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Abstract: Recent research studies are showing breast tissues as a place where various species of
microorganisms can thrive and cannot be considered sterile, as previously thought. We analysed
the microbial composition of primary tumour tissue and normal breast tissue and found differences
between them and between multiple breast cancer phenotypes. We sequenced the transcriptome of
breast tumours and normal tissues (from cancer-free women) of 23 individuals from Slovakia and
used bioinformatics tools to uncover differences in the microbial composition of tissues. To analyse
our RNA-seq data (rRNA depleted), we used and tested Kraken2 and Metaphlan3 tools. Kraken2
has shown higher reliability for our data. Additionally, we analysed 91 samples obtained from
SRA database, originated in China and submitted by Sichuan University. In breast tissue, the most
enriched group were Proteobacteria, then Firmicutes and Actinobacteria for both datasets, in Slovak
samples also Bacteroides, while in Chinese samples Cyanobacteria were more frequent. We have
observed changes in the microbiome between cancerous and healthy tissues and also different
phenotypes of diseases, based on the presence of circulating tumour cells and few other markers.

Keywords: breast cancer; metatranscriptomics; microbiome; microbiota; Kraken2; primary tumour;
circulating tumour cells; RNA-seq

1. Introduction

In recent years it was found that various organisms are inhabiting different parts of
the human body. Not only bacteria, but also other forms of life and viruses [1]. It has been
estimated that our body harbours 10 times more microbes than our own cells [2]. It was
also predicted, that 500–1000 species of bacteria possibly thrive in our body at any one
time [3]. In the past, the gut microbiome had the most attention (150 times more genes than
in the human genome were found there) [2]. However, bacteria, fungi and viruses have
been found in many different places, also in breast tissue or breast tumour tissue [4,5].

Int. J. Mol. Sci. 2021, 22, 9058. https://doi.org/10.3390/ijms22169058 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-8139-6945
https://orcid.org/0000-0003-0203-2738
https://doi.org/10.3390/ijms22169058
https://doi.org/10.3390/ijms22169058
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22169058
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms22169058?type=check_update&version=2


Int. J. Mol. Sci. 2021, 22, 9058 2 of 21

As a matter of fact, every organ has its own composition of microbiota. It has been
revealed that bacterial composition has an effect on various diseases including metabolic
disorders, inflammatory and autoimmune diseases and allergies. Effects on cancer were
found at multiple different body parts including the stomach, colon, liver, lung and skin [6].
It was proposed that microbiome contributes to 16–18% off all malignancies [7].

It might be useful to mention, that the terms microbiota and microbiome although
easily mixed with each other, have two different meanings. First, microbiota refers to all
microbes, counting bacteria, archaea, fungi, viruses and protozoa in a particular environ-
ment. Then, the microbiome refers to all genomes of a microbiota and it is often used to
describe the entity of microbial traits (functions) encoded by a microbiota [6,8].

Technology of next-generation sequencing allowed to produce amounts of data for
genomic and transcriptomic analyses [9]. RNA-seq data from human tissues contain
traces of other organisms, in other words, reads that don’t come from human transcripts,
but reads originated from transcripts of bacteria, archaea, other eukaryotes or viruses
as it was observed in this study and also was observed by various different research
groups before [10].

In the time when it was known that microbes can be found in breast milk, Urbaniak
et al. decided to look for microbes in normal breast tissue, inspecting 16S rRNA from human
samples collected from two different parts of the world. In Canadian samples they found
to be most abundant Bacillus (11.4%), then Acinetobacter (10.0%), Enterobacteriaceae (8.3%),
Pseudomonas (6.5%), Staphylococcus (6.5%), Propionibacterium (5.8%), Comamonadaceae (5.7%),
Gamma-proteobacteria (5.0%) and Prevotella (5.0%). In the Irish samples, the most abundant
taxa were Enterobacteriaceae (30.8%), Staphylococcus (12.7%), Listeria welshimeri (12.1%), Propi-
onibacterium (10.1%) and Pseudomonas (5.3%). [4]. In another study, Sphingomonas yanoikuyae
was found to be relatively enriched in normal breast tissue [5]. Hieken et al. presented some
differences in their results since their dominant phyla were Bacteroidetes and they found
very little Proteobacteria [11]. In other studies, it was reported that healthy breast tissue
contains Prevotella, Lactococcus, Streptococcus, Corynebacterium, Micrococcus, some levels of
Staphylococcus, Bacteroidetes and Enterobacteriaceae [6]. Costantini et al. report, as other stud-
ies abundance of Proteobacteria, followed by Firmicutes, Actinobacteria and Bacteroidetes [12].

To summarise the results of published works, it can be concluded that Proteobacteria
and Firmicutes are the most repeatedly reported as dominant phyla in breast tissue [11–13].
Their presence in the normal or breast cancer (BC) tissue was suggested to be a result of
adaptation to the fatty acid environment and metabolism in the tissue [4].

The origin of the breast microbiome is not entirely clear, but at least part of it might
be a result of translocation from the gastrointestinal tract, in addition to the skin, via the
nipple-areolar orifices, nipple-oral contact via lactation and/or sexual contact [6,11].

Multiple studies have been reporting differences in microbial compositions between
the normal breast tissue and tumour tissue of breast cancer patients [5,10,14–17]. A higher
abundance of bacteria was found in healthy tissue compared to tumour tissue [5]. However,
there are some differences in the results of different studies. Normal tissue paired to tumour
tissue was found to have different microbial composition compared to normal tissue of
healthy women. Interestingly, similar composition of microbes in tumour sites compared
to normal paired tissue were reported [14,15]. However, different conclusions have been
found in the study of Xuan et al. [5]. Urbaniak et al. report, that compositions of normal
adjacent tissue microbiome from women with benign tumours were closer to normal
adjacent tissue of women with cancerous tumours than for tissue from healthy subjects. A
significant finding is also, that they did not find different microbial profile dependent on
stage of tumour or severity/invasiveness of disease. In multiple points this study appears
contradictory to the findings of Xuan et al. [14].

It is still being discussed how can possibly microorganisms influence breast cancer
progress (if they can). Effects on immune system was proposed as a possible mecha-
nism [5,18]. Microbes can probably also alter some specific pathways and can induce DNA
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changes [14,17,19–22]. In addition to the effects on disease itself, the microbiome has also
the ability to influence treatment procedure [23–25].

Since microbial reads can be found in standard Illumina RNA-sequencing of breast
tissue, we used this fact to uncover microbial and viral composition of primary tumour
tissue of breast cancer patients and breast tissue of healthy women. In our study we
were looking for changes in the microbiome between healthy and cancer tissues and also
between different phenotypes of disease: the presence of circulating tumour cells (CTC) in
patient’s blood, molecular subtypes of disease and multiple markers presence or absence.

2. Results
2.1. Normal Breast Tissue Microbial Composition

We analysed RNA-seq total transcriptomic data (rRNA depleted) from primary tu-
mour tissue breast cancer patients and normal tissue from healthy women by Kraken2
and Metaphlan3. Data were acquired from primary breast tumours and normal breast
tissue, which were collected from donors from Slovakia. The second dataset, that we used,
RNA-seq data originated from primary breast tumour and normal breast tissue collected
from donors in China, was acquired from SRA database (SRA study PRJNA553096). Data
were trimmed according to quality control results, reads that didn’t map on human genome
hg38 (4.7–7.3% of all reads) were used for the identification of microbes. It is necessary to
note, we report here the presence of bacterial transcript, what means it is not the numbers
of bacteria that lies behind numbers, but it is in fact trail of their activity. Among all
sequencing reads (before filtering out human reads) originated from samples collected in
Slovakia, 0.029% were assigned to some microbial feature. For Chinese data, we observed a
similar number 0.034%. These numbers specify how many microbial transcripts are present
in the mix with dominant human transcripts.

In normal breast tissue of healthy Slovak women (5 samples) we observed the presence
of 4 predominant phyla of bacteria, led by Proteobacteria (47% of total bacteria), while
Bacteroidetes, Firmicutes and Actinobacteria follow (equally 12%). Hymenobacter (7%) and
Sphingomonas (5%) were the most abundant on the level of genus.

For Chinese samples, the bacterial composition had some differences compared to
Slovak data. In normal breast tissue, Proteobacteria were a leading force again, with similar
abundance as in Slovak samples (42%), but in this case, Firmicutes were with the same
abundance (42%), making them more prevalent than in Slovak samples and Actinobacteria
followed (with 5%), while Bacteroidetes were significantly less prevalent compared to Slovak
samples and were outnumbered by Cyanobacteria (4%). The most frequent species were
Lacticaseibacillus rhamonosus (13%) and Pasteurella multocida (5%). Genus Lacticaseibacillus
was abundant with 25%, Xanthomonas 6%. Sphingomonas, previously identified as abundant
made up just 0.3% of all bacteria and Hymenobacter was even more rare. The bundance of
the most common bacteria (by transcripts) is shown in Figure 1.

2.2. Microbiome in Primary Breast Tumour

In breast tumour tissues of Slovak women (18 samples) the same phyla as in healthy
tissue are the most abundant, while a portion is changed: Proteobacteria (44%), Actinobacteria
(16%), Firmicutes (9%) and Bacteroidetes (3%).

In breast primary tumours of patients from China, most prevalent were Proteobacteria
(42%), then Firmicutes (30%), Actinobacteria (13%), Cyanobacteria (3%), Tenericutes (2%)
and Bacteroidetes (1%). One sample had a rapid increase in Chloroflexi (90%), possibly
contaminated and left out from complete statistics. Abundance of dominating bacteria
in primary breast tumour are shown on Figure 1 and abundances of the most frequently
identified taxa (among bacterial transcripts) in tumour tissue and healthy tissue of both
geographical origins are compared on Figure 2, which is supplemented by numerical
values from individual samples in Table S1 and in Figure S1 illustrating boxplot graphs for
all samples.
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Figure 1. Abundance of different microbial taxa transcript in RNA-seq data. (a) in primary tumours of Slovak patients; (b) 
in normal breast tissue of Slovak cancer-free donors; (c) in primary tumours of patients from China; (d) in normal breast 
tissue of cancer-free donors from China. 
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In breast tumour tissues of Slovak women (18 samples) the same phyla as in healthy

tissue are the most abundant, while a portion is changed: Proteobacteria (44%), Actinobac-
teria (16%), Firmicutes (9%) and Bacteroidetes (3%). 

In breast primary tumours of patients from China, most prevalent were Proteobacteria 
(42%), then Firmicutes (30%), Actinobacteria (13%), Cyanobacteria (3%), Tenericutes (2%) and
Bacteroidetes (1%). One sample had a rapid increase in Chloroflexi (90%), possibly contam-
inated and left out from complete statistics. Abundance of dominating bacteria in primary 

Figure 1. Abundance of different microbial taxa transcript in RNA-seq data. (A) in primary tumours of Slovak patients;
(B) in normal breast tissue of Slovak cancer-free donors; (C) in primary tumours of patients from China; (D) in normal
breast tissue of cancer-free donors from China.

In healthy normal tissue of Slovak donors, numerous bacterial taxa were present
in higher numbers compared to tumour tissue of Slovak women. Using LEfSe tool for
statistical analysis, we report multiple taxa which transcript numbers correlate with disease.
The most significantly overrepresented genus in normal tissue was Hymenobacter (as it is
shown in Figure 3 with other taxa called by LEfSe). In addition, Bacteroides, Peanibacillus,
Bifidobacterium, Pantoea, Collinsella, Sphingomonas, Methylobacterium and multiple other taxa
were called by LEfSe. The most overrepresented of all taxa were transcripts of phylum
Bacteroidetes. Most differentially abundant taxa in Slovak samples are also differentially
abundant in Chinese, however more taxa were identified to be differentially abundant in
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Chinese data (with more samples). In the case of Chinese samples, on average 4.6 times
more microbial reads (normalised according to total read counts) were found in healthy
tissue than in tumour tissue, while in Slovak samples healthy tissues had more microbial
transcripts than tumours, although the difference was not as obvious (1.84).
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Figure 2. Comparison of abundance (in % of all bacterial reads calculated by Krona evaluation of multiple Kraken2 ouputs)
of the most frequent taxa between all basic groups: breast tumour tissue of Slovak patients with breast cancer, normal breast
tissue of Slovak donors, breast tumour tissue of Chinese patients with breast cancer (SRA study PRJNA553096), normal
breast tissue of Chinese donors (SRA study PRJNA553096), Numerical values for every sample individualy are listed in the
Supplementary Table S1.

In contrast to many taxa abundant in normal tissue, we identified just a few candidates
for overrepresented bacterial transcripts in tumour tissue. The most serious candidate
would be Streptomyces, although it was found to be in different numbers only in Chinese
tissue samples. In both datasets, there were overrepresented viruses Siphoviridea, in Chinese
patients, also Myoviridae. For Slovak patients, genus Acinetobacter, Rhodobacter, Micrococcus,
order Corynebacteriales and species Priestia megaterium were enriched in breast tumours.
Results are shown in Figure 3 (Filtered more strictly for the purpose of visualisation).

Even though an increasing number of samples from BC patients in case of SRA
(Chinese) data analysis (from 19 to 73) did some effect, we got the same bacterial taxa
as most significantly overrepresented in normal tissue, while results showed new hits
for overrepresented taxa in tumour tissue, however some of them were identified just
in few samples (considered outliers) and might be false positives. For example, one
extreme sample with a lot of Chloroflexi caused this taxon, to be listed as significantly
overrepresented in BC.
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cancer-free donors) and breast tumour tissue. Taxa on the left have a higher abundance of their transcript in primary breast
tumour tissue, while those on the right have higher numbers in normal breast tissue. (A) Comparison of the microbiome
in primary tumours of Slovak patients and normal breast tissue of Slovak cancer-free donors. Since standard conditions
identified too many results, to visualise data, LEfSe was run with parameters (LDA > 3, Kruskal Wallis test p-value < 0.05,
Wilcoxon test p-value < 0.05); (B) Comparison of microbiome in primary tumours of 72 patients from China and 18 normal
breast tissues of cancer-free donors from China. For visualisation, LEfSe was run with parameters (LDA > 5.5, Kruskal Wallis
test p-value < 0.05, Wilcoxon test p-value < 0.05), for the purpose of visualising the best hits. Full results of LEfSe (LDA > 2)
are available on the website http://www.embnet.sk/supp/BC_metatranscriptomics/complete_plots_plotLEfSeResults/
(accessed on 19 August 2021).

2.3. Association between Clinico-Pathological Characteristics and Microbiome

Additionally, we inspected if there are changes in the microbiome between different
phenotypes of breast cancer. Those comparisons were done only for our own samples from
Slovakia since we possessed additional information about patients and disease phenotype.
This information was not available for Chines samples. Results in the form of graphs, that
are not mentioned here, can be found on the website http://www.embnet.sk/supp/BC_
metatranscriptomics (accessed on 19 August 2021).

http://www.embnet.sk/supp/BC_metatranscriptomics/complete_plots_plotLEfSeResults/
http://www.embnet.sk/supp/BC_metatranscriptomics
http://www.embnet.sk/supp/BC_metatranscriptomics
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2.3.1. CTC Status (Presence of Circulating Tumour Cells in the Blood)

We looked if there are changes in microbial transcript amounts between patients
with circulating tumour cells in their blood and without them. Interestingly there were
more groups abundant in tumours of patients with circulating tumour cells (CTC) present
in their blood (CTC+). Patients without CTC in their blood (CTC−) were enriched on
viruses—order Caudovirales: family Siphoviridae (genus Gorganvirus) and Myoviridae. From
bacteria, species Pasteurella multocida and Asticcacaulis excentricus and genus Delftia. For
CTC+ samples, the most abundant transcripts had order Micrococcales, genus Rhodococcus,
Bacillus, Devosia and Moraxella (Moraxella osloensis). In addition, an abundance of family
Sphingomonadacea, Rhodobacteracea and order Rhizobiales was observed. All taxa correlated
with CTC status are shown in Figure 4A. It appears, that tumours of CTC+ patients
might be richer for microbiome than tumours of CTC− patients. In tumours of CTC+
patients, 1.88-times more microbial transcript reads (compared to those marked as CTC−)
were identified.

2.3.2. Hormone Receptor and HER2 Status

One of the cancer phenotypes comparison, where significant changes in microbial
composition were observed was between HR+ and HR− disease. Those patients, which
were positive on HR marker have been identified with multiple abundant taxa in their
tumour tissues. Worth to mention are genus Paracoccus, Actinomyces, Hydrogenophaga,
Halomonas, species Cutibacterium granulosum, Bacillus cereus, Staphylococcus aureus, Clostrid-
ium tetani, Acinetobacter baumannii and Spirosoma Pollinicola. HR- samples were possibly
enriched for genus Acinetobacter, Rhodobacter and Streptomyces, family Burkholderiaceae,
species Priestia megaterium (Figure 4B). In HER2+ tumours, bacterial group Burkholderiales
were found to be overrepresented, although only 4 patients had HER2+ disease status
(Figure 4C).

2.3.3. P53 Status

For patients positive for p53 protein, some taxa were underrepresented (Sphingomonas,
Rhizobiaceae and species of Staphylococcus). Enriched was species Klebsiella pneumoniae.

2.3.4. T and N Stage, Tumour Grading

Phyla Bacteroidetes, family Bifidobacteriaceae (genus Bifidobacterium) and bacteria Clostrid-
ium tetani was associated with smaller tumours (in comparison to tumours smaller than
2 cm and tumours bigger than 2 cm). Acidobacteria correlated with a higher T stage.

In the case of axillary lymph node involvement, some microbes are correlated with
NO status, which is a group with less advanced disease with a better prognosis. The
most possibly enriched are families: Bacilaceae (species Bacillus subtilis), Oxalobacteriacea,
Microbacteriaceae, Rhizobiaceae, Nocardiaceae, Hymenobacteraceae (genus Hymenobacter) and
Acetobacteraceae. In the case of tumour grading, a low grade was associated with enrichment
of species Bacillus aureus, Staphyloccocus aureus, Actinomyces oris, Spirosoma Polinica and
also family Acetobacteraceae. The high grade was found to be more inhabited by families
Burkholderiaceae, Lachnospiraceae and species Pseudolysobacter antarcticus.

2.3.5. Molecular Subtype

Molecular subtypes of breast cancer were assigned with enriched taxa too. For HER2+
BC, order Burkholderiales were enriched compared to other subtypes. From triple neg-
ative breast cancer (TNBC) subtype we had just three samples, which were rich for a
family Xanthomonadaceae, genus Caulobacter, species Janthinobacterium sp_LM6 and Strep-
tomycessp_WAC01529. Luminal A subtype was enriched with family Staphylococcaceae,
Dysgonomonadaceae, genus Shewanella, Paracoccus and species Ilumatobacter coccineus (found
also enriched in some luminal B samples). Luminal B subtype was harbouring transcripts
of species Lawsonella clevelandensis, order Aquificales, genus Anoxybacillus (found to be
common also in Luminal A). For Luminal A and B subtypes, also species Finegoldia magna
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was specific and plentiful in the number of transcripts (compared to the rest of samples)
(Figure 4D).

2.3.6. Proliferation Index Ki67

Multiple taxa correlated with Ki67 proliferation index. Ki67 < 20% tumours were
found to be enriched with genus Halomonas, Moraxella, Staphylococcus, Clostridium and
Actinomyces (LDA threshold = 3). The most enriched species with promising enrichment
profile were Bacillus cereus and Clostridium tetani. On the other side, Ki67 > 20% tumours
showed to be potentially more inhabited by Mycetohabitans, Asticcacaulis and Sphingomonas
(LDA threshold = 3). Most promising looks Mycetohabitans rhizoxinica, Rhodobacter sp. and
Asticcacaulis excentricus (Figure 4E).

2.4. Association of Microbiome with Age

As a control experiment, we used Chinese dataset from SRA and compared healthy
donors younger than 50 years old (8 samples) to older donors (10 samples). Donors
of age > 50 were identified with more microbial reads in average then younger group
(2.25 times more). There were overrepresented taxa found in both groups, although
difference between younger and older normal tissue was not as obvious as difference
between normal tissue and tumour tissue. In the tissue of older donors, Class Bacilli,
phylum Fimicutes and genus Lactiseibacillus were distinctively numerous (LDA < 3.6).
In the tissue of younger donors, class Alphaproteobacteria genus Clostridium, Praccocus,
Mycobacterium, order Rhizobiales and family Burkholderiaceae. Graphical visualisation
of results for LDA > 2 is available on the website http://www.embnet.sk/supp/BC_
metatranscriptomics/complete_plots_plotLefSeResults/LefSe_Nomal_age.png (accessed
on 19 August 2021). Complete LEfSe results are available at http://www.embnet.sk/
supp/BC_metatranscriptomics/LefSe_plot_differential_features/Normal_age/ (accessed
on 19 August 2021).

2.5. Presence of Viral Transcripts

To uncover which viruses are present in our samples, we used Metaphlan3, which
showed to be more effective in virus identification in training dataset with viruses. The
most abundant identified groups of viruses were Retroviridea, Herpesvirales and Bracovirus
(Figure 5A). Except for some hits caused by outliers, we did not observe viruses significantly
overrepresented in any group of patients.

Kraken2 was not so sensitive for detection of viruses, but a comparison between
tumour tissue and normal tissue shows a tendency of higher amounts of detected viral
transcripts in the tumour tissue, as it is shown in Figure 5B.

2.6. Pipeline Validation by Artificial Datasets Analysis

To validate our methods and estimate their specificity and sensitivity, we ran addi-
tional experiments. As negative control to our analysis, we constructed simulated artificial
RNA-seq Illumina reads from human genome hg38 by ART Illumina tool. We made datasets
of reads with different lengths, all of them with some errors brought to their sequences to
resemble real RNA-seq data. We were observing whether analysis by Kraken2 produced
some false positive results. Results were encouraging, since the analysis of reads longer
than 40 nt did not produce many false positives (apart from very few cases, insignificant
for interpretation of results, bacteria were not called from human-derived reads).

http://www.embnet.sk/supp/BC_metatranscriptomics/complete_plots_plotLefSeResults/LefSe_Nomal_age.png
http://www.embnet.sk/supp/BC_metatranscriptomics/complete_plots_plotLefSeResults/LefSe_Nomal_age.png
http://www.embnet.sk/supp/BC_metatranscriptomics/LefSe_plot_differential_features/Normal_age/
http://www.embnet.sk/supp/BC_metatranscriptomics/LefSe_plot_differential_features/Normal_age/
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Figure 4. Differentially represented taxa (by different transcript numbers) in primary tumour tissues of Slovak patients
between multiple markers statuses. For all comparisons, LEfSe was run with parameters: LDA > 3 (stricter than default
LDA > 2 just for purpose of visualisation), Kruskal Wallis test p-value < 0.05, Wilcoxon test p-value < 0.05. (A) Comparison
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of the microbiome in primary tumours of patients with CTC in their blood and primary tumours of patients without CTC
detected in their blood (LDA threshold = 3); (B) Comparison of the microbiome in primary tumours of patients positive
on HR marker and negative on HR marker; (C) Comparison of the microbiome in primary tumours of patients positive
on HER2 marker and negative on HER2 marker; (D) Comparison of molecular subtypes: Luminal A, B, HER2+, Triple
negative (LDA > 2); (E) Comparison of the microbiome in primary tumours of Ki67 > 20% and Ki67 < 20%. Full results of
LEfSe (LDA > 2) are available on the website http://www.embnet.sk/supp/BC_metatranscriptomics/complete_plots_
plotLefSeResults/ (accessed on 19 August 2021).
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As a positive control we constructed RNA-seq dataset in the same way as previously
but from mix of different species of bacteria. We tested if bacteria are correctly identified.
Kraken2 performed very well in this experiment and showed very high specificity also
on the level of species, although accuracy seemed to degrade towards a more specific
taxonomical level. Out of 19 bacteria, just 2 (Staphylococcus aureus and Bacillus subtilis) were
not identified on species level (89.5% sensitivity), while only one read (from 807 classified
reads) was called to match taxon that was not present in the synthetic dataset, which was
wrongly assigned to another species of bacillus. On the level of genus identification, both
specificity and sensitivity were at 100%. The only value that did not appear to be accurate
was the comparison of amounts between different species inside of the same genus, which
sometimes did not correspond to differences between the number of analysed reads.

Metaphlan3 had worse results for bacteria identification, but still good performance.
On the level of species, 13 out of 19 species were accurately identified, while every species
was reported on the level of genus. Two species were reported as false positive also
on genus level. Ratios of abundancies of simulated transcripts between species were
less accurate then Kraken2 abundancies. Different results have been observed for virus
identification. Out of 10 viruses, Metaphlan3 identified 7 accurately on the species level,
the rest of them were identified on other taxonomic levels (all 3 of them were absent in the
database as a species). All false positives were species taxonomically close to true positives
and were lower or very low on a number of reads assigned.

http://www.embnet.sk/supp/BC_metatranscriptomics/complete_plots_plotLefSeResults/
http://www.embnet.sk/supp/BC_metatranscriptomics/complete_plots_plotLefSeResults/
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3. Discussion

In recent years, numerous studies took a challenge to describe the microbial com-
position of various human tissues [13,26]. While some microbiomes, such as the gut
microbiome have been already known to play an important role in human health for a
long time [27], other tissues microbiomes have been receiving the attention of scientists
more recently. We joined this effort and tried to uncover the microbiome of both, normal
and cancerous tissues. While studies of the microbiome are usually done by specialised
methods for microbial identification, e.g., 16S rRNA sequencing became standard for this
area in previous years, we decided to use our RNA-seq whole-transcriptomic data from
our other breast cancer transcriptomic study.

In previous studies, various different methods were applied—identification of
microbes using reads from DNA sequencing [10] or microarray (PathoChip) strategy
with PCR validation [16,28]. RNA-seq data were used for microbial identification by
Thompson et al. [17].

16S rRNA sequencing has been widely used in the research field of metagenomics, also
in breast cancer studies [4,5,11,14,15]. 16S rRNA-focused studies only directly characterise
the taxonomic profile of a microbiome, but it is a cost-effective option to exhaustively
capture the biodiversity of many samples using minimal sequencing [29]. However,
this approach has some technical disadvantages. It has been criticised due to a bias in
the DNA amplification step of the target gene, inaccuracies in numbers because of the
varying number of ribosomal loci across different microbial genomes. The limitation
of 16S rRNA gene-based microbial profiling has been partially overcome by the whole
shotgun metagenomics (WSM) [30]. Technique for microbial analysis, known as shotgun
metagenomics, allows the comprehensive capture of most microbiome members while
at the same time elucidating potential genes and functional pathways. However, an
important limitation is the inability to distinguish the active from inactive members of
a microbiome [29].

And finally, RNA sequencing, compared to the previously mentioned method provides
a closer look specifically at active microbial members. With RNA-seq, relatively lowly
expressed genes including the entire metatranscriptome that includes non-coding RNAs
can be detected, annotated and mapped to metabolic pathways. It has also the possibilities
to work with unknown transcripts. Disadvantages are, that sample collection is destructive
and sufficient material for sequencing is required (same as in other transcriptomic methods),
also metatranscriptomics is not always able to capture the entire metatranscriptome due
to the complexity of some microbial communities, the large dynamic range of transcript
expression, the short half-life of RNA and a number of technology-specific limitations [29].

The reason why we chose to work with RNA-seq metatranscriptomics, was to test
if available methods are able to uncover microbiome and acquire additional information
from our RNA-seq data produced for related study [31]. Microbial reads were already
known to be present in total RNA-seq data. We tried two pipelines, one based on Kraken2,
other on Metaphlan3. The performance of Kraken2 was already found to be sufficient to
identify microbes without producing too many false results [32].

By comparing our results to other studies and analysis of training datasets, we can
conclude that by RNA-seq analysis it is possible to identify the most prevalent taxa of mi-
crobes and it is specific enough to identify organisms on species level as well. We suspected
a limit in specificity between close relatives on species level, but our experimental use of
Kraken2 tool (Galaxy Version 2.1.1, John Hopkins University, Center for Computational
Biology, Baltimore, Maryland, USA) on simulated data with known composition showed
encouraging performance on specificity. It appears more limited on sensitivity and accuracy
of measuring the number of bacterial reads present, yet it was able to identify most of the
bacterial species present in training dataset (89.5%) and all genus. Metaphlan3 did not
perform so well on our data, it is probably limited by read lengths. It was able to find
most of the genus in training dataset but produced the number of false positives. However,
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it performed better on the identification of virus species in training dataset compared
to Kraken2.

With real data, Metaphlan3 was sensitive with bacteria when settings were set on
shorter reads identification, although we detected a high rate of false positives on these
settings and potentially false negatives too, so we concluded it is not suited for bacterial
detection in our short-read (75 bp) Illumina data. We used Metaphlan3 to detect viruses,
although it did not detect significant viral taxa differences between phenotypic classes
of cancer.

Interpretation of our findings remains unclear. What is obvious from our data, is that
healthy tissue is richer in numerous microorganisms and some groups of microorganisms
are potentially enriched in healthy and cancer tissues compared to each other or between
different cancer subgroups or phenotypes. However, there is no evidence that any of those
microbes in patients of our study influenced the course of disease. It is not obvious if
microbes actively join cancerous processes, or their enriched or decreased presence is just
an outcome of changed conditions inside of tumour tissue, potentially result of treatment or
changed lifestyle. Despite this fact, there is hope for use of information about microbiome
composition in favour of breast cancer patients. After all, there is a proof of the impact of
the human microbiome on human health and some studies indeed found cancer promoting
or protecting abilities of some microbes. For example, in colon cancer, the overabundance of
a bacterial species Fusobacterium nucleatum correlates with disease and increased likelihood
of lymph node metastasis, while Bacteroidetes fragilis protects against colitis by modulating
inflammatory immune responses in the gut [33,34]. Significant reduction in antibacterial
responses was found in breast cancer tumour tissue and that is possibly the logic of bacterial
protective effect on breast tissue [5]. Lactococcus can activate murine splenic NK cells (which
are related to tumour growth) to stimulate cellular immunity [18]. So far, there are multiple
suggestions about microbiota having the ability to promote cancer through inducing
chronic inflammation, by altering the balance of host cell proliferation and death or by
triggering uncontrolled innate and adaptive immune responses [6]. Possible association
of several microbes with alterations in the human expression profiles have been reported.
For example, Listeria fleischmannii showed to be associated with epithelial to mesenchymal
transition [17]. The influence of microbiota on oestrogen levels (associated with breast
cancer risk) as a way of affecting oncogenesis is also discussed [19] and connection with
Streptococcus was reported [20,21]. Claims are supported by studies of aspirate fluid of
breast cancer survivors [22]. Another way microorganisms might influence breast cancer
progress is the ability to induce DNA double-stranded breaks [14].

Microbes seem to influence treatment of disease. For example, gut microbial composi-
tion can impact the efficacy of chemotherapy by modulating the translocation, metabolism
and immune response to such drugs [23]. Some studies show that an intact microbiome is
necessary for optimal responses to anti-cancer therapies [24]. In one study, it was shown,
that the microbiome can have an impact on radiotherapy. It is claimed, that bacterial
superantigens, specifically S. aureus, can exacerbate RT-induced inflammation by further
activating T cells and preventing epidermal repair [25]. Microbiome is also suspected to
have an effect on immunotherapy efficiency [24].

There is no clear consensus whether or which bacteria, viruses or various microor-
ganisms cause cancer or protect against cancer. Multiple studies present some candidates,
which abundance correlate with cancerous changes in breast tissue. In the study done
by Borchmann, with dataset of over 3000 samples used to study links between viral and
bacterial taxa and cancer, 218 species-level taxa were identified in tumour tissue. Out of
these, 27 taxa were judged to be cancer-linked [10].

Multiple taxa and species were reported to be correlated with breast cancer. One of
them is Methylobacterium radiotolerans was found to be enriched in BC [5] or decreased
in cancer patients [15], while Sphingomonas yanoikuyae showed to be inversely correlated
with M. radiotolerans in paired normal tissue [5]. Banerjee et al. [16].were studying the
presence of different viruses and microbes in different types of breast cancer and found out
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the microbiome is specific for each of them. In the case of endocrine receptor positive BC,
differential signal compared to controls were detected for Arcanobacterium, Bifidobacterium,
Cardiobacterium, Citrobacter, Escherichia. For triple negative BC, there were differences in
Bordetella, Campylobacter, Chlamydia, Chlamydophila, Legionella and Pasteurella. HER2 positive
BC was represented by Streptococcus and triple negative BC by Aerococcus, Arcobacter,
Geobacillus, Orientia and Rothiawere [16].

Moreover, species known to infect humans (Mycobacterium fortuitum and Mycobac-
terium phlei) were found to be differentially abundant in the tumour samples. In the same
study, an increased presence of Actinobacteria in the non-cancerous adjacent tissue samples,
increase of Proteobacteria in tumour tissues and differential abundance for Cornebacterium,
Corynebacterium, Bacillus and the Enterobaceriaceae (E. coli and Salmonella enterica) was ob-
served, in concordance with other studies [17]. Urbaniak et al. [14]. found abundances of
Prevotella, Lactococcus, Streptococcus, Corynebacterium and Micrococcus in healthy patients
and Bacillus, Staphylococcus, Enterobacteriaceae, Comamondaceae and Bacteroidetes in cancer
patients. In addition, Enterobacteriaceae were found to be relatively more abundant in cancer
patients than in healthy controls [14].

In a comparison of published data with our study, we found the same most dominant
phyla to be present in breast tissue—mainly Proteobacteria and Actinobacteria, and to some
extent also Firmicutes and Bacteroidetes. In the results of differential abundance analysis,
comparing normal and cancerous tissue, we found some similarities with previous studies.
For example, Methylobacterium, Sphingomonas and Bifidobacterium were reported here and
also in previous studies. However, previous studies did not have clear consensus on which
bacteria are overrepresented or underrepresented and our study does not claim to bring
completely identical observations to any of them.

To mention the limitations of our study, there is also a possibility, that results were
influenced by other conditions. For example, age (breast cancer patients from our study are
in age 27–79, with average age 59, with most of them over age 50). Healthy women, which
were donors of normal breast tissue were indeed younger than women with breast cancer
(39–50, with average age of 43.6). According to comparison of microbial content between
younger and older donors, we assume results of tumour and normal tissue comparison
cannot be assigned to age differences between these groups, since different taxa were
correlated with cancer compared to higher age. This analysis was done on Chinese data
only since Slovak healthy controls were represented only by very limited number of donors.
All Slovak donors were Caucasian women, so ethnicity differences shouldn’t influence
the study. For Chinese data, we had just triple negative breast cancer molecular subtype,
while Slovak samples were a mix of various subtypes, what might be the reason for some
differences between them. Results of clinical traits comparisons has not yet been validated
by experimental methods. Relatively small sample size is a disadvantage, since variation
between individual samples could possibly influence the results. Biological validation will
be needed to prove novel results of this study.

4. Materials and Methods
4.1. Study Patients

This study included 18 primary breast cancer patients (stage I–III) treated with surgery
from April 2012 to February 2015, for whom tumour fresh frozen tissue was available in the
biobank. This study represents a substudy of a translational trial that aimed to evaluate the
prognostic value of circulating tumour cells in primary breast cancer [35]. Study eligibility
criteria and study details were described previously. The study was approved by the
Institutional Review Board (IRB) of the National Cancer Institute of Slovakia (TRUSK002,
20.6.2011). Each participant provided signed informed consent before study enrollment.

Healthy donors (n = 5) were women undergoing breast surgery for non-cancer
related indication (breast cosmesis surgery) without breast cancer who were recruited
and consented according to the IRB-approved protocol. Each donor participant signed
informed consent.
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4.2. Tumour Pathology

Pathology review was conducted at the Department of Pathology, National Cancer
Institute, Bratislava, Slovakia. Results of hormone receptors, HER2 status and protein
p53 were reported either positive or negative on histopathology report without further
quantification. Ki-67 labelling index was reported as a percentage of cells with Ki-67
positive nuclear immunostaining. Hormone receptor status was defined as positive for
either oestrogen receptor or progesterone receptor vs negative for both; 1% of cells positive
for hormone receptor was used as the cut-off to define hormone receptor positivity and
HER2 status (normal or amplified). These characteristics of tumours/patients are specified
in Table 1.

Table 1. Patient’s characteristics.

N %

All patients 18 100.0

Histology

invasive ductal carcinoma 16 88.9

other 2 11.1

Grade

low and intermediate 7 38.9

high grade 10 55.6

unknown 1 5.6

T stage

T1 12 66.7

>T1 6 33.3

N stage

N0 7 38.9

N+ 10 55.6

unknown 1 5.6

Hormone receptor status (cut-off 1%)

negative for both 5 27.8

positive for either 13 72.2

HER2 status

negative 14 77.8

positive 4 22.2

Ki67 status

<20% 7 38,9

>20% 11 61,1

Molecular subtype

luminal A 6 33.3

luminal B 5 27.8

HER2+ 4 22.2

triple negative (TN) 3 16.7

P53 status

negative 8 44.4

positive 10 55.6
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4.3. Additional (Database-Downloaded) Samples

Additional datasets to validate and compare our results were downloaded from NCBI
database SRA. Data from study PRJNA553096 appeared to be suitable for our purpose,
although of different geographical origin (submitted by Sichuan University, China) [36].
RNA-seq transcriptomic data were obtained from triple-negative breast cancer patients
(73 samples) and healthy donors (18 samples). Samples originated from Frozen Primary
Tumour Tissue, sequenced by Illumina sequencing technology. Donors had various age
(32–80) with an average age of 51, while normal tissue donors had average age of 53 and
breast cancer donors of 50.7.

4.4. CTC Status Detection

CTC detection was performed as described in full details previously [37]. Briefly,
CTCs were detected in peripheral blood by a reverse transcription quantitative PCR (RT-
qPCR) based assay utilising cells after CD45 depletion using the RossetteSep kit (Stem Cell
Technologies, Vancouver, BC, Canada). For storage at −80 ◦C and subsequent RNA extrac-
tion TRIzolVR LS Reagent (Invitrogen Corporation, Carlsbad, CA, USA) were used. To
detect EMT-inducing TF gene transcription (TWIST, SNAI1, SLUG and ZEB1) commercially
available TaqMan assays were purchased from Life Technologies Corporation, Pleasan-
ton, CA, USA. The level of transcription was quantified using the delta-Ct method (2ˆ(Ct
target—Ct GAPDH)) and values were compared to cut-off values gained from analyses of
healthy controls.

4.5. RNA Sequencing
4.5.1. Sample Preparation

Fresh-frozen tumour tissue samples were obtained from 5 healthy donors and 18 breast
cancer patients at National Cancer Institute (Bratislava, Slovakia). After surgery all tis-
sues were cut into smaller pieces (~500 mg) and placed into a liquid nitrogen tank for
storage. Before RNA extraction, tissue samples were ground to a homogenous powder in
liquid nitrogen and immediately mixed with 700 ul of DNA/RNA Shield (Zymo Research,
Irvine, CA, USA).

4.5.2. Total RNA Extraction

Total RNA was extracted using Quick DNA/RNA Miniprep Plus kit (Zymo Research,
Irvine, CA, USA) following the manufacturer’s instructions. RNA concentration was mea-
sured using the NanoDrop1000 (Thermo Fisher Scientific, Madison, WI, USA) and RNA
Broad range Assays on Qubit fluorometer (Invitrogen, Thermo Fisher Scientific, Carls-
bad, CA, USA). Samples that didn’t have sufficient RNA concentration for downstream
analyses were concentrated using RNA Clean and Concentrator—5 kit (Zymo Research,
Irvine, CA, USA).

4.5.3. rRNA Depletion

For rRNA depletion Ribogone-Mammalian kit (Takara Bio, Mountain View, CA, USA)
and manufacturer’s original protocol were used.

4.5.4. cDNA Library Preparation and RNA Sequencing

cDNA libraries were constructed using the SMARTer Stranded RNA-Seq Kit
(Takara Bio, San Jose, CA, USA) according to the manufacturer’s instructions. Briefly,
protocol started from ~10 ng of rRNA-depleted RNA, which was fragmented and con-
verted to single-stranded cDNA. For cleanup and subsequent (on beads) amplification,
AMPure XP beads (Beckman Coulter, Brea, CA, USA) were used. Amplified RNA-seq
library was purified by immobilising SPRI beads and washing with 80% ethanol. Library
quality control was performed using the Agilent 2100 Bioanalyzer and High Sensitivity
DNA Kit (Agilent Technologies, Waldbronn, Germany). For library quantification the
Qubit dsDNA HS Assay kit (Invitrogen, Thermo Fisher Scientific, USA) was used. Final
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RNA-seq libraries were pooled (8 libraries/pool) and sequenced using paired-end sequenc-
ing (2 × 75) with NextSeq 500/550 High Output Kit v2.5 (150 Cycles) (Illumina, San Diego,
CA, USA) on Illumina NextSeq 550 instrument (Illumina, San Diego, CA, USA).

4.6. Quality Control and Data Preparation for Analysis

Paired-end sequencing data were subjected to quality control by FastQC in Galaxy
environment [38]. Reads were processed by Trimmomatic [39]. Parameters were chosen
according to FastQC results. It was run with the initial ILLUMINACLIP step, with standard
adapter sequences (TruSeq2), while settings of this step were set by default. We performed
multiple trimming operations: 1. Sliding window trimming (Number of bases to average
across—4, Average quality required—22), 2. Cut bases off the start of a read, if below
threshold quality (Minimum quality required to keep a base—22), 3. Cut bases off the end
of a read, if below threshold quality (Minimum quality required to keep a base—22), 4. Cut
15 bases from start by HEADCROP option. Reads bellow 50 nt length were discarded later.

Data downloaded from SRA were trimmed with the following parameters: Illumina
clip step—yes (trueseq3 for hiseq), headcrop 9, leading 22, avgqual 22. Reads bellow 50 nt
length were discarded subsequently.

Reads, which passed trimming conditions, were used for subsequent mapping to
remove human reads for better performance of microbiome classification. They were
mapped on human genome hg38 by BWA for short reads in Galaxy [40], with default
options for simple Illumina mode. Unmapped reads were extracted by Samtools view [41]
(require that these flags are set—Read is unmapped, Mate is unmapped, Exclude reads
with any of the following flags set—read is mapped in proper pair) and converted to fastq
format by SamToFastq in Galaxy [42].

4.7. Identification and Quantification of the Microbiome: Kraken2

Reads that did not map to the human genome and were longer than 50 nt were
used for metatranscriptomic analysis. For the identification of microbes, Kraken2 (Galaxy
Version 2.1.1, John Hopkins Universtiy, Center for Computational Biology, Baltimore,
Maryland, USA) in Galaxy environment was used [43]. It was used for paired-end data,
with minimum base quality set on 20 (which appeared to upgrade specificity), minimum hit
groups parameter was set on 2 and standard database (10-Mar-2021, with k-mer length = 35,
minimiser length = 31, minimiser spaces = 6) was used. For easier manipulation in later
steps, report was made in mpa style. Krona pie chart tool in Galaxy (version 2.7.1, National
Biodefense Analysis and Countermeasures Center, MD, USA) was used for visualisation of
Kraken2 results [44].

4.8. Identification and Quantification of Microbiome: Metaphlan3

For the identification of viral sequences, we used Metaphlan3 software (version 3.0,
Department CIBIO, University of Trento, Italy; Harvard T. H. Chan School of Public Health,
Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA; IEO,
European Institute of Oncology IRCCS, Milan, Italy) [45]. Reads that did not map to the
human genome were used for further analysis by Metaphlan3, run on Linux command
line. Data were analysed as paired-end. Options were set to work only with reads at least
50 nt long, -t parameter were set as “rel_ab_w” to produce the number of identified reads
and option to count viruses were added.

4.9. Comparison of Microbial Content in Different Disease Status

Statistical analysis, which was done to uncover overrepresented or underrepresented
taxa in specified phenotypic groups, was done by LEfSe Galaxy instance (version 1.0, Har-
vard School of Public Health, Boston, MA, USA) [46,47]. Comparisons were made always
between two groups. Using our own data, we compared 18 breast cancer samples (primary
tumour) against healthy controls (normal breast tissue), of them 9 samples originated
from patients with positive CTC status against 9 CTC negative samples. The numbers
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of patients with specific markers are specified in Table 1. Parameters for all used LEfSe
tools were always set to defaults. Values of Kraken2-computed microbial counts (numbers
of fragments assigned to the clade rooted at a taxon) were used to compare the amounts
of microbes.

Moreover, additional datasets downloaded from NCBI database SRA (data from study
PRJNA553096, submitted by Sichuan University, Chengdu, China) were analysed [36].
First, we compared 19 breast cancer samples (primary tumour) against 18 healthy con-
trols (normal breast tissue), then, to use the full potential of data available and observe
difference compared to the use of fewer samples, we compared 73 patient samples against
18 healthy controls.

4.10. Pipeline Validation

To identify the rate of false negative results originated from human reads we con-
structed simulated reads from human genome hg38, with different lengths. To compare
with our samples, we sampled fastq files with 65 nt long pair-end reads (corresponding
with the length of our sequencing reads after trimming). To see how is read length influenc-
ing results, we also sampled fastq file (pair-end) with various length from 20 nt to 150 and
also variable lengths with an average of 60 (reads longer than 40 nt produced already good
results). For this purpose, we used ART Illumina software in Galaxy (Version 2014.11.03.0,
Biostatistics Branch, National Institute of Environmental Health Sciences, Research Tri-
angle Park, NC, USA) [48]. Metaphlan3 and Kraken2 were tested on these data. We also
tested Metaphlan3 with reads mapped on human genome hg38 and observing the effect of
minimal read length parameter on the results, which were significant and reads shorter
than 25 nt showed to be insufficient for analysis.

As a positive control we constructed RNA-seq datasets from microbial reads. For
first artificial dataset, we downloaded genomes of 19 microorganisms (Table A1) from
NCBI database [49]. Synthetic transcriptomic reads were simulated to be in the same
length as our own datasets. We ran Kraken2 and Metaphlan3 with simulated data to see
which bacteria were called or missed. As a second positive control, we sampled another
simulated RNA-seq dataset, in this case, from viral genomes. We downloaded genomes of
10 randomly chosen viruses from NCBI database (Table A2) [49]. Synthetic transcriptomic
reads were simulated to be in the same length as our own datasets. Same, as previously
we ran Kraken2 and Metaphlan3 with simulated data to see which viruses were called
or misse.

5. Conclusions

In this study, we inspected the microbial composition of normal breast tissue and
tumour tissue of the breast of donors from Slovakia. Then we used dataset from SRA
database (originated in China) for the same purpose. The most abundant phyla were in
concordance with previous studies Proteobacteria, then Firmicutes and Actinobacteria, in
Slovak samples also Bacteroides. In the Chinese dataset, Cyanobacteria were also common.
Breast tumour tissue were different in microbial composition. Normal tissue appears
to be richer for microbes, while many microbes were found to be overrepresented there.
Differences in microbial compositions were also found when comparing molecular subtypes
of disease, CTC status, markers (HR, HER2, p53), proliferation index Ki67, T and N stage
of tumour and tumour grading. The reasons and biological relevance of microbial presence
and amounts of their transcripts are not clear and additional studies will be needed to
understand the influence on breast cancer and to exploit the microbiome for benefit of
cancer patients.
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Appendix A

Table A1. Bacterial genomes and their IDs for NCBI, used to construct artificial mix of bacterial
transcriptomes to test how accurate are methods we used for taxonomic identification of reads
originated from microbial transcripts.

Species NCBI Sequence ID

Bacillus subtilis NC_000964.3

Bifidobacterium lemurum NZ_CP062948.1

Bifidobacterium scardovii NZ_AP012331.1

Escherichia albertii NZ_AP014857.1

Escherichia coli NZ_CP027599.1

Escherichia fergusonii NZ_CP057657.1

Hymenobacter jejuensis NZ_CP040896.1

Hymenobacter nivis NZ_CP029145.1

Hymenobacter swuensis NZ_CP007145.1

Lactiplantibacillus plantarum NZ_CP034997.1

Moraxella Bovoculli NZ_CP011381.2

Pseudomonas aeruginosa NC_002516.2

Rhodococcus rhodochroum NZ_LT906450.1

Sphingomonas alpine NZ_CP061038.1

Sphingomonas sanxanigens NZ_CP006644.1

Sphingomonas wittichii NC_009511.1

Staphylococcus aureus NC_007795.1

Staphylococcus debuckii NZ_CP033460.1

Staphylococcus schweitzeri NZ_LR134304

http://www.embnet.sk/supp/BC_metatranscriptomics
http://www.embnet.sk/supp/BC_metatranscriptomics
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Table A2. Viral genomes and their IDs for NCBI, used to construct artificial mix of viral transcrip-
tomes to test how accurate are methods we used for taxonomic identification of reads originated
from viral transcripts.

Species NCBI Sequence ID

Tomato leaf curl Bangalore virus NC_003891.1

Ictalurid herpesvirus 1 (Channel catfish virus) NC_001493.2

Tomato yellow margin leaf curl virus NC_005852.2

Macacine alphaherpesvirus 1 (monkey B virus) NC_004812.1

Gallid alphaherpesvirus 2 (Marek disease virus type 1) NC_002229.3

Cercopithecine alphaherpesvirus 9 (Simian varicella virus) NC_002686.2

Sheldgoose hepatitis B virus (viruses) NC_005890.1

Infectious bursal disease virus (Gumboro virus) NC_004178.1

Human alphaherpesvirus 3 (Varicella-zoster virus) NC_001348.1

SARS-CoV2 NC_045512.2
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