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Accumulating biological and clinical evidence has confirmed the important associations

between microRNAs (miRNAs) and a variety of human diseases. Predicting

disease-related miRNAs is beneficial for understanding the molecular mechanisms of

pathological conditions at the miRNA level, and facilitating the finding of new biomarkers

for prevention, diagnosis and treatment of complex human diseases. However, the

challenge for researchers is to establish methods that can effectively combine different

datasets and make reliable predictions. In this work, we propose the method of

Multi-Similarity based Combinative Hypergraph Learning for Predicting MiRNA-disease

Association (MSCHLMDA). To establish this method, complex features were extracted

by two measures for each miRNA-disease pair. Then, K-nearest neighbor (KNN) and

K-means algorithmwere used to construct two different hypergraphs. Finally, results from

combinative hypergraph learning were used for predicting miRNA-disease association.

In order to evaluate the prediction performance of our method, leave-one-out cross

validation and 5-fold cross validation was implemented, showing that our method had

significantly improved prediction performance compared to previously used methods.

Moreover, three case studies on different human complex diseases were performed,

which further demonstrated the predictive performance of MSCHLMDA. It is anticipated

that MSCHLMDA would become an excellent complement to the biomedical research

field in the future.

Keywords: microRNA, disease, miRNA-disease association, K-nearest neighbor, K-means, combinative

hypergraph learning

INTRODUCTION

MicroRNAs(miRNAs) are a class of small endogenous non-coding RNAs that mainly regulate
gene expression at the post-transcriptional level, whose length is equivalent to 20–25 nucleotides
(Bartel, 2009; Ribeiro et al., 2014). The first miRNA was discovered in the early 1990’s. However,
miRNAs were not recognized as a distinct class of biological regulators until the early 2000’s.
Recently, accumulating studies have indicated that more than one-third of genes are regulated by
miRNAs (Taguchi, 2012), and that miRNAs participate in various biological processes, such as cell
proliferation, tissue development, apoptosis, differentiation and signal transduction (Mattick and
Makunin, 2006; Esteller, 2011; Mattick and Rinn, 2015). The deregulation of miRNAs appears to be
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associated with various diseases, ranging from common diseases
to cancers (Sayed and Abdellatif, 2011; Farazi et al., 2013). For
example, based on deep sequencing information and cluster
analysis, several miRNAs, including miR-7, miR-95, miR-124,
miR-128, and miR-132 were found to be significantly down-
regulated in glioblastoma (Skalsky and Cullen, 2011). In addition,
Dkk-3 and SMAD4 were identified as potential target genes of
miR-183, and the expression of miR-183, miR-146a, and miR-
767-5P were significantly higher in prostate cancer tissues (Ueno
et al., 2013).

Therefore, predicting potential miRNA-disease associations
could not only improve our knowledge of the underlying disease
mechanisms at the miRNA level, but also facilitate the finding of
novel disease biomarkers for early detection and drug discovery
in the contexts of disease prevention, diagnosis, treatment
and prognosis. However, compared with the rapidly increasing
number of newly discovered miRNAs, only a few miRNA-disease
associations have been confirmed. Experimental confirmation of
the new disease-relatedmiRNAs is extremely expensive and time-
consuming, whose failure rate is also high. Currently, a great
quantity of biological data about miRNAs has been generated,
and more and more studies have focused on the computational
algorithms which can select the most promising miRNAs for
further analysis. By decreasing the number of experiments, more
effective experimental procedures could be conducted to uncover
potential disease-related miRNAs on a large scale.

Mainstream computational methods are roughly grouped into
two categories. The first category is based on network analysis
(Chen et al., 2012, 2016; Zeng et al., 2016, 2018; Li et al., 2017; Liu
et al., 2017; Xiao et al., 2017; Zhong et al., 2017). Jiang et al. (2018)
designed the significance SIG of disease pairs ormiRNA pairs and
then developed a novel miRNA-disease association prediction
(ICFMDA) method, which was used to improve the collaborative
filtering approach. The collaborative filtering algorithm was
further improved by incorporating similarity matrices to enable
the prediction of a new miRNA and a particular disease without
known associations. Chen et al. (2018) proposed a Two-tier
Random Walk method in which they designed a Laplacian
score of graphs for the prediction of disease-related miRNAs
(GSTRW). This method can predict the correlation of all diseases
with miRNAs simultaneously without negative samples. By
performing a depth-first search algorithm on the heterogeneous
network to infer disease-related miRNAs, You et al. (2017)
presented a model called PBMDA, which could be employed in
new diseases or miRNAs, greatly improving practicability and
reliability. Chen et al. (2018c) designed a Network Distance
Analysis method for miRNA-disease Association prediction
(NDAMDA), which used the direct network distance and average
network distances between two miRNAs or diseases. However,
this model might cause a bias toward miRNAs with more known
related diseases and might not be applicable to the diseases
where associated miRNAs tend to be randomly distributed
in the network. Zhao Q. et al. (2018) developed a miRNA-
disease association prediction method based on the Spy and
super clustering strategy (SSCMDA). They used a Spy strategy
to recognize trustworthy negative samples from the uncertain
miRNA-disease pairs which could improve prediction accuracy.

However, this method used the Regularized Least Square as
the baseline classifier and it was difficult to attain the optimal
combining parameters tomerge all the developed strategies. Zhao
H. C. et al. (2018) proposed a method to predict miRNA-disease
associations based on a distance correlation set (DCSMDA).
The high point of this approach lay in the construction of
a miRNA-lncRNA-disease network that could be applied to
predict potential lncRNA-disease associations. Nevertheless, this
approach cannot be applied to unknown diseases or miRNAs
that are not present in the miRNA-disease or lncRNA-miRNA
databases. Later, Zhao et al. (2019) developed a method based
on a shortest path algorithm for discovering potential miRNA-
disease associations. This method improved the sparseness of
known associations and did not require negative samples to
predict potential miRNA-disease association simultaneously.

Methods that belong to the second category are adopted
machine learning algorithms used to predict miRNA–disease
associations (Jiang et al., 2010; Xu et al., 2011; Chen et al.,
2015). Chen and Yan (2014) designed a semi-supervised method
called RLSMDA. This method could identify disease-related
miRNAs without known miRNAs. However, the parameter
optimization for RLSMDA was challenging. Chen et al. (2018a)
proposed a new machine learning method for miRNA-disease
association prediction. They used a stacked auto-encoder to
extract deep features and a greedy unsupervised algorithm for a
pre-training model. At last, the support vector machine (SVM)
was utilized to uncover potential associations. However, the
optimization of complex parameters was complicated in this
model. Furthermore, Chen et al. (2018b) designed a prediction
method named EGBMMDA, which adopted an Extreme
Gradient Boosting Machine to predict potential associations.
This approach was the first decision tree learning-based method
and one of the very few models that achieved a global LOOCV
AUC >0.9 at that time. Recently, Xuan et al. (2019) developed a
dual convolutional neural network-based method for predicting
potential disease-miRNA association (CNNMDA), which was
a computational model based on deep learning and used the
original and global representation of an miRNA-disease pair to
predict disease-related miRNAs. However, this method has many
parameters and involves a large number of calculations.

Although the methods mentioned above have made great
contributions to the discovery of miRNA-disease associations,
there are still some limitations in many aspects. In addition, the
limited number of known miRNA-disease associations results
in a sparse matrix. Thus, in order to improve the accuracy of
the prediction model, we propose a novel prediction method
based on a hypergraph and refer to it as MSCHLMDA. The
edge of a hypergraph can own more than two vertices, endowing
hypergraphs with high flexibility for depicting high-order
relationships. Benefitted by this desirable property, hypergraph
models have been successfully applied to dozens of computer
vision as well as machine learning and pattern recognition
areas. The performance of hypergraph learning highly depends
on the generated hypergraph structure. A good hypergraph
structure can represent the data correlation better. In this study,
for all the miRNA-disease pairs, two different measures (graph
theoretical and statistical) were utilized to formulate the potential
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informative features, and a combinative hypergraph learning
model was designed to predict their unknown associations.
Experiments with cross validations and case studies fully
demonstrated that the performance of our method in predicting
the potential disease-miRNA associations has a significant
advantage compared to previous methods.

MATERIALS AND METHODS

Method Overview
Our model mainly consists of two steps: (I) data collection
and preprocessing, (II) association prediction. First, the feature
vector X of all miRNA-disease pairs was constructed; Second, the
combinative hypergraph model was designed to learn projection
matrices, which were used to map the unknown miRNA-disease
pair features to the association scores matrix S.

Data Collection
The raw data used by our method were three matrices: miRNA-
disease association matrix A, miRNA similarity matrix SM
and disease similarity matrix SD. Matrix A was obtained from
the HMDDv2.0 (Li et al., 2014), which contains 5,430 known
associations between 495 (nm) miRNAs and 383 (nd) diseases.
Concretely, if miRNAm(i) is verified to be associated with disease
d (j), the value ofA (m [i], d [j]) is equal to 1, and 0 otherwise. Our
goal is to predict the link betweenmiRNAs and diseases in matrix
A. SM was directly downloaded from http://www.cuilab.cn/files/
images/cuilab/misim.zip. It included similarity scores for all 495
miRNAs, for which the scores were calculated according to the
Wang et al. (2010) method. The larger the SM (m [i], m [j]) is,
the closer their associations will be.

SD contains the similarity scores of different diseases. Based
on the disease classification system in the Mesh database, we
can use a directed acyclic graph (DAG) to describe the similarity
between different diseases. There were two methods to calculate
the contribution values of disease d (t) to the semantic value of
disease d (i) as follows:

D1d(i)(d (t )) = − log(
the number of DAGs including d(t)

the number of diseases
) (1)

DV1(d (i )) =
∑

d(t)∈T(d(i))
D1d(i)(d(t)) (2)

and

D2d(i)(t)

=
{

1 if d(t) = d(i)
max

{

1∗D2d(i)
(

d(t′)
)∣

∣d(t′) ∈ child of d (t)
}

if d (t) 6= d (i)
(3)

DV2(d (i )) =
∑

d(t)∈T(d(i))
D2d(i)(d(t)) (4)

where 1 represents the semantic contribution factor. It will
reduce the contribution of disease d (t) if d (t) is different from
d (i).

The disease similarity score was calculated based on the
measurement of common subgraphs between disease DAGs. So,

the similarity between disease d (i) and d (j) could be defined
as below:

SD1(d (i ), d ( j )) =
∑

t∈T(d(i))∩T(d(j)) (D1d(i) (t) + D1d(j) (t) )

DV1
(

d (i)
)

+ DV1
(

d
(

j
)) (5)

and

SD2(d (i ), d ( j )) =
∑

t∈T(d(i))∩T(d(j)) (D2d(i) (t) + D2d(j) (t) )

DV2
(

d (i)
)

+ DV2
(

d
(

j
) ) (6)

Therefore, by integrated SD1 and SD2, we could reconstruct a
new similarity matrix SD= SD1+ SD2

2 .

Data Preprocessing
Generally, the similarity of miRNAs, as well as the similarity of
diseases, is used to predict the association between miRNAs and
diseases directly. However, some unknown interactions might
affect the prediction results. To address this limitation, the
WKNNP preprocessing method (Xiao et al., 2017) was used to
estimate previously unknown but possible interactions between
miRNAs and diseases through their known neighbors in the
matrix A. If the value of A (i,j) is 0, the role of WKNNP is to
update it to a value in the range of 0 to 1. Then the complete
matrix A is used to generate Gaussian interaction profile kernel
(Gipk) similarity (Laarhoven et al., 2011). For miRNAs, a vector
KS (m[i]), i.e., the i-th row of matrix A, was utilized as the
interaction profiles of miRNA m (i) for denoting the association
between m (i) itself and each disease. Thus, the Gipk similarity
GIM (m [i], m [j]) of miRNA m (i) and miRNA m (j) was
defined as:

GIM(m(i), m(j)) = exp(−γm || KS(m(i)) − KS(m(j))||2) (7)

Where ||·||2 represented l2 norm, γm was a parameter used to
control the kernel bandwidth, which was set as

γm =
1

1
nm

∑nm
i=1 ||KS(m(i))||2

(8)

By integrating SM and GIM, a more comprehensive miRNA
multi-similarity matrixMMS could be obtained as

MMS(m(i), m(j))

=

{

GIM
(

m (i) , m
(

j
))

if SM
(

m (i) , m
(

j
))

= 0
SM(m(i), m(j))+GIM(m(i), m(j))

2 otherwise
(9)

Similarly, we also calculated the Gipk similarity GID for diseases
by the follow formulas

GID(d(i), d(j)) = exp(−γd || KS(d(i)) − KS (d(j))||2) (10)

γd =
1

1
nd

∑nd
i=1 ||KS(d(i))||2

(11)

where KS (d (i)) and KS (d (j)) denoted the ith column and the
jth column of A. At last, the disease multi-similarity matrix DMS
was obtained by

DMS
(

d (i) , d
(

j
))
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=

{

GID
(

d (i) , d
(

j
))

if SD
(

d (i) , d
(

j
))

= 0
GID(d(i), d(j))+SD(d(i), d(j))

2 otherwise
(12)

In the above process, all known miRNA-disease associations
in matrix A would be used to calculate the GipK similarity.
Therefore, before the cross validation, the corresponding value
of a known miRNA-disease association in matrix A should be set
to 0, if it was a test sample.

Feature Construction
Based on the description of the literature (He et al., 2017), there
were three types of features to be constructed. Type 1 features
summarized A,MMS and DMS from a statistical perspective. For
miRNAm (i)/disease d (j), we calculated

• num. ass: the number of known association in A (i,:)/A (:, j).
• me. sim: form(i), the mean ofMMS (i,:); for d (j), the mean of

DMS (j,:).
• dis. sim: calculate the distribution of similarity scores for m

(i)/d (j). Here, the similarity scores were divided into 5 parts.

Type 2 features described MMS/DMS using graph theories.
Graphs for miRNAs and diseases fromMMS andDMSwere built,
respectively. The nodes were representing miRNAs or diseases; if
two nodes’ similarity scores were greater than the mean value of
all entities in MMS/DMS, they would be linked by an edge. For
each node, we defined the following features

• num. nb: number of neighbors.
• k. sim: the similarity values of the k-nearest neighbors of the

node (in our study k equal 20).
• bt, cl: betweenness, closeness of the node.

Type 3 features focused on matrix A. We defined the following
features for each miRNA-disease pair based on statistics and
graph theories.

• m. d. nb: the number of associations between an miRNA and a
disease’s neighbors.

• d. m. nb: the number of associations between a disease and an
miRNA’s neighbors.

• m. d. bt,m. d. cl: betweenness, closeness of the node.

Feature matrix X = [x1,..., xi,..., xn]
T

ǫ
Rn×c was generated by

selecting both positive samples and negative samples with a
ratio of 1:1 and putting them into a feature construction. The
known associated miRNA-disease pairs were extracted from the
HMDDv2.0 to compose the positive sample set, while the same
number of unknownmiRNA-disease pairs was randomly selected
to constitute a negative sample set. The corresponding labels
matrix Y=[y1,..., yj,..., yl]ǫR

n×l, where the j-th category is 1 if xi
belongs to j-th category, and other categories are 0.

Hypergraph Construction
A hypergraph is an extension of graph where an edge (i.e., a
hyperedge) can connect more than two vertices and represent
the structure of data via measuring the similarity between
groups of different points. It has great advantages in complex
data modeling. For any application using hypergraph learning
approaches, the first step was to construct the corresponding

hypergraph structure. Let G = (V, E, W) denote a hypergraph,
which consists of a set of vertices V and a cluster of hyperedge
E to which a corresponding weight matrix W is assigned. In
this study, the total number of vertices was n, and each vertex
represented an miRNA-disease pair in X. We used the K-nearest
neighbor (KNN) algorithm and K-means algorithm to generate
hyperedges, respectively. For KNN hypergraph G1, each time
one vertex was selected as a centroid, and one hyperedge was
constructed to connect the centroid with its k nearest neighbors
in the corresponding feature space. For K-means hypergraph
G2, we used the K-means algorithm to group all miRNA-disease
pairs. If some miRNA-disease pairs are in the same group, they
would have been linked by the corresponding edge.

A traditional hypergraph G could be denoted by a |V|×|E|
incidence matrix H

h(v, e) =
{

1 if v ∈ e
0 if v /∈ e

(13)

The degree of a vertex v ∈V was obtained by

d(v) =
∑

e∈E
w(e)h(v, e) (14)

and the degree of a hypergraph e ∈ E was obtained by

δ(e) =
∑

v∈V
h(v, e) (15)

Dv denoted the diagonal degree matrix of each vertex, and De
denoted the diagonal matrix containing the degree of hyperedge.

For the hypergraph G1, the weight w1 of a hyperedge e was
estimated by the sum of the distance between two vertexes in the
same hyperedge

w1(e) =
∑

u∈e
dist(v, u) (16)

dist(v, u) = exp(−||xv − xu||2/σ 2) (17)

σ =

√

√

√

√

1

n− 1

n
∑

i=1

||xi − xbar||2 , xbar =
1

n

n
∑

i=1

xi (18)

where v was the centroid of e and u was v’s neighbor.
For the hypergraph G2, all the hyperedges were initialized

with an equal weight, e.g., w2(e)=1/ne, where ne was the number
of hyperedges.

Combinative Hypergraph Learning
There were two hypergraphs in total, denoted by G1 = (V1,
E1, W1) and G2 = (V2, E2, W2). For each hypergraph, we
aimed to learn an individual projection matrix Pi, and the overall
combination of all projectedmatrices could be used to predict the
disease-relatedmiRNAs. Figure 1 illustrated themain framework
of our method. We noted that an optimal combination of
different hypergraph was also important. Thus, the combination
weights B= [β1, β2] were further introduced as another objective
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FIGURE 1 | Flowchart of the combinative hypergraph learning to predict the association between miRNAs and diseases.

FIGURE 2 | Influence of feature combination on model prediction accuracy.

of the learning task, where βi was the combination weight for the
i-th hypergraph subjecting to

∑2
i=1 βi = 1 and B ≥ 0.

We adopted the objective function proposed in
Zhang et al. (2018):

arg minPi, B ≥ 0 {
2

∑

i=1

βi{� (Pi)+ λRemp (Pi) + µ8(Pi) } (19)

{+ηΨ (B)}

s.t.

2
∑

i=1

βi = 1

FIGURE 3 | The effect of varying k values on the MSCHLMDA performance.

Specifically, hypergraph Laplacian regularizer Ω(Pi) was
calculated as

� (Pi) =
1

2

l
∑

k=1

∑

e∈Ei

∑

u,v∈Vi

Wi (e)Hi (u, e)Hi (v, e)

δi (e)
(
(XPi)(u, k)√

di(u)

−
(XPi)(v, k)√

di(v)
)2

= tr(PTi X
T1iXPi) (20)
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where 1i = I − Dv
−(1/2)
i HiWiDe

−1
i HT

i Dv
−(1/2)
i was the

hypergraph laplacian matrix, in which I denoted the identity
matrix, function tr(·) returned the trace of matrix.

The empirical loss term on Pi was denoted as

Remp (Pi) = ||XPi − Y||2 (21)

Φ(Pi) was a l2 norm regularizer to avoid over-fitting for Pi. Φ(Pi)
was denoted as:

8(Pi) = ||Pi||2 (22)

Here, Ψ (B) was measured as l2 norm of the hypergraph weights:

9(B) = ||B||2 (23)

The Equation (19) was a multiple variables optimization
problem. We noted that it can be split into three independent
sub-problems, which were related to each Pi and B, respectively.
Therefore, to solve the optimization problem, we first optimized
each Pi individually, and then optimized the combination
weight B.

Firstly, we optimized each Pi individually. For each
hypergraph, the learning task could be rewritten as

argmin Pi { tr(PTi X
T1iXPi) + λ|| XPi − Y||2 + µ|| Pi ||2 } (24)

To solve the optimization task in Equation (24), we derived
function to Pi. The result could be mathematically denoted
as follows

Pi = λ(XT1iX + λXTX + µI)−1XTY (25)

where I was an identity matrix.
Next, fix each Pi and optimized B. We let 2i = �(Pi) +

λRemp (Pi) +µ8(Pi), and the learning task could be rewritten as

argmin B ≥ 0 {
2

∑

i=1

βi2i + η||B||2}

s.t.

2
∑

i=1

βi = 1 (26)

To solve this task, the Lagrange multiplier method was employed
and the optimization problem was defined as:

argmin B, ε {
2

∑

i=1

βi2i + η||B||2} + ε(

2
∑

i=1

βi − 1) (27)

It was derived that

ε =
−

∑2
i=1 2i − 2η

2
, βi =

1

2
+

∑2
i=1 2i

4η
−

2i

2η
(28)

According to the learned Pi and βi, the association score of the
uncertain miRNA-disease pair xun could be obtained by

S(xun) =
2

∑

i=1

βix
un.Pi (29)

FIGURE 4 | The effect of varying the parameters on the MSCHLMDA

performance.

FIGURE 5 | AUC of LOOCV compared with EGBMMDA,ICFMDA, RLSMDA,

and SACMDA.

RESULTS

Cross Validation
We utilized leave-one-out cross validation (LOOCV) and 5-
fold cross validation (5-CV) to evaluate the performance of
MSCHLMDA. A typical machine learning task is to predict the
label of a sample by its features. But for a particular learning
algorithm, it is unknownwhich feature is effective. Therefore, it is
necessary to select the relevant features that are beneficial to the
learning algorithm from all the possible features. In this study,
we combined three types of features arbitrarily, forming seven
combinations, i.e., type 1; type 2; type 3; type 1, and type 2; type
1 and type 3; type 2 and type 3; type 1, type 2 and type 3. Then
we conducted the 5-CV on each combination and calculated the
area under curve (AUC) value. The results are shown in Figure 2.
Our results indicate that when all three types of features were
combined together, the AUC value was the highest. Therefore, for
each miRNA-disease pair, we combined type 1, 2, and 3 features
into one effective feature vector x, which was used to create the
hypergraph to predict miRNA-disease associations.
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FIGURE 6 | AUC of 5-fold cross validation compared with EGBMMDA,

ICFMDA, SACMDA, and RLSMDA.

When different hypergraphs were created, k1 was adopted to
represent the number of neighbors for each vertex, and k2 was
adopted to represent the number of clusters. It is challenging to
select the best k value, and thus different k values were used in this
study to verify the impact of each value. As shown in Figure 3,
it is observed that the proposed method could still obtain stable
results even when k1 and k2 exhibited substantial changes.

In the process of combinative hypergraph learning, the
parameters λ, µ and η were the empirical loss, the regularizer
on the projection matrices and the regularizer on the hypergraph
weights, respectively. They were obtained from the set {10−3,
10−2, 10−1, 100, 101, 102, 103} by cross validating the values of
various parameters. We first empirically set them as 100, 100, and
103, respectively. When the influence of one parameters (such as
λ) on the prediction performance was being verified, the other
two parameters were fixed (such as µ =100, η =103) while the
values of λ were changed from 10−3 to 103. Figure 4 shows the
AUC values with varying parameters under cross validation. Our
results suggest that the proposed method could achieve relatively
stable performance even if λ and µ show in a large range of
variability, and that η had a greater impact on the results obtained
from this method. It is found that MSCHLMDA achieved the
best performance when η = 103. Besides, we ensured more stable
results by setting λ to 101 and µ to 100.

LOOCV considered each known association as a test sample,
while remaining known associations were treated as the training
set and all unknown associations were used as candidate samples.
When MSCHLMDA completed the forecasting task, the scores
of the test sample and candidate samples were compared
to iteratively obtain a predicted ranking. The prediction was
considered true positive if the rank of the test sample was no
lower than the threshold. The prediction was considered false
positive if the rank of the candidate sample was no lower than
the threshold. The methods of EGBMMDA (Chen et al., 2018b),
ICFMDA (Jiang et al., 2018), RLSMDA (Chen and Yan, 2014),
and SACMDA (Shao et al., 2018) were implemented on the same
dataset, and the parameters were set according to the values

TABLE 1 | The top 50 predicted miRNAs associated with Prostate Neoplasms.

miRNA Evidence miRNA Evidence

hsa-mir-21 miR2Disease;dbDEMC hsa-mir-223 miR2Disease;dbDEMC

hsa-mir-155 dbDEMC hsa-mir-133b dbDEMC

hsa-mir-146a miR2Disease hsa-mir-146b Unconfirmed

hsa-mir-221 miR2Disease;dbDEMC hsa-mir-181a miR2Disease;dbDEMC

hsa-mir-122 Unconfirmed hsa-mir-124 dbDEMC

hsa-mir-16 miR2Disease;dbDEMC hsa-mir-106b dbDEMC

hsa-mir-29a miR2Disease;dbDEMC hsa-mir-203 Unconfirmed

hsa-mir-15a miR2Disease;dbDEMC hsa-let-7a miR2Disease;dbDEMC

hsa-mir-1 dbDEMC hsa-mir-196a dbDEMC

hsa-mir-34a miR2Disease;dbDEMC hsa-mir-200b Unconfirmed

hsa-mir-29b miR2Disease;dbDEMC hsa-mir-206 dbDEMC

hsa-mir-133a dbDEMC hsa-mir-19b miR2Disease;dbDEMC

hsa-mir-143 miR2Disease;dbDEMC hsa-mir-96 miR2Disease;dbDEMC

hsa-mir-126 miR2Disease;dbDEMC hsa-mir-200c dbDEMC

hsa-mir-222 miR2Disease;dbDEMC hsa-mir-181b miR2Disease;dbDEMC

hsa-mir-31 miR2Disease;dbDEMC hsa-mir-214 miR2Disease;dbDEMC

hsa-mir-20a miR2Disease hsa-mir-34c dbDEMC

hsa-mir-17 miR2Disease hsa-mir-195 miR2Disease;dbDEMC

hsa-mir-142 Unconfirmed hsa-mir-210 miR2Disease

hsa-mir-29c dbDEMC hsa-mir-24 miR2Disease;dbDEMC

hsa-mir-92a Unconfirmed hsa-mir-18a Unconfirmed

hsa-mir-199a miR2Disease;dbDEMC hsa-let-7b miR2Disease;dbDEMC

hsa-mir-150 dbDEMC hsa-mir-148a miR2Disease

hsa-mir-182 miR2Disease;dbDEMC hsa-mir-19a dbDEMC

hsa-mir-15b dbDEMC hsa-mir-200a dbDEMC

given in the original article. Finally, MSCHLMDA obtained the
AUC of 0.9283 in LOOCV as shown in Figure 5 The AUCs of
ICFMDA,EGBMMDA, SACMDA and RLSMDA in LOOCV are
0.9067, 0.9123, 0.8770, and 0.8426, respectively.

In 5-CV, all confirmed associations were randomly divided
into five uncrossed subsets with equal sizes. One subset was
considered as a test sample and the remaining four subsets as
training sets. In this study, we implemented 5-CV 100 times
to reduce the bias introduced by random divisions and then
calculated themean and standard deviation of AUCs. The average
AUCs of MSCHLMDA, EGMMDA, ICFMDA, SACMDA, and
RLSMDA are 0.9263 (+/−0.0006), 0.9048 (+/−0.0012), 0.9045
(+/−0.0008), 0.8767 (+/−0.0011), and 0.8569 (+/−0.0020),
respectively (see Figure 6).

Case Studies
To further evaluate the ability of MSCHLMDA to discover
potential miRNA-disease associations, case studies of several
important human diseases were carried out, such as prostate
neoplasms, hepatocellular carcinoma and breast neoplasms. All
confirmed associations in the HMDD v2.0 were put into the
training set of MSCHLMDA. According to their prediction
scores, the top 50 predicted miRNAs were selected, which were
associated with the investigated disease. The other databases,
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TABLE 2 | The top 50 predicted miRNAs associated with Hepatocellular Carcinoma.

miRNA Evidence miRNA Evidence

hsa-mir-21 HMDD;miR2disease hsa-mir-15b HMDD;dbDEMC

hsa-mir-155 HMDD;miR2disease;dbDEMC hsa-mir-92a HMDD;miR2disease

hsa-mir-146a HMDD;miR2disease;dbDEMC hsa-mir-181a HMDD;miR2disease;dbDEMC

hsa-mir-125b HMDD;miR2disease hsa-mir-182 HMDD;miR2disease

hsa-mir-122 HMDD;miR2disease;dbDEMC hsa-mir-200b HMDD;miR2disease

hsa-mir-221 HMDD;miR2disease;dbDEMC hsa-mir-133b HMDD

hsa-mir-29a HMDD;dbDEMC hsa-let-7a HMDD;miR2disease;dbDEMC

hsa-mir-34a HMDD;miR2disease;dbDEMC hsa-mir-206 Unconfirmed

hsa-mir-16 HMDD;miR2disease;dbDEMC hsa-mir-196a HMDD

hsa-mir-1 HMDD;miR2disease hsa-mir-200a HMDD;miR2disease;dbDEMC

hsa-mir-15a HMDD;miR2disease;dbDEMC hsa-mir-124 HMDD;miR2disease

hsa-mir-133a miR2disease hsa-mir-146b HMDD

hsa-mir-29b HMDD;dbDEMC hsa-mir-210 HMDD;dbDEMC

hsa-mir-145 HMDD;miR2disease;dbDEMC hsa-mir-195 HMDD;miR2disease;dbDEMC

hsa-mir-199a HMDD;miR2disease;dbDEMC hsa-mir-214 HMDD;miR2disease;dbDEMC

hsa-mir-126 HMDD;miR2disease;dbDEMC hsa-mir-34c HMDD

hsa-mir-29c HMDD;dbDEMC hsa-mir-19b HMDD;miR2disease

hsa-mir-20a HMDD;miR2disease;dbDEMC hsa-mir-18a HMDD;miR2disease;dbDEMC

hsa-mir-150 HMDD;miR2disease;dbDEMC hsa-mir-9 miR2disease

hsa-mir-17 HMDD;miR2disease hsa-mir-19a HMDD;miR2disease;dbDEMC

hsa-mir-31 HMDD;miR2disease hsa-mir-106b HMDD;miR2disease;dbDEMC

hsa-mir-222 HMDD;miR2disease;dbDEMC hsa-mir-181b HMDD;miR2disease;dbDEMC

hsa-mir-143 miR2disease;dbDEMC hsa-let-7b HMDD;miR2disease

hsa-mir-223 HMDD;miR2disease hsa-mir-148a HMDD;miR2disease;dbDEMC

hsa-mir-142 HMDD;miR2disease hsa-mir-24 HMDD;miR2disease

namely dbDEMC (Yang et al., 2010) and miR2Disease (Jiang
et al., 2009), were used to validate these findings.

The first experiment was implemented on prostate neoplasms.
Prostate neoplasms, also known as the carcinoma of the prostate,
are cancers developed from the prostate. The incidence of
prostate cancer is 60% higher and the mortality rate is two
to three times greater in black vs. white men (Sathekge et al.,
2017). Early detection is substantially important for the treatment
of prostate tumors. We used MSCHLMDA to predict miRNAs
related to prostate neoplasms and considered them as candidate
miRNAs. Then, all the candidate miRNAs were ranked in
descending order by their predicted scores. Overall, 43 out of
the top 50 miRNA predictions were verified by dbDEMC and
miR2Disease (See Table 1).

In the second experiment using case studies, hepatocellular
carcinoma was selected as an example to prove the ability
of MSCHLMDA in predicting previously unreported miRNA-
disease associations. Hepatocellular carcinoma is a primary
liver cancer with a high mortality rate. It is one of the most
common malignancies worldwide, especially in Asia, Africa, and
southern Europe (Torre et al., 2015). In the first step, all the
known hepatocellular carcinoma related miRNAs were removed.
Only other disease similarity information and other disease-
related miRNAs were used to reveal potentially related miRNAs
for hepatocellular carcinoma. When the prediction task was
complete, all the miRNAs based on their predicted association

scores were prioritized. Finally, 49 out of the top 50 miRNAs
were validated by HMDD v2.0, dbDEMC and miR2Disease (See
Table 2).

In the final case study, our model was fitted with the miRNA-
disease association dataset from HMDD v1.0, which is the old
version of HMDD v2.0 and contains less information of miRNA-
disease associations. This case study was used to demonstrate
MSCHLMDA’s robust prediction ability compared to various
other datasets. Breast neoplasms were selected as our target
disease. Breast neoplasms are the most common malignancies in
women, it is also the second leading cause of cancer death among
women after lung cancer (Desantis et al., 2016). Here, the whole
prediction process was similar to the first experiment of case
study. Eventually, 49 out of the top 50 miRNAs in our methods
were verified by HMDD v2.0, dbDEMC and miR2Disease (See
Table 3).

In conclusion, our results show the reliable prediction ability
of MSCHLMDA, indicating that MSCHLMDA could be a useful
computational mode to investigate a potential disease-related
miRNAs association.

DISCUSSION

In recent years, finding novel miRNAs associated with specific
diseases has attracted increasing attention in understanding the
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TABLE 3 | The top 50 predicted miRNAs associated with Breast Neoplasms.

miRNA Evidence miRNA Evidence

hsa-let-7i HMDD;miR2Disease;dbDEMC hsa-mir-32 dbDEMC

hsa-let-7e HMDD;dbDEMC hsa-mir-448 dbDEMC

hsa-mir-223 HMDD;dbDEMC hsa-mir-29c HMDD;miR2Disease;dbDEMC

hsa-let-7c HMDD;dbDEMC hsa-mir-181a HMDD;miR2Disease;dbDEMC

hsa-mir-126 HMDD;miR2Disease;dbDEMC hsa-mir-150 dbDEMC

hsa-let-7b HMDD;dbDEMC hsa-mir-30e Unconfirmed

hsa-mir-182 HMDD;miR2Disease;dbDEMC hsa-mir-30a HMDD;miR2Disease

hsa-mir-191 HMDD;miR2Disease;dbDEMC hsa-mir-98 miR2Disease;dbDEMC

hsa-mir-92b dbDEMC hsa-mir-203 HMDD;miR2Disease;dbDEMC

hsa-mir-101 HMDD;miR2Disease;dbDEMC hsa-mir-199b HMDD;dbDEMC

hsa-mir-130a dbDEMC hsa-mir-659 dbDEMC

hsa-mir-532 dbDEMC hsa-mir-521 dbDEMC

hsa-mir-16 HMDD;dbDEMC hsa-mir-23b HMDD;dbDEMC

hsa-let-7g HMDD;dbDEMC hsa-mir-130b dbDEMC

hsa-mir-373 HMDD;miR2Disease;dbDEMC hsa-mir-196b dbDEMC

hsa-mir-92a HMDD hsa-mir-335 HMDD;miR2Disease;dbDEMC

hsa-mir-24 HMDD;dbDEMC hsa-mir-26a HMDD;miR2Disease;dbDEMC

hsa-mir-99b dbDEMC hsa-mir-224 HMDD;dbDEMC

hsa-mir-18b HMDD;dbDEMC hsa-mir-192 dbDEMC

hsa-mir-15b dbDEMC hsa-mir-195 HMDD;miR2Disease;dbDEMC

hsa-mir-99a dbDEMC hsa-mir-328 HMDD;miR2Disease;dbDEMC

hsa-mir-372 dbDEMC hsa-mir-135a HMDD;dbDEMC

hsa-mir-106a dbDEMC hsa-mir-27a HMDD;miR2Disease;dbDEMC

hsa-mir-520b HMDD;dbDEMC hsa-mir-452 HMDD;dbDEMC

hsa-mir-100 HMDD;dbDEMC hsa-mir-186 dbDEMC

pathophysiology of the diseases and discovery of new drugs to
establish effective treatment strategies. In this study, we proposed
a combinative hypergraph learning (CHL) method called
MSCHLMDA to effectively define miRNA/disease similarity
for predicting underlying miRNA-disease associations. CHL
captures the similarity between two samples in the same category
by KNN hypergraph and K-means hypergraph. MSCHLMDA’s
performance was verified by cross validation and case studies.
These results indicate that MSCHLMDA is able to generate
reliable candidate miRNA-disease associations for further
validation by biologists.

The improved performance of our model could be mainly
attributed to the following two aspects. First, an informative
feature vector was created from a statistical analysis and a graph
theoretic. The statistical features recorded the sum, the mean,
the histogram distributions of the similarity scores, the neighbor
count and the neighbor’s similarity scores. For miRNAs and
diseases, the graph theoretic features contained the betweenness
and closeness centrality measures of the network graphs. Second,
we used hypergraph learning to design a predictive model.
Hypergraph-based models have proven to be beneficial for a
variety of classification/clustering tasks, because it can represent
the information that three or more vertices have the same
semantic attribute, which common graphs are unable to describe.
Hypergraphs can model the high-order relationships between
their vertices by hyperedges, whose influence can be assessed by

properly estimating their weights. Furthermore, we employed the
neighborhood-based formulation and the clustering techniques
to generate the hyperedges.

In our previous model of HGMDA (Wu et al., 2019), we
also used hypergraph learning, but there are many differences
between the implementation process of these two models. First,
the hypergraph construction was different. In HGMDA, we
only used the K-means algorithm for clustering, which means
that known miRNA-disease associations were not utilized to
extract the clustering relationship of miRNA-disease pairs. In
the current study, KNN and a K-means algorithm was used to
seek the relationship between miRNA-disease pairs, which was
more comprehensive because KNN was a supervised learning
method. Second, the weights of the hyperedges were different. To
generate a better hypergraph representation, different hyperedges
should have different influences. In HGMDA, all hyperedges had
the same weight failing to reflect the importance of different
hyperedges. However, in this work, we assigned different weights
to each hyperedge based on the distance of each vertex from its
neighborhood; this can help to improve the representation ability
of the hypergraph structure. Third, the projection matrix was
different. In HGMDA, it was required to iterate multiple times
to get a stable projection matrix, while in this work we could
obtain two projection matrices directly, then combine them into
a comprehensive mapping matrix, which was scored higher in
efficiency and accuracy.
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This method still has some limitations. First, it is required
to add negative samples in the training datasets to train the
predictive model. Second, due to the computational cost of the
hypergraph construction, our method fails to efficiently deal with
large-scale samples. Besides, with newly discovered miRNAs, the
originally learned projection matrices may be unable to represent
the data distribution well. These shortages limit the application
range of our model. In future study, we will further investigate
the online updates of the learned hypergraph embedding results.
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