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COPAR: A ChIP-Seq Optimal Peak Analyzer
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Sequencing data quality and peak alignment efficiency of ChIP-sequencing profiles are directly related to the reliability and
reproducibility of NGS experiments. Till now, there is no tool specifically designed for optimal peak alignment estimation and
quality-related genomic feature extraction for ChIP-sequencing profiles. We developed open-sourced COPAR, a user-friendly
package, to statistically investigate, quantify, and visualize the optimal peak alignment and inherent genomic features using ChIP-
seq data from NGS experiments. It provides a versatile perspective for biologists to perform quality-check for high-throughput
experiments and optimize their experiment design. The package COPAR can process mapped ChIP-seq read file in BED format
and output statistically sound results for multiple high-throughput experiments. Together with three public ChIP-seq data sets
verified with the developed package, we have deposited COPAR on GitHub under a GNU GPL license.

1. Introduction

Next-generation sequencing (NGS) integrated with ChIP
technology provides a genome-wide perspective for biomed-
ical research and clinical diagnosis applications [1–3].

Data quality and peak alignment of ChIP-sequencing
profiles are directly related to the reliability and repro-
ducibility of analysis results. For example, ChIP-seq data
characterize alteration evidence for transcription factor (TF)
binding activities in response to chemical or environmental
stimuli, but if the ChIP-seq alignment is poorly selected, any
follow-up analysis may lead to inaccurate TF binding results
and inevitable loss of biological meanings [4, 5].

The mostly investigated items in ChIP-seq peak calling
procedures are peak number, false discovery rate (FDR), cor-
responding bin-size, and other statistical thresholds selected
in each analysis. Without exception, such arguments form
impenetrable barriers for biologists and bioinformaticians to
choose a suitable pair condition for analyzing experimental
results.

And to our knowledge, few literatures or application
notes focus on such topics; thus herein we propose a flexible
package based on feature extraction and signal processing

algorithms for solving such an argument-selection optimiza-
tion problem in optimal peak alignment.

In summary, the package COPAR can quantitatively
measure NGS/ChIP-seq experiment quality through global
peak alignment comparison and extract genomic features
based on spectrum method for in-depth analysis of ChIP-
sequencing profiles.

2. Materials and Methods

2.1. Optimal Peak Alignment Estimation. For determining
optimal ChIP-seq alignment, we need to analyze peak num-
bers under specific argument constraints. Thus we acquire
optimal peak numbers by constraining specific arguments,
which can be formalized as a class of optimal track analysis,
illustrated as

argmax
𝑖

𝑃𝑖, 𝑖 ∈ 𝑁

s.t. 𝑓𝑖 ≤ 𝜒,

𝑏𝑖 = 𝛽,

𝑝𝑖 ≤ 𝛿,

(1)
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Figure 1: Flowchart for optimal peak alignment estimation and genomic feature analysis withCOPAR.Thepackage can performoptimal peak
estimation based on global alignment of ChIP-seq data; then it can utilize the frequency spectrum approach for genomic feature extraction
and carries out statistical comparison for multiple ChIP-seq samples.

where 𝑃𝑖 denotes a set of optimal peak numbers under
corresponding argument constraints, 𝑓𝑖 stands for argument
FDR, 𝑏𝑖 stands for bin-size, 𝑝𝑖 denotes 𝑝 value threshold,
and 𝜒, 𝛽, and 𝛿 represent the presupposed argument values,
respectively.

2.2. Spectrum-Based Genomic Feature Extraction. For a finite
random variable sequence, its power spectrum is normally
estimated from its autocorrelation sequence by use of
discrete-time Fourier transform (DTFT), denoted as [6–8]

𝑃 (𝜔) = 1
2𝜋

∞

∑
𝑛=−∞

𝐶𝑥𝑥 (𝑛) 𝑒
−𝑗𝑛𝜔, (2)

where 𝐶𝑥𝑥 denotes autocorrelation sequence of a discrete
signal 𝑥𝑛, defined as

𝐶𝑥𝑥 (𝑖, 𝑗) =
𝐸 [(𝑋𝑖 − 𝜇𝑖) (𝑋𝑗 − 𝜇𝑗)]

𝜎𝑖𝜎𝑗
, (3)

where 𝜇 and 𝜎 stand for mean and variance, respectively.
In our study, for consideration of the ChIP-seq data

characteristics, we use 128 sampling points to calculate dis-
crete Fourier transform, with the related sampling frequency
1 KHz.

3. Results

The COPAR package was developed and open-sourced for
academic biologists, and it uses built-in functions for deter-
mining optimal peak alignment candidate and extracting
genomic features from ChIP-seq dataset.

The package is designed to handle BED-formatted ChIP-
seq data as input [9], and it can process single ChIP-seq
for optimal peak alignment and feature extraction analysis,
together with the capability to perform genome-wide statis-
tical comparison for multiple ChIP-seq samples.The analysis
flowchart for the package is given in Figure 1.

It can automatically determine the optimal peak align-
ment with statistically meaningful FDR through fast global
alignment comparison; the global comparison is subject
to two statistical arguments, namely, bin-size and 𝑝 value
threshold.

The functionalities of our developed package are largely
complementary to and extend current tools used for ChIP-
seq data analysis. The optimal peak alignment estimation is
shown in Figures 2(a) and 2(b); and the spectrum-based fea-
ture extraction is given in Figures 2(c) and 2(d). Figures 2(a)
and 2(b) utilize heatmap to represent peak number and corre-
sponding FDR candidate subject to each argument pair, bin-
size (vertical axis), and 𝑝 value threshold (horizontal axis),
respectively; Figure 2(c) denotes the spectrum distribution
of the global peak alignment candidate sequence, normalized
with its frequency range [0, 500]Hz and magnitude within
[−40, −3] dB; Figure 2(d) denotes the randomized case.

4. Conclusions

Based on global peak alignment, COPAR optimizes the
argument selection inChIP-seq analysis; meanwhile, COPAR
utilizes the signal spectrum processing method to further
extract genomic features and statistically compare multiple
ChIP-seq samples for NGS high-throughput experiments.

In summary, our developed package COPAR can process
mapped read file in BED format and output statistically sound
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Figure 2: Global optimal peak analysis result subject to the arguments bin-size and FDR. (a) Global distributions for peak number candidates
and (b) corresponding false discovery rate, subject to bin-size (vertical axis, from 100 through 500 bp) and 𝑝 value threshold (horizontal
axis, from 0.951 to 0.999), respectively; (c) genomic feature extraction based on spectrum distribution for global peak number candidates
identified from COPAR; (d) spectrum distribution for the randomized sequence.

results for diverse high-throughput sequencing experiments;
we further verified the package with three GEO ChIP-seq
datasets as study cases, and we included the analysis results
into the package manual. The developed package COPAR is
currently available under a GNU GPL license from https://
github.com/gladex/COPAR.

Abbreviations

NGS: Next-generation sequencing
ChIP-seq: Chromatin immunoprecipitation-sequencing
FDR: False discovery rate
TF: Transcription factor
DTFT: Discrete-time Fourier transform.
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