a limited amount of tissue
samples or have samples from a small number of subjects.
Furthermore, variation in the expression of markers in tumour
samples might be too small to detect differences in prognosis, thus
limiting the utility of some markers. Therefore, there is a need to
devise strategies to utilise resources efficiently in studies of
molecular markers of prognosis.
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The evaluation of tumour molecular markers may be beneficial in prognosis and predictive in therapy. We develop a stopping rule
approach to assist in the efficient utilisation of resources and samples involved in such evaluations. This approach has application in
determining whether a specific molecular marker has sufficient variability to yield meaningful results after the evaluation of molecular
markers in the first n patients in a study of sample size N (n<<N). We evaluated colorectal tumours for mutations (microsatellite
instability, K-ras, B-raf, PI3 kinase, and TGFfR-II) by PCR and protein markers (Bcl2, cyclin D1, E-cadherin, hMLH 1, ki67, MDM?2, and
P53) by immunohistochemistry. Using this method, we identified and abandoned potentially uninformative molecular markers in
favour of more promising candidates. This approach conserves tissue resources, time, and money, and may be applicable to other
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In the conduct of a population-based study to determine
prognostic and predictive molecular factors for colorectal cancer,
we used data from more than 100 patients to develop a strategy to
determine whether specific molecular markers possess sufficient
variability to yield meaningful results in a study of sample size
1000. Using this method, molecular markers that were unlikely to
be informative were abandoned in an early stage of the study in
favour of mutations or protein markers showing more promise.
This method allowed us to conserve time and resources, and may
be applicable to other molecular studies.

MATERIALS AND METHODS

We are conducting a population-based study of colorectal cancer
in 33 county areas of North Carolina. This study, Cancer Care
Outcomes and Surveillance (CanCORS), is a multicentre popula-
tion-based study, funded by the National Cancer Institute, to
evaluate patient, physician. and treatment factors that influence
colorectal cancer outcomes. As part of the CanCORS study at the
University of North Carolina, we collected tumour tissue on
consenting subjects, and constructed tissue microarrays (Kononen
et al, 1998) to be used for immunohistochemistry and mutational
analysis as part of the UNC GI Specialized Programme in Research
Excellence (SPORE) grant. We enrolled 1000 patients (N =1000)
into the study, and the study was approved by the Institutional
review board (IRB) of the UNC School of Medicine. From more
than 100 patients, we evaluated genetic mutations in p53
(Angelopoulou and Diamandis, 1998; Curtin et al, 2004), K-ras,
B-raf, TGFSR-II, MSI (Boland et al, 1998), and examined protein
expression of MDM2, BCl-2, cyclin D1, Ki67, P53, hMLH1, and
E-cadherin by immunohistochemistry using commercial antibodies.
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Binary mutation marker data

In our study of N=1000 patients, our objective was to develop
a stopping rule that might be applied after the first n patients were
evaluated (n<<N) to improve efficiency and lower cost. A binary
mutation marker variable takes a value of 0 or 1 to represent the
absence or presence of a mutation, respectively. To assess the
effectiveness of any marker, one typically employs a regression
model to correlate the marker variable with the outcome.
A problem arises in the early stages of a study when time-to-
event outcomes are not yet available because of short follow-up,
hindering the evaluation of marker effectiveness in terms of
survival. However, one can still make some informative decisions
on marker effectiveness by evaluating marker variability. If among
the first n (n<N) patients most have either mutations or
non-mutations, it suggests that the marker has little variability
and likely little impact on prognosis.

To evaluate marker effectiveness through marker variability
without survival outcome data, we find it appropriate to use the
power and sample size relation. Let o denote significance level and
Zy_, the (1—a) x 100% percentile from the standard normal
distribution. Assuming the Cox proportional hazards model,
Schoenfeld (1983) derived a sample size and power relation for
two sample comparisons (eg, mutations vs non-mutations) in
which the proportion of the mutation group p satisfies:

P(1=p)=(Z1 o+ Z1p)*[Dx(log 4)] ! (1)
where 4 is the hazard ratio between two samples, D is the total
deaths among N patients (which can be also written as D= N*d
where d is the overall death rate), and 1—p is power. This formula
shows the relationship between hazard ratio (or effect size) 4,
variability p(1—p), and statistical power given all the other
parameters being fixed. Clearly, to detect a specific effect A
between mutations and non-mutations, the power can be too low
when there is little variability in a marker. This suggests that we
can compute a lower and upper bound of the mutation rate from
(1), so that there is sufficient power (>80%) to detect a specific
effect, 4, if the mutation rate falls between the bounds. When
marker data from #n patients (n < N) are available, but survival data

Table |

are not, we can construct a 95% confidence interval for mutation
rate and compare it with the bounds. If the 95% confidence
interval falls completely below the lower bound (or completely
above the upper bound), it suggests that the marker might have
too little variability to be effective in predicting survival, even if
marker data were collected from all N patients. In such
circumstances, investigators can make informative decisions
regarding whether they want to continue data collection on a
marker that is unlikely effective, or direct resources to other
markers showing more promise.

To decide how big n should be, we provide the following
formula:

n=zy_,, p(1-p)/L? (2)

where p can be taken as 0.5 and L is a prespecified precision
defined as the width of a 95% confidence interval. By using a small
L, we can expect to have an accurate estimate for mutation rate
based on only n (n<N) data points. It is important to note that, in
addition to variability, effect size plays an important role in (1).
When calculating the lower and upper bound (or simply the
variance bound) at 80% power, we have to introduce a value for
effect size. Unfortunately, the true effect size of a marker is
unknown and cannot be estimated in the absence of survival data.
Under such circumstances, supplying a value lower than the true
effect size results in a higher variance bound, making it easier to
reject a marker; supplying a value larger than the true effect size
would only make it harder to reject a marker. We recommend
supplying an upper bound for effect size to minimise the chance of
throwing away important markers that may have very low
variability, but huge effects on survival.

Continuous protein marker data

The protein markers under investigation were assessed by
immunohistochemistry. The scoring system was based upon the
proportion of cells that were stained and the intensity of staining
(Hoos and Cordon-Cardo, 2001). The final score took continuous
values between 0 and 5. Similar to the mutation data, our goal was
to develop a stopping rule for protein marker data, which might be

Lower (pL) and upper (pU) bounds calculated at 80% power, a=0.05, and total sample size N = 1000

Hazard ratio 4

1.5 2 2.5 3 3.5 4 4.5 5

Overall death rate d pL pU pL pU pL pU pL pU pL pU pL pU pL pU pL pU
0.05 NA NA NA NA 179 82.1 1.6 88.4 8.6 914 69 93.1 58 942 5 95

0.1 NA NA 152 84.8 8 92 54 94.6 4.1 959 33 96.7 2.8 972 24 976
0.15 NA NA 9.5 90.5 52 94.8 35 96.5 2.7 973 22 978 19 98.1 1.6 984
0.2 25.1 749 69 93.1 38 96.2 2.6 974 2 98 1.6 984 1.4 98.6 1.2 98.8
0.25 18.4 81.6 54 94.6 3 97 2.1 979 1.6 984 1.3 987 I 989 | 99

0.3 14.7 85.3 4.5 95.5 2.5 97.5 1.7 98.3 1.3 98.7 Il 98.9 0.9 99.1 0.8 99.2
0.35 12.2 87.8 38 96.2 22 97.8 1.5 98.5 Il 989 0.9 99.1 0.8 99.2 0.7 99.3
04 10.5 89.5 33 96.7 1.9 98.1 1.3 987 I 99 0.8 992 0.7 99.3 0.6 994
0.45 9.2 90.8 29 97.1 1.7 98.3 1.2 98.8 0.9 99.1 0.7 99.3 0.6 99.4 0.5 99.5
0.5 82 918 26 974 1.5 98.5 I 99 0.8 992 0.6 994 0.5 99.5 0.5 99.5
0.55 74 926 24 97.6 1.4 98.6 09 99.1 0.7 99.3 0.6 994 0.5 99.5 04 99.6
0.6 6.7 933 22 97.8 1.2 98.8 09 99.1 0.7 99.3 0.5 99.5 0.5 99.5 0.4 99.6
0.65 62 938 2 98 Il 989 0.8 992 0.6 994 0.5 99.5 04 99.6 04 99.6
0.7 57 94.3 1.9 98.1 Il 989 0.7 993 0.6 994 0.5 99.5 04 99.6 03 99.7
0.75 53 947 1.7 98.3 I 99 0.7 99.3 0.5 99.5 0.4 99.6 04 99.6 0.3 99.7
0.8 4.9 95.1 1.6 984 09 99.1 0.6 994 0.5 99.5 0.4 99.6 0.3 99.7 0.3 99.7
0.85 4.6 954 1.5 98.5 0.9 99.1 0.6 99.4 0.5 99.5 0.4 99.6 0.3 99.7 0.3 99.7
09 4.4 95.6 1.5 98.5 0.8 992 0.6 994 04 99.6 0.4 99.6 0.3 99.7 0.3 99.7
0.95 4.1 959 1.4 98.6 0.8 992 0.5 99.5 04 99.6 0.3 99.7 0.3 99.7 0.3 99.7

NA =there is no solution for mutation rate.
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applied after the first n (n<N) patients have been observed. If the
variance of a protein marker is very small, it will likely have little
prognostic value. The method illustrated here is again useful in the
early stages of a study, when survival outcomes are not yet
available. Assuming the Cox proportional hazards model, Hsieh
and Lavori (2000) derived a sample size formula in which the
variance of a continuous variable ¢ satisfies

0*=(Z1-oy + Z15) [Dx (log A)*] ! (3)

where A is the hazard ratio associated with one unit of increase in
marker values. Similar to the binary marker case, a lower bound
for marker variance can be computed by solving (3) for ¢, such
that there is at least 80% power to detect a specific survival effect
4, given the overall death rate d (D= N*d). Unlike in the binary
marker case, there is no upper bound for marker variance in the
continuous case. Again, effect size plays an important role in (3),
in addition to variability. We do not want to underestimate the
true effect size of a marker when calculating the variance lower
bound. On the other hand, overestimating the true effect size
would only make the method conservative.

If only continuous markers were evaluated in a study, one could
use the following formula to compute the required sample size n to
satisfy a certain precision L:

2L = (n— 1)52/}5%1—1;0.025 —(n— 1)52/}5?1—1;0.975 (4)

where s* is an estimate of ¢°, according to a pilot study. However,
when both binary and continuous markers are evaluated in a
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Figure | Lower and upper bounds calculated at 80% power, o= 0.05,
overall death rate d=0.6, and total sample size N = 1000 for comparison
with mutation rate estimated from n (n<<N) patients. The shaded area
represents the rejection region. A 95% confidence interval of mutation rate
from n patients falling completely within this region suggests that the
marker has little variability and likely insufficient power to predict survival,
even if all data from N patients were collected.
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study, there is no need to compute n twice. In that case, one can
compute n based on formula (2) because of its simplicity.

RESULTS

Binary mutation marker data

We need at most n=97 (= 1.96% x 0.25/0.1%) patients to satisfy a
0.1 precision in evaluating a binary mutation marker (in formula
(2), let p=0.5, as it gives the highest possible value for the right
hand side). Table 1 displays the lower and upper bound of
mutation rate, denoted as pL and pU, for a range of overall death
rates and effect sizes where power is fixed at 80%, N=1000 and
o =0.05. The bounds add up to 1 for each combination of overall
death rate d and effect size 4 because of the symmetry in the left
side of formula (1). When the overall death rate is lower than 20%
and the effect size is also low, there are no solutions for pL and pU,
because the power is insufficient (<80%) regardless of the
mutation rate. Figure 1 displays pL and pU, when power is fixed
at 80%, o=0.05, d=0.6, and N=1000. If the 95% confidence
interval for mutation rate of a genetic marker falls completely in
the grey area, it suggests little variability and effectiveness in the
marker. For our study, we evaluated mutation markers, such as PI3
kinase, K-ras, B-raf, TGFfR-II, and MSI (Table 2). At the time of
the development of this method, we had collected data for more
than 97 patients. Table 2 displays the results based on all the data
available at that time. We thought it reasonable to expect a 0.6

Table 3 Minimum variance calculated at 80% power, o =0.05, and total
sample size N= 1000

Hazard ratio 4

Overall
death rated 1.5 2 2.5 3 3.5 4 4.5 5

0.05 0.752 0257 0.147 0.102 0079 0064 0055 0048
0.1 0376 0.129 0074 0051 0039 0032 0027 0024
0.15 0251 0086 0049 0034 0026 0021 0018 0016
0.2 0.188 0064 0037 0026 0020 00l6 0014 0012
0.25 0.150 0051 0029 0020 0016 0013 001l 001I0
0.3 0.125 0043 0025 0017 0013 001l 0009 0.008
0.35 0.107 0037 0021 0015 00l 0009 0008 0.007
0.4 0094 0032 0018 0013 0010 0008 0007 0.006
0.45 0.084 0029 0016 0011 0009 0007 0.006 0.005
0.5 0075 0026 0015 0010 0008 0006 0005 0.005
0.55 0.068 0023 0013 0009 0007 0006 0005 0.004
0.6 0.063 0021 0012 0009 0007 0005 0.005 0.004
0.65 0.058 0020 00Il 0008 0006 0005 0004 0.004
0.7 0.054 0018 00Il 0007 0006 0005 0004 0003
0.75 0050 0017 0010 0007 0005 0004 0004 0.003
0.8 0.047 0016 0009 0006 0005 0004 0003 0.003
0.85 0.044 0015 0009 0006 0005 0004 0003 0003
0.9 0042 0014 0008 0006 0004 0004 0003 0.003
0.95 0.040 0014 0008 0005 0004 0003 0003 0.003

Table 2 Mutation rate and 95% confidence limits estimated from binary marker data

Mutation Mutation rate estimated from Total Overall Upper bound of Lower and upper

marker n n patients (95% confidence interval) sample size death rate effect size bounds for mutation rate = Stopping
PI3 kinase 131 0.15 (0.09, 0.21) 1000 0.6 1.5 (0.067, 0.933) No

K-ras 223 048 (041, 0.55) 1000 0.6 1.5 (0.067, 0.933) No

B-raf 204 0.30 (0.24, 0.37) 1000 0.6 1.5 (0.067, 0.933) No
TGFpR-Il 393 0.038 (0.019, 0.057) 1000 0.6 1.5 (0.067, 0.933) Yes

MSI 446 0.24 (0.20, 0.28) 1000 0.6 1.5 (0.067, 0.933) No

MSI = microsatellite instability.
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Table 4 Variance and 95% confidence limits estimated from continuous protein marker data

Marker variance estimated

Protein from n patients Total sample Overall death Upper bound of Lower bound for

marker n (95% confidence interval) size rate effect size marker variance Stopping
Bcl2 156 0.64 (0.52, 0.82) 1000 0.6 1.5 0.063 No
CyclinDI 124 0.5 (040, 0.65) 1000 0.6 1.5 0.063 No
E-cadherin 174 0.64 (0.53,0.81) 1000 0.6 1.5 0.063 No

hMLH | 93 1.06 (0.81, 1.44) 1000 0.6 15 0.063 No

Ki67 92 0.64 (049, 0.88) 1000 0.6 1.5 0.063 No
Mdm?2 179 022 (0.18,0.28) 1000 0.6 1.5 0.063 No

P53 174 2.88 (2.36, 3.60) 1000 0.6 15 0.063 No
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Figure 2 Minimum variance calculated at 80% power, o =0.05, overall
death rate d=0.6, and total sample size N= 1000 for comparison with
marker variance estimated from n (n<<N) patients. The shaded area
represents the rejection region. A 95% confidence interval of marker
variance from n patients falling completely within this region suggests that
the marker has little variability and likely insufficient power to predict
survival, even if all data from N patients were collected.

overall death rate among the N=1000 registered patients, and a
hazard ratio of no more than 1.5 (i.e., 1.5 was an upper bound for
the effect size between the mutation and non-mutation groups). As
shown in Table 1, the lower and upper bound of mutation rate are
0.067 and 0.933, respectively (for a 0.6 overall death rate and 1.5
hazard ratio). Among the markers, only TGFSR-II had a 95%
confidence interval of 0.019 and 0.057, falling completely below the
0.067 lower bound. This reveals that less than 6% of the population
had TGFfSR-II mutations, a range unlikely to have sufficient power
(>80%) to predict prognosis, even if we gathered TGFSR-II
mutation data from all N= 1000 patients. Thus, we decided to stop
further genetic analysis on TGFfR-II, and focus attention on the
other markers.

Continuous protein marker data

Table 3 presents the minimum variance required to detect a
specific hazard ratio for a range of overall death rate values when
power is fixed at 80%, N = 1000, and o = 0.05. In our study, protein
markers were measured for Bcl2, cyclin D1, E-cadherin, hMLH]1,
Ki67, MDM2, and P53. We computed a 95% confidence interval for
the variance of each marker (Table 4). Again, the overall death rate
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was expected to be 0.6, and the true effect size was not more than
1.5 for one unit of increase in the protein marker values. According
to Table 3, the minimum variance required for each marker is
0.063. As the lower confidence limits of all the markers were larger
than 0.063, none of the markers met the stopping criterion at this
early stage of the study. Figure 2 displays the rejection region of
variance when power is fixed at 80%, «=0.05, d=0.6, and
N=1000, which is the case for our study.

DISCUSSION

The prospect that we might use the molecular characteristics of
tumours to determine patient prognosis and predict response to
chemotherapy is compelling. Studies to date have shown promis-
ing results, and there is every expectation that continued research
will further improve our prognostic and predictive abilities.
Although it is tempting to perform molecular analyses on an
entire study sample, depending on the size of the study sample and
the variability in a marker, the analysis might not be informative.
In this study, we have illustrated one potential approach to
evaluate marker effectiveness in the early stage of a study when
survival data are not available, and the number of markers under
consideration was limited. We recommend supplying an upper
bound for the true effect size when calculating the marker variance
bounds. In doing so, we minimise the chance of throwing away
important markers that may have very low variability but huge
effects on survival. The method is conservative; in that we do not
abandon markers early unless markers show extremely low
variability. However, if any markers are identified ineffective, the
savings in money, time, and resources may be significant.

Institutional review boards and funding agencies generally
demand power calculations (Friedman et al, 1999) as a requisite
for study approval. The stakes are lower for molecular studies upon
existing samples, but the ethical impetus remains to make efficient
use of resources and precious, often irreplaceable, patient samples.
Our approach helps identify uninformative markers in the early stage
of a large molecular study to conserve time and resources. To fully
assess this approach, future researchers should consider evaluating
the real gain and loss of applying this approach on a large and
completed study.
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