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Abstract 33 

While genome-wide associations studies (GWAS) have successfully elucidated the 34 

genetic architecture of complex human traits and diseases, understanding mechanisms 35 

that lead from genetic variation to pathophysiology remains an important challenge. 36 

Methods are needed to systematically bridge this crucial gap to facilitate experimental 37 

testing of hypotheses and translation to clinical utility. Here, we leveraged cross-38 

phenotype associations to identify traits with shared genetic architecture, using linkage 39 

disequilibrium (LD) information to accurately capture shared SNPs by proxy, and 40 

calculate significance of enrichment. This shared genetic architecture was examined 41 

across differing biological scales through incorporating data from catalogs of clinical, 42 

cellular, and molecular GWAS. We have created an interactive web database 43 

(interactive Cross-Phenotype Analysis of GWAS database (iCPAGdb); 44 

http://cpag.oit.duke.edu) to facilitate exploration and allow rapid analysis of user-45 

uploaded GWAS summary statistics. This database revealed well-known relationships 46 

among phenotypes, as well as the generation of novel hypotheses to explain the 47 

pathophysiology of common diseases. Application of iCPAGdb to a recent GWAS of 48 

severe COVID-19 demonstrated unexpected overlap of GWAS signals between COVID-49 

19 and human diseases, including with idiopathic pulmonary fibrosis driven by the DPP9 50 

locus. Transcriptomics from peripheral blood of COVID-19 patients demonstrated that 51 

DPP9 was induced in SARS-CoV-2 compared to healthy controls or those with bacterial 52 

infection. Further investigation of cross-phenotype SNPs with severe COVID-19 53 

demonstrated colocalization of the GWAS signal of the ABO locus with plasma protein 54 

levels of a reported receptor of SARS-CoV-2, CD209 (DC-SIGN), pointing to a possible 55 
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mechanism whereby glycosylation of CD209 by ABO may regulate COVID-19 disease 56 

severity. Thus, connecting genetically related traits across phenotypic scales links 57 

human diseases to molecular and cellular measurements that can reveal mechanisms 58 

and lead to novel biomarkers and therapeutic approaches. 59 

 60 

Keywords: pleiotropy, cross-phenotype association, gout, LD-score, colocalization, 61 

PheWAS, Hi-HOST, idiopathic pulmonary fibrosis, macular telangiectasia, rs2869462, 62 

rs505922, rs12610495 63 
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Introduction 65 

Genome-wide association studies (GWAS) have identified hundreds of 66 

thousands of genomic regions that are associated with complex human traits and have 67 

increased our understanding of the genetic architecture of human disease (Visscher et 68 

al., 2017). While GWAS now utilize even millions of subjects through leveraging 69 

electronic medical record data (Bycroft et al., 2018; McCarty et al., 2011), progress 70 

towards understanding how identified genetic variants alter cellular function and 71 

physiology remains elusive. More efficient mechanisms are needed for translating 72 

knowledge of genetic disease risk and severity into insight of the underlying physiology. 73 

Integrating analysis of GWAS across different scales of biological phenotypes 74 

(molecular, cellular, and organismal) may provide novel insight into how genetic variants 75 

influence complex traits. 76 

Comparative analyses of GWAS have revealed that numerous, seemingly 77 

unrelated traits are connected by shared underlying genetic variants (Visscher et al., 78 

2017). This phenomenon in which genetic variants affect multiple traits or diseases is 79 

called pleiotropy. Several methods have been developed to study pleiotropic SNPs by 80 

exploring the genetic relationship of multiple phenotypes. Broadly, these approaches 81 

can be categorized into three major groups. The first method is genetic correlation, 82 

which aims to quantify the similarity of the genetic effects on pairwise traits using GWAS 83 

summary statistics such as LD-score regression (Bulik-Sullivan et al., 2015b) or from 84 

individual genotype data with GCTA GREML (Lee et al., 2012). With large population 85 

sizes, these methods can accurately partition variance into a shared genetic component 86 

but do not reveal the genetic variants driving the genetic correlation. Genome-wide 87 
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cross-trait analysis (Zhu et al., 2018) has emerged as a means to follow up such results, 88 

but these univariate meta-analyses of two traits requires genome wide summary 89 

statistics for both traits, can suffer from effect size heterogeneity in combining results 90 

from disparate traits, and cannot be easily applied to thousands of traits at once. The 91 

second approach is colocalization, which estimates how well the GWAS signals from 92 

two signals overlap in a given region while revealing plausibility of individual causal 93 

variants (Giambartolomei et al., 2014). These two methods have successfully identified 94 

novel genetic connections across distant traits as well as pleiotropic genomic regions 95 

but have generally been used independently of each other. Finally, perhaps the most 96 

intuitive approach, is quantifying cross-phenotype SNPs that are shared across multiple 97 

phenotypes. In its simplest form, a phenome-wide association study takes a single SNP 98 

and examines the significance of association across many traits, often from electronic 99 

medical record (Denny et al., 2010). Valuable websites, including PhenoScanner 100 

(Staley et al., 2016), GRASP (Leslie et al., 2014), and GeneATLAS (Canela-Xandri et 101 

al., 2018) have integrated thousands of GWAS studies with billions of SNP-traits 102 

associations and allow users to query individual SNPs across the phenome. However, 103 

such PheWAS approaches do not leverage shared genetic architecture that extends 104 

beyond individual SNPs and do not take advantage of LD information. 105 

Motivated to simultaneously connect human phenotypes with shared genetic 106 

architecture and to identify the precise loci driving this similarity, we previously 107 

developed a method, CPAG (Cross-phenotype Analysis of GWAS), which estimated 108 

phenotype similarity of NHGRI-EBI GWAS catalog traits based on shared genetic 109 

associations (Wang et al. 2015). CPAG utilized cross-phenotype SNP associations to 110 
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cluster traits into groups that were consistent with pre-defined categories and 111 

discovered novel pleiotropic SNPs connecting Crohn’s disease and the fatty acid 112 

palmitoleic acid. However, CPAG could not scale sufficiently to keep up with the 113 

massive increase in the scope and scale of GWAS (facilitated through increasing use of 114 

electronic medical record (EMR)-based GWAS of huge cohorts) and the deeper 115 

phenotyping of molecular and cellular traits that can provide insight into mechanisms of 116 

pathophysiology of disease. Here, we introduce iCPAGdb, a new cross-phenotype 117 

analysis platform with improved identification of shared loci using pre-computed 118 

ancestry-specific LD databases and a more efficient algorithm for capturing cross-119 

phenotype associations. These improvements facilitated integration of the NHGRI-EBI 120 

GWAS catalog with large datasets of plasma and urine metabolites and cellular host-121 

pathogen traits. Such integration of pleiotropic analyses using GWAS datasets that 122 

include intermediate traits across biological scales are crucial for moving from lists of 123 

associated SNPs to understanding the pathophysiology of complex diseases. Finally, 124 

iCPAGdb allows users to upload their own GWAS summary statistics via web interface 125 

(http://cpag.oit.duke.edu) to identify and explore shared SNPs between their own 126 

GWAS and a deep catalog of 4418 molecular, cellular, and disease phenotypes. Using 127 

a GWAS of severe COVID-19 as the querying phenotype in iCPAGdb revealed shared 128 

SNPs associated with idiopathic pulmonary fibrosis and plasma protein levels of CD209, 129 

a possible receptor for SARS-CoV-2. 130 

 131 

Results 132 

iCPAGdb: An atlas for discovery of cross-phenotype associations 133 
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 We created iCPAGdb to facilitate exploration of cross-phenotype associations of 134 

human phenotypes and discovery of shared genetics connecting traits that were 135 

previously not known to be related. iCPAGdb utilizes 85639 SNP-trait associations (p < 136 

5 x 10-8) across 3793 traits from the NHGRI-EBI GWAS catalog, incorporates additional 137 

GWAS datasets (see below and Table 1), and allows for uploading and analysis of user 138 

GWAS summary statistics (Fig. 1A). In contrast, the original CPAG (published in 2015) 139 

used only 14198 SNP-trait associations for 887 traits from the NHGRI-EBI GWAS 140 

catalog.  141 

Beyond this large expansion in traits and associations, we improved on the 142 

original CPAG algorithm by clumping GWAS data from each study (Fig. S1), creating a 143 

database of LD values based on 1000 Genomes (Genomes Project et al., 2015), 144 

allowing selection of either European, African, or Asian LD structure, and efficiently 145 

capturing cross-phenotype associations that are driven by LD proxy (Fig. 1B). For each 146 

trait pair, iCPAGdb first selects the lead SNPs from all associated loci at a selected p-147 

value threshold (p < 5 x 10-8 was used for analysis of the NHGRI-EBI GWAS catalog; 148 

Table S1; Fig. S2). These lead SNPs are compared across the trait pair to count directly 149 

shared SNPs. For SNPs that are not directly shared, iCPAGdb then checks an LD 150 

database for overlap by LD proxy. For all directly or indirectly shared SNPs, iCPAGdb 151 

further forms them into bigger SNP blocks by recursively merging them until each SNP 152 

block has no LD proxy with R2 >= 0.4 against all others. iCPAGdb improves memory 153 

efficiency with built-in functions connecting to SQL GWAS and LD proxy databases and 154 

improves computational efficiency and speed by utilizing multiple CPUs. For the 155 

NHGRI-EBI GWAS Catalog, the growth of GWAS findings and improvements of 156 
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iCPAGdb over the previous version of CPAG led to a 27.7-fold increase in direct cross-157 

phenotype associations and a 47.7-fold increase in indirect cross-phenotype 158 

associations, many of which would have been missed by the original CPAG algorithm 159 

(Fig. 1C, D). Indeed, analyzing the 2013 NHGRI-EBI GWAS catalog with iCPAGdb had 160 

little effect on direct associations but increased indirect associations by 76% (Fig. S3).  161 

 Results of iCPAGdb are consistent with results from the orthogonal approach of 162 

genetic correlation by LD score regression (Bulik-Sullivan et al., 2015b). Comparing the 163 

absolute values for genetic correlation of 24 phenotypes from (Bulik-Sullivan et al., 164 

2015a) against a similarity index quantifying the degree of shared SNPs in iCPAGdb 165 

revealed that the two are significantly correlated (p=3.52 × 10−8; 𝑅2 = 0.14) (Fig. 1E). 166 

Nearly all phenotypes (64 of 70) that showed significant correlation by LD score 167 

regression also demonstrated a significant excess of shared SNPs in iCPAGdb. The 168 

output of iCPAGdb provides the SNPs driving the similarity between the two phenotypes, 169 

facilitating follow-up studies. Interestingly, 61% of pairwise comparisons that had 170 

significant overlap based on iCPAGdb did not have significant genetic correlation based 171 

on LD-score regression. For example, LD-score regression did not detect significant 172 

genetic correlation between LDL and HDL cholesterol measurements, but iCPAGdb 173 

detected 92 shared SNPs, including 31 by direct overlap where the two phenotypes 174 

have the same lead SNPs (p=7.55x10-195 by Fisher’s exact test; p=1.49x10-190 after 175 

Benjamini-Hochberg procedure. P-values from iCPAGdb in the remainder of the paper 176 

are FDR-corrected for all pairwise comparisons using Benjamini-Hochberg procedure). 177 

 178 

 179 
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Table 1. A summary of GWAS data in iCPAGdb. GWAS summary statistics were 180 

clumped to include only a lead SNP for each trait locus. 181 

 182 
 Type Traits/Diseases 

# 
SNPs 
(p < 5e-
8) 

Trait-SNP 
associations 
# 

Urls 

NHGRI 
Catalog 

Clinical 
GWAS 

3793 63933 85639 https://www.ebi.ac.uk/gwas/ 
 

H2P2 Molecular/ 
cellular 
GWAS 

79 (44 flow 
cytometric 
phenotypes + 35 
cytokines) 

17 3489 (p<1e-
5) 

http://h2p2.oit.duke.edu  

Blood 
Metabolites  

Molecular 
GWAS  

491 Blood (453 
metabolites + 38 
xenobiotics) 

1441 2024 http://metabolomics.helmholtz-
muenchen.de/gwas/ 
 

Urine 
Metabolites 

Molecular 
GWAS 

55 Urine 149 171 http://metabolomics.helmholtz-
muenchen.de/gwas/ 

Sum  4418 65540 91323  

 183 

 184 
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 185 

Figure 1. An improved method for finding shared genetic architecture of human 186 

traits.  187 
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(A) The overall framework of the iCPAGdb pipeline. GWAS summary statistics (from 188 

published GWAS datasets or from user-uploaded GWAS) undergo LD clumping to 189 

obtain a lead variant for each signal below a specified p-value threshold. These SNPs 190 

are queried against an LD proxy database generated from 1000 Genomes African, 191 

Asian, or European population to identify cross-phenotype associations through direct 192 

overlap or LD proxy at 𝑅2 > 0.4. Significance of overlap for each trait pair is calculated 193 

using Fisher’s exact test. Outputs can be visualized/downloaded from the iCPAGdb web 194 

browser. 195 

(B)  Comparison of the number of shared SNPs for each NHGRI-EBI GWAS catalog 196 

trait pair identified through direct overlap vs. both direct and indirect (LD-proxy) overlap. 197 

(C)  iCPAGdb detected more significant cross-phenotypes associations than CPAG1 198 

at FDR < 0.1. Expansion of the NHGRI-EBI GWAS catalog and improvements in 199 

capturing by LD proxy in iCPAGdb fueled a large increase in detected cross-phenotype 200 

associations across human traits. Comparisons between CPAG1 and iCPAGdb on the 201 

same 2013 dataset are in Fig. S3. 202 

(D)  Circle plot of cross-phenotype associations detected by iCPAGdb in the NHGRI-203 

EBI GWAS catalog. After excluding compound phenotypes (phenotypes described by 204 

NHGRI-EBI GWAS catalog as > 1 comma-separated phenotype in their ontology), a 205 

total of 1709 traits involved in a total of 53314 cross-phenotype associations were left. 206 

These were categorized into 17 EFO Parental groups. Inner ribbons link phenotypes 207 

connected by cross-phenotype associations with the width of ribbon corresponding to 208 

the number of cross-phenotype associations. The axis outside the circle represents the 209 

cumulative number of associations for each group vs all other groups.  210 
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(E)  Comparison of genetic correlation from LD score regression (LDSC) and the 211 

Chao-Sorensen similarity index implemented in iCPAG demonstrates significant 212 

correlation. The genetic correlation rg of 24 diseases/trait were obtained from (Bulik-213 

Sullivan et al., 2015a). Since Chao-Sorensen values are bounded from 0 to 1 and rg 214 

ranges from -1 to 1, we used the absolute value of rg here. Colored * indicates 215 

significant trait-pair for LDSC, iCPAGdb, or both at false discovery rate of 0.1. 216 

(F)  A model demonstrating how SNPs regulate uric acid levels to impact the 217 

development of kidney stones and gout. 218 

(G)  Riverplot of gout cross-phenotype associations generated from iCPAGdb output 219 

shows causal connections, comorbid outcomes, and regulators of disease. Mapped 220 

genes for SNPs associated with gout are shown on the left and connected to other 221 

NHGRI-EBI GWAS phenotypes grouped by EFO on the right.  222 

 223 

GWAS of varying phenotypic scales reveals shared genetic architecture 224 

connecting molecular and cellular traits with human disease 225 

 In a previous study (Wang et al., 2015), we defined 4 categories of cross-226 

phenotype associations: 1) SNP similarity between an intermediate trait/risk factor and 227 

disease, 2) SNP similarity between a disease and a consequence of disease, 3) SNP 228 

similarity between two traits affected by the same gene/pathway, and 4) SNP similarity 229 

between two traits affected by the same gene having effects in different tissues or on 230 

different pathways. Of these categories, perhaps the most clinically useful is the first 231 

category—shared SNPs that connect an intermediate trait to a disease may reveal how 232 

molecular or cellular phenotypes mediate some aspect of the pathophysiology of 233 
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disease. While the NHGRI-EBI GWAS catalog is comprised primarily of case-control 234 

GWAS of disease, we detected numerous known shared associations linking a human 235 

disease with levels of a metabolite. Metabolites are the substrates, intermediates, and 236 

products of cellular metabolism and are routinely already used as biomarkers, such as 237 

measuring glucose in diabetes management.  238 

Cross-phenotype associations involving the metabolite uric acid and gout, an 239 

inflammatory arthritis driven by excess levels of uric acid (Bodofsky et al., 2020), are 240 

illustrative of iCPAGdb’s usefulness. GWAS studies have been conducted on risk of 241 

gout (Chen et al., 2018; Lai et al., 2012; Lee et al., 2019; Li et al., 2015; Matsuo et al., 242 

2016; Nakayama et al., 2017; Nakayama et al., 2020; Sulem et al., 2011) as well as uric 243 

acid or urate levels (Boocock et al., 2020; Dehghan et al., 2008; Doring et al., 2008; 244 

Kamatani et al., 2010; Kottgen et al., 2013; Li et al., 2007; Tin et al., 2019; Tin et al., 245 

2011). Notably, of 31 GWAS loci for gout and 123 GWAS loci for serum uric acid levels 246 

at p<5x10-8, 13 loci overlap, including 9 loci identified only by LD proxy (nearly 6000-fold 247 

enrichment; p=5.9x10-43). These loci are spread across 7 chromosomes and include 248 

several solute carrier (SLC) and ATP-binding class (ABC) transporters that control urate 249 

absorption and secretion. Some of the loci are in close proximity but are counted 250 

separately by iCPAGdb, as could occur if different GWAS studies locate nearby peaks 251 

that fall below our R2>0.4 threshold or if multiple causal signals are located in the same 252 

region. These data provide genetic evidence for the well-known causal role of excess 253 

uric acid in gout and further reveal multiple genes that may serve as therapeutic targets. 254 

Inhibitors of renal uric acid reabsorption through URAT1 (SLC22A12) are commonly 255 

used in treating gout (Dong et al., 2019), but additional transporters implicated through 256 
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human genetics may also prove to be useful drug targets. Beyond uric acid levels, 257 

GWAS of kidney stones (Howles et al., 2019; Oddsson et al., 2015; Thorleifsson et al., 258 

2009), a second manifestation of elevated uric acid levels, also share associated SNPs 259 

with gout (3 shared loci, all identified by proxy on chromosomes 2, 4, and 17; p=5.2x10-260 

9). Finally, gout shares 2 loci (out of 5 from (Setoh et al., 2015; Suhre et al., 2017)) with 261 

levels of serum alpha-1-antitrypsin, an anti-inflammatory endogenous protease inhibitor 262 

(p=9.3x10-7), providing a human genetic rationale for the use of alpha-1-antitrypsin-263 

based therapeutics in acute gouty flares (as has been demonstrated to be efficacious in 264 

mice (Joosten et al., 2016)). Thus, examining the gout cross-phenotype associations 265 

revealed causal connections, comorbid conditions with shared etiology, and factors that 266 

modulate inflammation in the disease (Fig. 1F, G). 267 

Shared genetic associations reveal other well-known molecular and cellular 268 

disease relationships such as LDL cholesterol levels with cardiovascular disease 269 

(1.24x10-81) and Alzheimer’s disease (p=4.8x10-17) as well as glucose with type II 270 

diabetes mellitus (p=1.5x10-40). Other cross-phenotype associations highlight genetic 271 

variation that can extend our knowledge. For example, cross-phenotype associations 272 

were found between malaria (Band et al., 2013; Jallow et al., 2009; Malaria Genomic 273 

Epidemiology, 2019; Malaria Genomic Epidemiology et al., 2015; Ravenhall et al., 2018; 274 

Timmann et al., 2012) and red blood cell distribution width (Astle et al., 2016; Chen et 275 

al., 2020; Chen et al., 2013; Fatumo et al., 2019; Kichaev et al., 2019) (p=1.3x10-9). This 276 

overlap is driven by well-known genetic variation in the beta-hemoglobin gene (HBB) 277 

and ABO blood type affecting malaria risk but also by genetic variation in ATP2B4 which 278 

encodes a calcium transporter. To the best of our knowledge, whether size of red blood 279 
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cells impacts susceptibility to malaria parasites has not been examined. These cross-280 

phenotype associations demonstrate the promise of this approach for revealing novel 281 

relationships that can be mined through iCPAGdb.  282 

 283 

Expansion of iCPAGdb to additional datasets of molecular and cellular traits 284 

 The above examples of clinically relevant cross-phenotype associations involving 285 

metabolite and cellular phenotypes motivated expansion of iCPAGdb to additional 286 

datasets. We used three datasets to provide molecular and cellular traits to our analysis: 287 

491 metabolites and xenobiotics in blood (Shin et al., 2014) and 55 metabolites in urine 288 

(Raffler et al., 2015), both from the Metabolomics GWAS Server 289 

(http://metabolomics.helmholtz-muenchen.de/gwas/index.php), and 79 cellular host-290 

pathogen interaction traits from our dataset of cellular host-pathogen interaction GWAS, 291 

H2P2 (Wang et al., 2018). iCPAGdb revealed many connections between these 292 

molecular/cellular datasets and the NHGRI-EBI GWAS catalog (Fig. 2A; Table S2).  293 

Cross-phenotype associations with macular telangiectasia (MacTel) type 2, a 294 

disease characterized by loss of central vision due to alterations in blood vessels in the 295 

macula of the eye, confirmed the importance of the amino acid serine (Fig. 2B). A 296 

GWAS of MacTel type 2 uncovered 3 genome-wide significant loci and the authors 297 

noted that two of these loci were involved in serine/glycine metabolism, with the alleles 298 

associated with low glycine and serine conferring increased risk of MacTel type 2 (Scerri 299 

et al., 2017). The authors speculated that the low serine levels could lead to high levels 300 

of ammonia and glutamate causing neurotoxicity and stress-induced angiogenesis 301 

(Scerri et al., 2017). Gantner et al. have since provided evidence that low serine levels 302 
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result in elevated levels of deoxysphingolipids to trigger cell death in photoreceptors 303 

(Gantner et al., 2019). iCPAGdb rediscovered the connection of two loci being shared 304 

between serine in serum (measured by (Shin et al., 2014)) and risk of MacTel (Fig. 2C, 305 

D; p=4.0x10-7; 99,010-fold enrichment). iCPAGdb also revealed 7 other serum 306 

metabolites including glycine that shared an association with rs715 but not with the 307 

second MacTel locus. While serine was not part of the urine metabolomics dataset, 308 

iCPAGdb did detect overlap of glycine in urine and MacTel type 2 (p=0.01). 309 

We also included host-pathogen traits from H2P2, a cellular GWAS we 310 

previously carried out using 528 lymphoblastoid cell lines (LCLs) exposed to 7 different 311 

pathogens (Wang et al., 2018). Notably, unlike the metabolomics datasets, H2P2 312 

identified SNPs associated with traits at baseline and in response to stimuli. Further, as 313 

pathogens have likely been drivers of human evolution (Fumagalli et al., 2011; Pittman 314 

et al., 2016), comparing H2P2 to human disease GWAS may reveal unintended 315 

consequences of past pandemics on the human genome. Previously, we reported 316 

colocalization of a locus regulating CXCL10 levels following Chlamydia trachomatis 317 

infection (rs2869462) and risk of inflammatory bowel disease (Wang et al., 2018). 318 

iCPAGdb revealed shared genetic variants for this H2P2 phenotype and blood levels of 319 

CXCL9 (MIG) (Ahola-Olli et al., 2017) (Fig. 2E; p=0.04). P-values for the two 320 

associations are strongly correlated (Fig. 2F), and the effect size for SNPs associated 321 

with both chemokines are significantly positive correlated (Fig. 2G).  We utilized COLOC, 322 

which uses a Bayesian framework to determine whether GWAS signals in the same 323 

region are likely due to the same causal variant (Giambartolomei et al., 2014). The 324 

posterior probability that both CXCL10 protein levels from cells and CXCL9 levels in 325 
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blood share the same causal variant is 0.90 (Table 2), with rs2869462 identified as the 326 

most likely causal SNP (Table S3). The genes encoding these two chemokines are 327 

adjacent to each other on chromosome 4, and this result points to variants regulating 328 

expression of both genes that will make it challenging to disentangle their effects in 329 

disease. 330 

 331 
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 332 

Figure 2. iCPAGdb integrates GWAS of different scales to reveal biological 333 

insight. 334 
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(A) Multi-dataset network of cross-phenotype associations detected by iCPAGdb. 335 

Phenotypes that demonstrated significant overlap (FDR ≤ 0.1) are color-coded in the 336 

indicated colors. 337 

(B)  Riverplot of macular telangiectasia type 2 (MacTel type 2) cross-phenotype 338 

associations generated from iCPAGdb shows causal connections, comorbid outcomes, 339 

and regulators of disease.  340 

(C)  Cross-phenotype associations connecting MacTel type 2 and serine. One locus 341 

demonstrated direct SNP overlap (rs715). A second locus demonstrated indirect overlap 342 

based on 4 SNPs in LD as visualized in the heatmap color-coded by LD.  343 

(D)  A model for how SNPs regulate serine levels to impact pathogenesis of MacTel 344 

type 2 based on iCPAGdb and prior work described in the text.  345 

(E)  Regional Miami colocalization plot demonstrates a genetic locus that impacts 346 

both CXCL10 level in lymphoblastoid cell lines following Chlamydia trachomatis 347 

infection and CXCL9 (MIG) levels in whole blood. 348 

(F) Comparison of -log10(p value) for GWAS of CXCL10 following Chlamydia 349 

trachomatis infection and levels of CXCL9 (MIG) in whole blood. The lead SNP in the 350 

region for each phenotype is marked. 351 

(G)  Scatter plot demonstrates a highly positive correlation of the effect coefficients of 352 

cellular CXCL10 after Chlamydia trachomatis infection and of SNPs associated with 353 

blood CXCL9 levels. Each dot represents a SNP which has p value < 0.01 for both 354 

phenotypes. A total of 413 SNPs from a 4-mb window surrounding the leading SNP 355 

rs2869462 was selected. The blue vertical or red horizontal bar shows the standard 356 

error of the beta value for each SNP.  357 
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Table 2. COLOC analysis output. PP3 is the posterior probability for the model where 358 

the two traits have independent causal variants. PP4 is the posterior probability for the 359 

model where the two traits share a single causal variant. 360 

 361 

Trait1 Trait2 Locus SNP # PP3 PP4 PP3+PP4 PP4/PP3 Lead causal 

SNP 

CXCL10 

level after 

Chlamydia 

infection 

Blood CXCL9 

levels 

CXCL10 1533 0.101 0.899 1.00 8.91 rs2869462 

COVID-19 Plasma CD209 

antigen level 

ABO 56 0.0159 0.984 1.00 61.72 rs505922 

COVID-19 idiopathic 

pulmonary 

fibrosis 

DPP9 1233 0.00216 0.994 0.996 459.63 rs12610495 

 362 

Application of iCPAGdb to COVID-19 reveals susceptibility due to ABO may occur 363 

through regulation of CD209 364 

 We applied iCPAGdb to a recently published GWAS of severe COVID-19 with 365 

respiratory failure (Ellinghaus et al., 2020). While this study focused on two genome-366 

wide significant associations at the ABO locus and in a cluster of chemokine receptors 367 

and other genes on Chromosome 3, we relaxed the p-value threshold for iCPAGdb to 368 

1 × 10−5, resulting in 24 suggestive loci after LD clumping. Not surprisingly, iCPAGdb 369 

revealed that the genome-wide significant association near the blood type locus ABO is 370 

in LD with multiple other SNPs in this region associated with other human diseases and 371 

traits (Fig. 3A; Table S4). This included the classic association with malaria resistance 372 

(Timmann et al., 2012), but also less well known associations with duodenal ulcer 373 

(Tanikawa et al., 2012), pancreatic cancer (Amundadottir et al., 2009), and heart failure 374 

(Shah et al., 2020). Multiple studies have now reported the association of the ABO locus 375 

with risk of COVID-19 (Ellinghaus et al., 2020; Zhao et al., 2020). The causal effect on 376 

COVID-19 may involve A and B antigens on blood cells, antibodies against A and B 377 
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antigens, the enzymatic activity of the ABO glycosyltransferase on possibly other 378 

glycoproteins, or even other genes in the region. Insight into these possible 379 

mechanisms was revealed by iCPAGdb, which identified association of this locus with 380 

levels of 8 individual proteins in the NHGRI-EBI GWAS catalog. These proteins, all 381 

encoded on different chromosomes than ABO, include IL-6, TNF-α, CD209 (DC-SIGN), 382 

Tie-1, mannose-binding protein C, FGF23, and clotting factors (factor VIII and vWF). In 383 

each of these cases, the association of the locus to both molecular trait and disease 384 

provides a plausible causal chain from SNP to cis-effect on ABO to trans effect on a 385 

protein to severe COVID-19 disease. For example, association with VWF and Factor 386 

VIII may indicate ABO affects COVID-19 through regulation of thrombosis, as patients 387 

with severe COVID-19 can have thromboembolic complications as part of a hyper-388 

inflammatory state (Wool and Miller, 2020). In fact, both VWF and factor VIII are targets 389 

of glycosylation by ABO (Canis et al., 2018; Matsui et al., 1992; Sodetz et al., 1979) and 390 

levels of these proteins are reported to be regulated by ABO (Albanez et al., 2016; 391 

Gallinaro et al., 2008; Murray et al., 2020; Shima et al., 1995; Song et al., 2015). Further, 392 

regulation of levels of IL-6 and TNF-α suggest possible regulation of inflammation, as 393 

“cytokine storm” plays an important role during severe COVID-19 (Mangalmurti and 394 

Hunter, 2020). Most interestingly, the ABO locus is associated with both COVID-19 and 395 

CD209 (p=0.008). A preprint recently confirmed this association across populations, and 396 

these authors speculated that ABO may affect CD209 levels to regulate SARS-CoV-2 397 

entry (Katz et al., 2020). Indeed, there has since been evidence from two preprints that 398 

CD209 can bind to SARS-CoV-2 and can act as a receptor for entry into immune cells 399 

(Amraie et al., 2020; Chen et al., 2021).  400 
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The “A” allele of rs657152 associated with increased risk of COVID-19 with 401 

respiratory failure is also associated with increased levels of CD209 (Fig. 3B). We 402 

performed colocalization analysis of the GWAS signals for COVID-19 (Ellinghaus et al., 403 

2020) and CD209 protein levels (Suhre et al., 2017). This analysis indicated the two are 404 

likely driven by the same causal variants (Fig. 3C; COLOC posterior probability PP4 = 405 

0.98 with the lead causal SNP of rs505922; Table S5). Thus, iCPAGdb and subsequent 406 

colocalization analysis support a model where ABO regulates CD209 protein levels to 407 

impact COVID-19 risk, though much future experimental and clinical studies will be 408 

required to fully test this hypothesis (Fig. 3D). The pleiotropic effects of ABO on levels of 409 

multiple proteins will make defining the mechanism challenging. 410 

 411 

Shared gene

Interstitial 
   lung
 disease

B

C

D
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Figure 3. Cross-phenotype association of ABO reveals a possible role for CD209 412 

in severe COVID-19. 413 

(A) A network of genetic associations involving severe COVID-19. Each node represents 414 

either a disease/trait (filled circles) or a gene (dark blue diamond). The ABO locus was 415 

associated with multiple other diseases and levels of specific proteins, while DPP9 connects 416 

COVID-19 only with IPF and interstitial lung disease (idiopathic interstitial pneumonia).  417 

(B) Regional Miami colocalization plot demonstrates the ABO locus impacts both 418 

CD209 protein levels and risk of severe COVID-19. 419 

(C) A significant positive correlation for effect size of SNPs in the ABO locus on 420 

CD209 protein levels and risk of severe COVID-19. 421 

(D) Model of how ABO may affect CD209 and severe COVID-19. 422 

Application of iCPAGdb to COVID-19 reveals a role for DPP9 in regulation of both 423 

COVID-19 and idiopathic pulmonary fibrosis 424 

Beyond ABO, a locus in the dipeptidyl peptidase 9 (DPP9) gene associated at 425 

p<1x10-5 with severe COVID-19 was identified as being shared with a GWAS of fibrotic 426 

idiopathic interstitial pneumonia (Fingerlin et al., 2013) and a recent GWAS of the most 427 

severe form of that group of diseases, idiopathic pulmonary fibrosis (IPF) (Allen et al., 428 

2020). rs12610495 was the lead variant for each of these GWAS studies as well as the 429 

suggestive peak for severe COVID-19 (p=5.2x10-6; (Ellinghaus et al., 2020)). Much 430 

evidence has already accumulated that pulmonary fibrosis is a hallmark of severe 431 

COVID-19 (Ojo et al., 2020; Shi et al., 2020). While the association of rs12610495 with 432 

COVID-19 did not reach genome-wide significance in Ellinghaus et al. 2020, this SNP is 433 

in LD with the lead variant from a recent GWAS of critically ill COVID-19 patients that 434 

does surpass genome-wide significance (p=3.98x10-12; (Pairo-Castineira et al., 2020); 435 
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R2=0.95 in 1000 Genomes European populations). Thus, iCPAGdb alerted us to the 436 

importance of a suggestive COVID-19 susceptibility locus that has since been validated 437 

in an independent cohort. 438 

We determined that rs12610495 is an eQTL in lung tissue for the gene for DPP9 439 

(and no other genes in the region) in GTEx (p=4.5x10-9; (Bao et al., 2015)), with the “G” 440 

allele being associated with lower expression (Fig. 4A). Interestingly, DPP9 is a 441 

protease in the same family as DPP4, the receptor for MERS-coronavirus (Raj et al., 442 

2013). Additionally, DPP9 is an inhibitor of inflammasome activation by NLRP3 (Okondo 443 

et al., 2017; Okondo et al., 2018; Zhong et al., 2018). Colocalization analysis confirmed 444 

the signals from severe COVID-19 and IPF are likely driven by the same causal variant 445 

(Fig. 4B; COLOC posterior probability PP4 = 0.994, lead SNP rs12610495; Table S6). 446 

Based on these data and the known biology, we developed alternative hypotheses for 447 

how this SNP might be regulating risk of severe COVID-19: DPP9 may be acting as a 448 

previously unrecognized receptor for SARS-CoV-2 or it may be inhibiting inflammation 449 

during COVID-19 infection. Based on the directionality of effect of rs12610495 on DPP9 450 

gene expression, the “G” allele should lead to lower DPP9 expression and less entry if 451 

the receptor model is correct. However, the “G” allele is instead associated with 452 

increased risk of severe COVID-19 (Fig. 4C). Alternatively, the “G” allele could lead to 453 

lower DPP9 to increase inflammasome activation in lung tissue, a model consistent with 454 

“G” increasing risk of severe COVID-19 and this allele also increasing risk of idiopathic 455 

pulmonary fibrosis (Fig. 4D).  456 

To further examine the role of DPP9 in COVID-19, we analyzed transcriptomics 457 

of peripheral blood from COVID-19 patients (McClain et al., 2020). Levels of DPP9 458 
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expression across 46 COVID-19 patients were compared to individuals with seasonal 459 

coronavirus, influenza, bacterial pneumonia, and healthy controls. DPP9 levels were 460 

significantly increased in COVID-19 patients compared to the other groups (fold-change 461 

= 1.15, p = 0.003 adjusted by Benjamini-Hochberg method). Comparing COVID-19 data 462 

vs. each comparator individually revealed that DPP9 levels were elevated vs. healthy 463 

controls (p = 0.0016) and bacterial infection (p = 0.0078) but not influenza or other 464 

coronavirus infection (Fig. 4E). This data supports a role for DPP9 in the host response 465 

to viral infections. In examining all samples in the cohort, increased DPP9 was observed 466 

both early and late in COVID-19 infection (Fig. 4F). However, eleven subjects that did 467 

not require hospitalization had repeated measurements at day 0 (initial enrollment into 468 

the study), day 7, and day 14 that revealed changes in DPP9 expression as infection 469 

resolved. While DPP9 expression increased from day 0 compared to 7 days and 14 470 

days (Fig. 4G; p = 0.0089), symptom severity dramatically improved over this period 471 

(Fig. 4H; p = 0.00006). We speculate that DPP9 may be induced to effectively turn off 472 

the inflammatory response to SARS-CoV-2 to minimize tissue damage and fibrosis. 473 

Combined with our human genetic data, these findings suggest that insufficient 474 

induction of DPP9 expression could predispose to severe COVID-19.  475 
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 476 

Figure 4. Cross-phenotype analysis and COVID-19 patient transcriptomics reveals 477 

a role for DPP9 in severe COVID-19. 478 
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(A) Lung eQTL data from GTEx shows rs12610495 “G” allele is associated with 479 

reduced expression of DPP9.  480 

(B) Regional Miami colocalization plot demonstrates the DPP9 locus impacts both 481 

idiopathic pulmonary fibrosis and risk of severe COVID-19. 482 

(C) A significant positive correlation for effect size of SNPs in the DPP9 locus on 483 

idiopathic pulmonary fibrosis and risk of severe COVID-19. 484 

(D) Model of how DPP9 may affect idiopathic pulmonary fibrosis and risk of severe 485 

COVID-19. 486 

(E) DPP9 expression in peripheral blood is significantly higher in COVID-19 patients 487 

compared to healthy and bacteria-infected patients. The p values were calculated using 488 

the Wilcoxon rank-sum test.  489 

(F) COVID-19 patients demonstrate significantly higher DPP9 expression compared 490 

to healthy controls during early (days 1-10), middle (days 11-20) and late (21+ days) 491 

stages of SARS-CoV-2 infection. The p values were calculated using the Wilcoxon rank-492 

sum test. 493 

(G) DPP9 demonstrates increased expression during recovery from COVID-19. A 494 

total of 11 patients were measured sequentially at enrollment (day 0), day 7, and day 495 

14. The colored dash line connects measurements from the same patient across time 496 

points. P value was calculated using Friedman test.  497 

(H) Decreased symptom severity scores of COVID-19 patients over time. The eleven 498 

subjects in G were assessed for symptom severity at day 0, 7 and 14. The colored dash 499 

line connects measurements from the same patient across time points. P value was 500 

calculated using Friedman test. 501 
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Searching the iCPAGdb web server with user-provided GWAS summary statistics 502 

 As the above examples demonstrate, iCPAGdb analysis can rapidly generate 503 

hypotheses connecting molecular and cellular traits to human disease. The website 504 

allows quick access to the pre-calculated cross-phenotype associations results 505 

described in this manuscript. Users can also upload their own GWAS summary 506 

statistics for comparing against all 4414 GWAS traits in the iCPAGdb website, 507 

facilitating the discovery of new cross-phenotype relationships. Total time for uploading, 508 

clumping of summary statistics, and calculation of cross-phenotype associations is 509 

typically <2 minutes. 510 

 511 

Discussion 512 

The expansion of GWAS studies to more molecular, cellular, and human disease 513 

traits requires the development and implementation of new tools to facilitate drawing 514 

meaningful connections between phenotypes and understanding the molecular 515 

mechanisms that explain this shared genetic architecture. Our work demonstrates that 516 

leveraging available GWAS summary statistics and efficient algorithms of integrating 517 

pleiotropic information using ancestry-specific LD structure can rapidly reveal cross-518 

phenotype associations across different phenotypic scales, which can be applied in 519 

real-time to better understand ongoing health crises such as the SARS-CoV2 pandemic. 520 

In examining cross-phenotype connections, it is important to carefully examine 521 

the overlapping SNPs provided as part of the iCPAGdb output to determine 1) the 522 

genome location where the variants are located, as some may be adjacent/overlapping 523 

loci in weak LD and not truly distinct, and 2) how well identified GWAS signals from two 524 
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traits overlap. Indeed, we view iCPAGdb as the first step in a pipeline for gaining greater 525 

understanding of any GWAS that then moves to colocalization analysis (see Fig. 2E, 3B, 526 

4B; Table S3, S5, S6), to further dissect GWAS signals in the same region. Making 527 

summary statistics more readily available for all GWAS, especially earlier studies in 528 

NHGRI-EBI GWAS, would facilitate these validation studies. Finally, functional studies 529 

in model systems and clinical studies are needed to test the proposed hypothesis and 530 

deeply understand the underlying mechanisms. 531 

While the current web implementation of iCPAGdb uses NHGRI-EBI GWAS 532 

catalog (Welter et al., 2014), H2P2 (Wang et al., 2018), and metabolomics GWAS 533 

datasets (Raffler et al., 2015; Shin et al., 2014), additional datasets of molecular, 534 

cellular, and disease GWAS can be easily added. Analysis of user-uploaded GWAS 535 

may be the most useful application of iCPAGdb and will lead to discovery of new 536 

connections among human phenotypes to encourage experimental and clinical follow-537 

up studies. Our studies of COVID-19 provide a test case for this and revealed possible 538 

mechanisms underlying the associations of severe COVID-19 with ABO and DPP9. 539 

While our work highlights shared genetic architecture regulating ABO, protein 540 

abundance, and COVID-19, much work remains to be done to understand the 541 

mechanisms underlying these connections. The ABO locus controls abundance of many 542 

proteins. Some of these proteins, such as VWF and Factor VIII, have already been 543 

shown to be regulated by glycosylation of ABO (Canis et al., 2018; Matsui et al., 1992; 544 

Sodetz et al., 1979). For CD209, ABO is a pQTL, but it is unknown whether CD209 545 

protein abundance is regulated by ABO glycosylation. CD209 has a predicted N-linked 546 

glycosylation site (N80) and glycosylation has been observed by mass spectrometry 547 
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(http://glycositeatlas.biomarkercenter.org/glycosites/33001/). Whether human genetic 548 

variation also impacts CD209 glycosylation is also an unanswered question. Previous 549 

studies have examined protein glycosylation as a GWAS trait, resulting in 16 genome-550 

wide significant loci (Huffman et al., 2011; Lauc et al., 2010; Sharapov et al., 2019), 15 551 

of which have been recently replicated (Sharapov et al., 2020). However, these studies 552 

quantified total plasma N-glycans released from proteins and did not specifically 553 

quantify glycosylation and glycoforms for individual proteins. Future GWAS quantifying 554 

individual glycosylated protein isoforms, as well as other post-translational modifications, 555 

may therefore be valuable. 556 

The shared underlying genetic risk factors for IPF and COVID-19 suggest that 557 

DPP9 may have a common role in pathogenesis in these diseases. iCPAGdb was able 558 

to identify this connection in the first published COVID19 GWAS despite the DPP9 allele 559 

being below genome-wide significance in that cohort, demonstrating the utility of 560 

iCPAGdb in expanding the power of GWAS studies on emerging and understudied 561 

diseases. We speculate that characteristics of inflammasome-mediated responses, 562 

normally suppressed by high expression of DPP9, may predispose to fibrosis. The 563 

shared genetic architecture also suggests that therapeutic approaches targeting fibrosis 564 

may be beneficial in both conditions. Pirfenidone and Nintedanib are anti-fibrotic FDA-565 

approved drugs used to treat IPF, and our findings support the idea that these drugs 566 

may prove beneficial in COVID-19 (Ferrara et al., 2020; George et al., 2020; Seifirad, 567 

2020). As our examination of COVID-19 demonstrates, iCPAGdb is a powerful 568 

hypothesis engine that will lead to a deeper understanding of the genetic underpinnings 569 

of human disease risk, severity, and drug response.  570 
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Materials and Method 571 

Collection of GWAS summary statistics  572 

Publicly available GWAS summary statistics were downloaded from the following 573 

sources: 3793 traits from NHGRI-EBI GWAS Catalog (version 1.02, downloaded on 574 

2020/08/05), 79 traits from H2P2 cellular GWAS (Wang et al., 2018), 587 traits from 575 

human blood circulating metabolites and urine metabolites GWAS (Raffler et al., 2015; 576 

Shin et al., 2014). NHGRI-EBI GWAS catalog traits included annotation by Experimental 577 

Factor Ontology (EFO). All GWAS data were harmonized to genome coordinates of 578 

HG19. In total, we collected 4,225 GWAS traits, and 104,247 Trait-SNPs pairs at a p 579 

value threshold of 5 × 10−8 . A detailed list of trait-SNP pairs at varying p-value 580 

threshold can be found in Table 1. 581 

Severe COVID-19 GWAS summary statistics were downloaded from the GRASP 582 

website (https://grasp.nhlbi.nih.gov/Covid19GWASResults.aspx) (download date 583 

2020/07/15). Genome coordinates were converted from GRCh38 to HG19 using UCSC 584 

liftOver. GWAS summary statistics of IPF were kindly provided by Allen et al. 2020 after 585 

requesting access https://github.com/genomicsITER/PFgenetics. 586 

 587 

LD clumping  588 

GWAS summary statistics were individually pre-processed by LD clumping using PLINK 589 

v1.9 (Chang et al., 2015), based on genotypes from European populations from the 590 

1000 Genome project. The general PLINK command was “--clump-p1 1e-5 --clump-p2 1 591 

--clump-r2 0.4 --clump-kb 1000”. For NHGRI/EBI GWAS catalog, the index SNPs were 592 

selected using the genome-wide significant p value threshold of 5 × 10−8 (--clump-p1 593 
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5e-8). For molecular and cellular GWAS, we used a varying p-value cutoff from 594 

1 × 10−3  to 1 × 10−5  for --clump-p1 parameter to choose the index SNPs. 595 

For uploaded GWAS data, iCPAGdb calls on PLINK automatically to perform LD 596 

clumping. Users can define the p value for --clump-p1 to select the index SNPs and 597 

choose proper LD structure (European, African, or Asian) based on the ancestry of the 598 

GWAS. 599 

 600 

LD proxy calculation 601 

To maximize phenotypic associations due to indirect associations, pairwise LD  𝑅2 602 

values were computed for each leading SNP against its surrounding SNPs using the 603 

genotypes from the 1000 Genome project (Phase 3 genotypes). Prior to calculation, all 604 

SNPs with minor allele frequency less than 0.01 and missingness > 0.1 were removed. 605 

𝑅2 of pairwise SNPs within 10,000 bp windows were then calculated, and only LD 606 

proxies with R2 > 0.4 were retained in further analysis. The PLINK parameters for 607 

calculating LD was “--ld-window-kb 1000 –ld-window 10000 –keep-allele-order –r2 in-608 

phase with-freqs gz”.  609 

Since GWAS may be performed on diverse populations from different ancestry or 610 

continents, we calculated ancestry-specific LD proxies for European, African, and Asian 611 

populations separately. European population included 503 samples from 5 populations 612 

(CEU, TSI, FIN, GBR, IBS), African included 661 samples from 7 populations (YRI, 613 

LWK, GWD, MSL, ESN, ASW, ACB), and Asian population included 504 samples from 614 

5 populations (CHB, JPT, CHS, CDX, and KHV). We filtered genotypes for each 615 

ancestry population by minor allele frequency more than 0.01 and retained only biallelic 616 
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SNPs. SNPs which have same genome coordinates were merged using “—merge-617 

equal-pos”. For duplicated SNPs with same variant rsID, we kept only the first variant by 618 

using “--rm-dup force-first” using PLINK 2.0, 619 

 620 

Cross-phenotype SNP analysis 621 

Cross-phenotype SNPs were used to quantify the similarity of different traits. Cross-622 

phenotype loci were identified as leading SNPs and/or their LD proxies having 623 

statistically significant associations with more than one trait/disease. If two traits shared 624 

a common leading SNP, we termed this “direct association”. If a leading SNP was 625 

associated with one trait, while its LD proxy SNPs were associated with another trait, we 626 

called this “indirect association”. If any shared SNP was in LD with another SNP with R2 > 627 

0.4, these SNPs were merged into a SNP block until no further LD was found across 628 

shared SNP/LD pairs.  629 

The significant association among each trait pair were using the hypergeometric 630 

distribution.  631 

𝑝 =  
(

𝑛2

𝑘
) (

𝑁𝑒 − 𝑛1 − 𝑛2

𝑛1
)

(
𝑁𝑒

𝑛1
)

 632 

Where 𝑁𝑒 is the effective number of independent SNPs in the selected population, the 633 

𝑛1 and  𝑛2 are the number of independent SNPs associated with trait 1 and trait2, and 𝑘 634 

is the number of independent SNPs blocks. The effective number of independent SNPs 635 

for European, African and Asian population were obtained from Table 4 from (Li et al., 636 

2012). 637 
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The significance of associations for all trait pairs was further corrected for all possible 638 

pairwise comparisons using the Benjamini-Hochberg and Bonferroni methods for 639 

multiple test correction. A false discovery rate of 0.1 was chosen to identify significantly 640 

correlated trait pairs.  641 

 642 

Comparison to LDSC 643 

Bulik-Sullivan et al. (Bulik-Sullivan et al., 2015b) developed an innovative and unbiased 644 

method, LDSC, to estimate genetic correlation using GWAS summary statistic for all 645 

measured SNPs. Their model calculated the LD scores for a variant against all other 646 

variants in a 1 centimorgan window and hypothesized that SNPs with higher LD scores 647 

are tagged to a risk-conferring variant, and the genetic correlation among traits can be 648 

calculated by normalizing genetic covariance of SNP heritability. With this method, they 649 

estimated 276 genetic correlations for 24 diseases/traits based on full GWAS summary 650 

statistic (Bulik-Sullivan et al., 2015a). To evaluate the power of iCPAGdb, we calculated 651 

the genetic associations on the same 24 GWAS traits. For each trait pair, only SNPs 652 

associated with each trait passing genome wide significant threshold (5 x 10-8) were 653 

used by iCPAGdb. We quantified the strength of cross-phenotype similarity for each trait 654 

pair using Chao-Sorensen similarity index.  Since the p values from (Bulik-Sullivan et al., 655 

2015a) were not corrected by multiple test correction, we calculated the p values for 656 

𝑟𝑔 using R “p.adjust” function with a total number of 276 comparisons.  657 

 658 

Colocalization analysis 659 
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To evaluate whether the associations of GWAS trait pairs identified by iCPAGdb were 660 

due to sharing the same causal variants, we performed colocalization analysis using R 661 

COLOC packages (Giambartolomei et al., 2014). COLOC uses a Bayesian framework 662 

to estimate the posterior probability that two GWAS traits share two independent causal 663 

signals (PP3) or shares a single casual variant (PP4) in the selected genome region. 664 

For each trait pair evaluated by COLOC, SNPs within 200 kb window from the lead SNP 665 

were included. Since COLOC requires minor allele frequency (MAF) for each SNP in 666 

both GWAS studies, when MAF was not available, we calculated the MAF using 667 

European populations from the 1000 Genome Project. We ran COLOC “coloc.abf” 668 

function using the default prior parameters, p1 = 1x10-4, p2 = 1x10-4, and p12 = 1x10-5. 669 

We also ran built-in “sensitivity” function to evaluate the robustness of predefined priors, 670 

and all tests suggested that default prior parameters are robust, therefore, we ran all 671 

colocalization analyses with default priors values.  672 

 673 

COVID-19 transcriptomic analysis 674 

As described in (McClain et al., 2020), samples were collected as part of the Molecular 675 

and Epidemiological Study of Suspected Infection (MESSI) which was conducted at 676 

Duke University Health System (DUHS) and the Durham Veterans Affairs Health Care 677 

System (DVAHCS). The study was approved by each institution’s IRB. Informed 678 

consent was obtained from all subjects or their legally authorized representatives, and 679 

informed consent were collected for all subjects. SARS-CoV-2 RT-PCR testing was 680 

used to confirm infection status. A total of 46 subjects were analyzed, 14 of which were 681 

assayed at more than 1 timepoint. In total, 77 samples were assayed. Subjects were 682 
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divided into early (≤10 days), middle (11-21 days), and late (>21 days) stage based on 683 

duration of symptoms. Participant self-reported symptoms were recorded at each 684 

timepoint for 39 symptom categories. Each symptom was scored on a scale of 0–4, with 685 

0 indicating not present, 1 mild, 2 moderate, 3 severe, and 4 very severe symptoms.  686 

Daily symptom severity (sum of symptom scores for all symptoms) was determined for 687 

each timepoint.  At enrollment (Day 0), date of symptom onset was determined, and an 688 

initial symptom survey recorded maximum score for each symptom category between 689 

symptom onset and study enrollment.  Total RNA was extracted from peripheral whole 690 

blood, and cDNA libraries prepared using NuGEN Universal Plus mRNA-seq with 691 

AnyDeplete Globin reduction were sequenced on the Illumina NovaSeq 6000, as 692 

described (McClain et al., 2020). In brief, STAR v 2.7.1 (Dobin et al., 2013) was used to 693 

align the short reads and generate the count matrix. The count matrix was further 694 

normalized using TMM method (Robinson and Oshlack, 2010) and log2 transformed. 695 

Associations were performed with generalized linear models (LIMMA, (Ritchie et al., 696 

2015)) and corrected for multiple testing using the Benjamini-Hochberg method 697 

(Benjamini and Hochberg, 1995). Analysis of DPP9 was carried out in R, and p values 698 

were calculated using the Wilcoxon rank-sum test. 699 

 700 

iCPAGdb software and website implementation  701 

iCPAGdb is comprised of two core parts, the back-end computation and the front-end 702 

web browser. The back-end was written in python v3.6 with utilization of SQLite. SQLite 703 

tables were constructed for harmonized GWAS datasets and LD tables for different 704 

populations and are accessed using python sqlite3 package. The GWAS table stores 705 
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clumped GWAS summary statistic, including trait name, trait sources, SNPs’ rsID, beta 706 

values, standard error/standard deviation of beta, effective allele, and p values. The 707 

ancestry-specific LD proxy tables contain pairwise SNPs’ rsID and R2 values (R2 >= 0.4) 708 

for different populations. All SQLite tables were indexed on unique combinations of SNP 709 

and trait or SNP pairs for LD proxy tables, which greatly reduces the searching time. To 710 

further increase calculation speed, the core cross-phenotype analysis part of iCPAGdb 711 

is parallelized by utilizing multiple threads.   712 

Primary software components for the web portion of iCPAGdb are the R statistical 713 

programming language (Team, 2020), the R package Shiny (v1.5.0) for interaction of 714 

web pages with R scripts (Cheng et al., 2020), Shiny Server as a 24/7 multi-user 715 

platform to make Shiny apps publicly accessible (RStudio, 2020), the database 716 

environment SQLite for efficient cient querying of GWAS and CPAG results (Hipp, 2020), 717 

and the R package RSQLite to execute SQL queries from within R scripts (Muller et al., 718 

2020). The results of a CPAG execution are read by the R script, processed, and 719 

presented to the viewer in various tables and graphs on a web page. The iCPAGdb 720 

website is currently loaded with associations across more than 4400 public GWAS 721 

datasets that can be browsed and searched in “Review” mode. The user requests an 722 

existing CPAG result set from which a corresponding table and heatmap are generated 723 

and displayed. Various filtering and graph construction controls are available for 724 

iterative sub-setting of data and selection of significance measure and number of top 725 

signicant phenotype pairs to plot. The “Download" button enables the researcher to 726 

make a local copy of records appearing in the currently displayed results table. 727 

Important packages used in this mode are DT for construction of and interaction with 728 
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tables and ggplot2, plotly, and heatmaply for basic plotting, interactive plotting (hover 729 

labels), and heatmap generation, respectively. The web browser also allows users to 730 

upload their own GWAS summary data, and iCPAGdb will automatically perform LD 731 

clumping based on selected population and generate an atlas of connections for the 732 

user’s GWAS against > 4400 GWAS traits in the database. In this “Upload” mode, the 733 

user browses filles on a local computer, selects a properly formatted GWAS result file of 734 

interest (containing, for a single phenotype, SNP rsIDs and GWAS p-values), specifies 735 

format and column configuration, then uploads the file. Next, CPAG computation 736 

parameter values, including iCPAGdb GWAS set to be crossed with, significance 737 

thresholds for filtering, and linkage disequilibrium (LD) population are specified. When 738 

“Compute CPAG" is pressed, the R script composes a system level command to 739 

execute the CPAG (Python) function. The future() function of the R future package 740 

(Bengtsson, 2020) combined with a delaying pipe from the promises package execute 741 

CPAG operations asynchronously, waiting on completion before resuming R script 742 

execution. Typical run time for a single uploaded GWAS that is already clumped to lead 743 

variants is <30 seconds. For GWAS summary statistics including all SNPs in a study, 744 

run time is typically < 2 minutes. The results are available with downloadable tables and 745 

figures. Additional information on webapp is in Supplemental Note. 746 

 747 

Web resources: 748 

iCPAGdb: http://cpag.oit.duke.edu 749 

NHGRI GWAS Catalog: https://www.ebi.ac.uk/gwas/ 750 

H2P2 cellular GWAS: http://h2p2.oit.duke.edu   751 
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Human metabolite GWAS summary statistics: http://metabolomics.helmholtz-752 

muenchen.de/gwas/index.php?task=download 753 

COVID-19 GWAS summary statistics from Ellinghaus et al. (2020):  754 

https://grasp.nhlbi.nih.gov/Covid19GWASResults.aspx  755 

IPF GWAS: download link was obtained by applying for access following the 756 

collaborative protocol from https://github.com/genomicsITER/PFgenetics 757 

 758 

Tools for visualization: 759 

R packages:  760 

ggplot2: https://cran.r-project.org/web/packages/ggplot2/ 761 

gggene: https://cran.r-project.org/web/packages/gggenes/index.html  762 

tidygraph: https://cran.r-project.org/web/packages/tidygraph/  763 

ggnetwork: https://cran.r-project.org/web/packages/ggnetwork/  764 

circlize: https://cran.r-project.org/web/packages/circlize/   765 

ggpubr: https://cran.r-project.org/web/packages/ggpubr/ 766 

DT: https://cran.r-project.org/web/packages/DT  767 

plotly: https://cran.r-project.org/web/packages/plotly/  768 

heatmaply: https://cran.r-project.org/web/packages/heatmaply/  769 

promises: https://CRAN.R-project.org/package=promises 770 

 771 

Further information and requests for resources should be directed to and will be fulfilled 772 

by the Lead Contact, Dennis C. Ko (dennis.ko@duke.edu). All iCPAGdb output 773 

described in this manuscript are available for browsing from http://cpag.oit.duke.edu. 774 
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Supplemental files also contain iCPAGdb output and COLOC analysis results. Code is 775 

available at GitHub https://github.com/tbalmat/iCPAGdb. 776 
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