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A B S T R A C T   

Kyasanur forest disease virus (KFDV) is a rapidly expanding tick-borne zoonotic virus with natural foci in the 
forested region of the Western Ghats of South India. The Western Ghats is one of the world's most important 
biodiversity hotspots and, like many such areas of high biodiversity, is under significant pressure from anthro
pogenic landscape change. The current study sought to quantify mammalian species richness using ensemble 
models of the distributions of a sample of species extant in the Western Ghats and to explore its association with 
KFDV outbreaks, as well as the modifying effects of deforestation on this association. Species richness was 
quantified as a composite of individual species' distributions, as derived from ensembles of boosted regression 
tree, random forest, and generalised additive models. Species richness was further adjusted for the potential 
biotic constraints of sympatric species. Both species richness and forest loss demonstrated strong positive asso
ciations with KFDV outbreaks, however forest loss substantially modified the association between species rich
ness and outbreaks. High species richness was associated with increased KFDV risk but only in areas of low forest 
loss. In contrast, lower species richness was associated with increased KFDV risk in areas of greater forest loss. 
This relationship persisted when species richness was adjusted for biotic constraints at the taluk-level. In addi
tion, the taluk-level species abundances of three monkey species (Macaca radiata, Semnopithecus hypoleucus, and 
Semnopithecus priam) were also associated with outbreaks. These results suggest that increased monitoring of 
wildlife in areas of significant habitat fragmentation may add considerably to critical knowledge gaps in KFDV 
epidemiology and infection ecology and should be incorporated into novel One Health surveillance development 
for the region. In addition, the inclusion of some primate species as sentinels of KFDV circulation into general 
wildlife surveillance architecture may add further value.   

1. Introduction 

The sharing of space between wildlife and humans can be disruptive 
to both animals and people particularly in the context of altered habitat. 
Human pressure on wildlife influences species' community composition, 
population movement and density, resource provisioning [1,2], and eco- 

immunology [3], which can subsequently alter pathogen circulation 
among wildlife hosts as well as introduce conduits that allow the 
movement of pathogens from reservoir hosts to novel human hosts [4], 
with potentially catastrophic effects [5–7]. As such, the growing 
wildlife-human interface requires both improved surveillance of path
ogen circulation among wildlife and a greater understanding of the 
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impact of anthropogenic landscape change on wildlife communities, 
their pathogens, and mechanisms for potential spillover of novel path
ogens to humans. Importantly, as new wildlife-human interfaces emerge 
in close proximity to major transportation hubs, the potential for high- 
impact spillovers with the capacity for rapid regional or global 
dissemination is increasing [8]. 

Currently, there is a lack of zoonosis surveillance in wildlife globally, 
but the absence is particularly noteworthy in the world's biodiversity 
hotspots that are undergoing rapid anthropogenic change. The Western 
Ghats region of South India is one of the world's most important biodi
versity hotspots [9] and also experiences significant pressure in the form 
of landscape change due to deforestation, commercial agricultural 
exploitation, and urbanisation [10]. The monsoon rainforests of this 
region support approximately 500 bird species, 225 reptile species, 219 
amphibian species, and 133 mammal species [11,12]. Nevertheless, only 
10% of the region's 160,000 km2 area is formally protected [11]. As 
anthropogenic pressure increases in the region, conflict between many 
of these species, especially mammals, and humans has grown [13,14], 
facilitating exposure to novel pathogens. The general lack of wildlife 
pathogen surveillance across this rapidly changing region is com
pounded by an even greater absence of work examining the influence of 
community ecology on the processes of pathogen circulation and spill
over events. The emerging tick-borne zoonotic virus, Kyasanur Forest 
disease virus (KFDV), simultaneously represents 1) a critical public 
health priority in the Western Ghats states because of its recent rapid 
expansion and the high mortality (2% - 10%) associated with its 
neurological and haematological complications [15–18], and 2) a model 
system for understanding viral spillover because of the extensive 
wildlife-human interface across the region [8]. Kyasanur Forest disease 
virus is a flavivirus transmitted by several tick species, while the primary 
vector is the forest tick, Haemaphysalis spinigera. This species is found in 
high relative abundance in the region, has high viral prevalence, and 
feeds on many taxa of mammalian hosts including humans [19–21]. 
Humans typically are exposed to these ticks in the anthropogenic eco
tones of forest fringe [22]. Outbreaks of KFDV have expanded from a 
single district in the state of Karnataka in the decade following the virus' 
first identification in 1957 to an extensive region now comprising five 
states across South India [15,22]. Recent work has demonstrated a 
strong direct association between the expansion of KFDV outbreaks and 
the loss of native forest [23,24], which was further supported by phy
logeographic analyses [25]. The study that reported the KFDV outbreak 
association with forest loss also noted that areas of high mammalian 
species richness presented greater risk [23]. While this previous study's 
assessment of forest loss was of high quality, species richness was 
assessed more crudely using the IUCN-derived species' range for each 
mammal species present across the region. As such, variation of species' 
distributions within those ranges was not incorporated into the assess
ment of species richness, nor was there any assessment of potential 
interaction between sympatric species. Additionally, the associations 
between KFDV and individual species' abundance and relative abun
dance were not previously explored. It is anticipated that further 
investigation of these aspects of mammalian biogeography and com
munity ecology in KFDV outbreak hotspots will add considerable insight 
into the epidemiology of KFDV spillover while also providing an 
ecological evidence-base for developing municipal wildlife surveillance 
infrastructure at the taluk level (sub-district) across the Western Ghats 
states. The incorporation of wildlife monitoring and sampling into KFDV 
surveillance is particularly important since the investigation of infection 
in wildlife hosts has fallen off dramatically in recent decades, prior to 
which some mammalian susceptibility had been identified via serology 
but reservoir host competence was not established [15]. This decline in 
wildlife surveillance has resulted in a considerable knowledge gap in the 
fundamental infection ecology of KFDV, while also leaving any new 
efforts at building surveillance infrastructure uninformed with respect to 
what species should be sampled and where they should be sampled. 
Given the extensive forest loss in the region, delineating potential host 

communities across the spectrum of habitat fragmentation will be 
important in understanding how risk of spillover is modulated by 
wildlife communities. For example, as mentioned, the extent of viral 
competence is not known for most mammals of the Western Ghats and 
therefore identifying key reservoir hosts, or distinguishing between 
maintenance and amplification hosts, is not currently possible. As such, 
we remain largely ignorant of the importance of generalist species, 
which typically are more resilient to anthropogenic pressure, frequently 
dominate fragmented landscapes as biodiversity is lost, and often host 
zoonotic pathogens [26–28]. Conversely, the extent to which greater 
species richness in less fragmented landscapes may buffer against viral 
transmission (or against tick dispersal and feeding success) is also un
known. Therefore, there is an urgent need for targeted surveillance 
mechanisms to sample wildlife across heterogenous landscapes to fill 
these critical knowledge gaps and thereby ultimately develop a more 
sound approach to the control and prevention of this rapidly expanding 
tick-borne arbovirus. 

The specific aims of the current study were as follows. First, we 
sought to estimate the species distributions of a sample of extant 
mammals of the Western Ghats (including endemic and non-endemic 
species) and use these to construct a more representative metric of 
species richness across the region. Second, we sought to adjust overall 
species richness, as well as individual species' abundance and relative 
abundance for the biotic constraints of sympatry. Third, we sought to 
interrogate the association between species richness and KFDV out
breaks and the modification of this association by forest loss to develop 
much needed landscape epidemiology targets for improved surveillance 
of this expanding zoonotic arbovirus. 

2. Materials and methods 

2.1. Data sources 

The Global Biodiversity Information Facility was used to obtain all 
direct observations of extant mammals in the Western Ghats [12] and 
Peninsular India between 1 January 2010 and 1 November 2020 (www. 
gbif.org). A total of 2826 mammals were observed over this period [29]. 
This comprised a total of 99 species observed across the region. How
ever, habitat suitability was estimated only for those species with a 
sample size of at least 30 individuals, for a total of 24 species. 

The KFDV outbreaks used in this investigation have been described 
in detail previously [23]. Briefly, two independent sources of outbreaks 
reported between 1 January 2012 and 30 June 2019 were used for 
model training and testing, respectively. The training data (47 out
breaks) were sourced from the ProMED-mail [30] electronic surveil
lance system and the testing data (39 outbreaks) comprised an 
independent set of laboratory-confirmed outbreaks described in the 
literature [23]. This allowed for external validation of KFDV outbreak 
models rather than partitioning data from a single source into training 
and testing. 

Mean annual precipitation and mean annual temperature were ob
tained from the WorldClim Global Climate database at a resolution of 30 
arc sec (~ 1 km) [31]. The rasters derived from the WorldClim database 
were mean measurements between the period 1950 to 2000, and thus 
represent estimates of climate rather than weather. Some regions rep
resented by the WorldClim database have sparse weather stations 
contributing to climate estimates. However, India's extensive network of 
weather stations make its local contributions to decadal climate inter
polation more representative than many other large countries [32]. 

The Priestley-Taylor α coefficient (P-Tα) is the ratio of actual 
evapotranspiration to potential evapotranspiration and was included 
here as a metric for water-soil balance [33,34]. In contrast to solar en
ergy input alone, the P-Tα represents water availability in the soil as a 
function of the local vegetation's water requirements and is therefore a 
more robust estimate of soil-water balance. A 30 arc sec resolution raster 
of P-Tα was obtained from the Consultative Group for International 
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Agricultural Research (CGIAR) Consortium for Spatial Information. The 
ratio ranges from 0 (extreme water stress) to 1 (no water stress) [35]. 

Forest cover was first acquired from the Global Land Cover Clima
tology MODIS-based data product, which corrects temporally aggre
gated 10-year land cover types by weighting each land cover type by 
their annual uncertainty and then validates the weighted composite 
against the System for Terrestrial Ecosystem Parameterization [36]. The 
product used here for forest cover represents the period 2001–2010 at a 
resolution of 15 arc sec (~ 500 m). 

Landsat data compiled at 1 arc sec (~ 30 m) resolution by the Global 
Forest Change project was used to quantify forest loss between 2000 and 
2012 [37]. Landsat imagery was processed using a stratified random 
sampling validation procedure, with 99.6% accuracy in global settings 
and 99.5% accuracy in tropical settings [37]. Individual tiles were 
merged across the region of the Western Ghats and a new quantile raster 
constructed to represent deciles of forest loss. 

An established validated metric for the human footprint (HFP) was 
used to control for spatial background sampling as described below in 
the analysis section. The metric was acquired from the Socioeconomic 
Data and Applications Center (SEDAC) repository [38] at a resolution of 
30 arc sec and has been described in detail previously [39]. Briefly, HFP 
comprises 2 levels of classification. First, an index of human influence 
was determined based on eight domains: 1) population density, distance 
to 2) roads, 3) railway lines, 4) navigable rivers, and 5) coastlines, 6) 
degree of night-time artificial light, 7) urban vs rural location, and 8) 
land cover. These domains were then scored to derive the human in
fluence index (HII), ranging from 0 (no human impact) to 64 (greatest 
human impact). The ratio of the range of minimum and maximum HII in 
the local terrestrial biome to the range of minimum and maximum HII 
across all biomes represents the final HFP metric and is expressed as a 
percentage [39]. 

Because KFDV outbreaks disproportionally affect marginalised 
communities with limited access to health care, this investigation 
adjusted for potential reporting bias using a measure of the distribution 
of health system performance as an indication of the local capacity to 
detect outbreaks (see modelling description below). The infant mortality 
ratio (IMR) was chosen as a proxy for health system performance 
because this has been verified as a robust indicator of health infra
structure and health system performance and used extensively to 
compare health service delivery [40,41]. The IMR strongly correlates 
with disability-adjusted life expectancy (DALE), the Human Develop
ment Index (HDI), and the Inequality-Adjusted Human Development 
Index (IHDI). As such, the IMR is an important indicator of structural 
issues that affect health care access and delivery, such as economic 
development, general living conditions, social well-being, and the 
quality of the environment [40,42]. The raster of the IMR was obtained 
from SEDAC [43]. 

2.2. Data analysis 

2.2.1. Species distribution modelling 
The landscape suitability of each of the 24 mammal species was 

estimated using an ensemble approach comprising two machine 
learning methods (boosted regression trees (BRT) and random forests 
(RF)) and generalised additive models (GAM)). The machine learning 
frameworks, BRT and RF, are powerful approaches to improving stan
dard decision trees by iteratively growing many trees and amalgamating 
the results. As the algorithms partition the data space according to rules 
that optimise homogeneity among predictors and a response (e.g. spe
cies presence), many decision trees are grown and combined, resulting 
in optimised decision trees that reduce overfitting and can capture 
complex interactions between the predictors [44–47]. There are two key 
differences in these machine learning approaches. First, for each deci
sion tree partition in RF, only a random subset of predictors is selected 
from the set of all predictors, which decorrelates the trees and reduces 
overfitting. Second, rather than decorrelating trees based on the 

sampling of subsets as with RF, BRT instead reduces overfitting by 
growing trees sequentially and learning from previously grown trees. In 
contrast, the GAM framework allows for nonlinear relationships be
tween outcomes and covariates by fitting multiple basis functions for 
smoothed covariates [48,49]. Five-fold cross-validation was used to fit 
each model under the three distinct modelling frameworks (BRT, RF, 
and GAM). Mean annual temperature, P-T α, and forest cover were 
included as landscape features at 30 arc sec resolution in all models. For 
each species, each of the three models describing their landscape suit
ability was evaluated according to performance, based on the area under 
the receiver operating characteristic curve (AUC), and fit, based on the 
model deviance. Subsequently, an ensemble landscape suitability was 
computed from the three model classes using their weighted mean, with 
weights based on AUC [50]. To adjust for potential spatial sampling bias 
in the GBIF database, background points were sampled proportional to 
the human footprint as a proxy for landscape accessibility. The estimates 
of each species' distribution as derived from these ensembles were then 
summed across all species to estimate local species richness across the 
Western Ghats region. This estimate as well as an additional estimate 
adjusted for the biotic constraints of sympatric species (see description 
below) were subsequently used as more appropriate metrics for 
mammalian species richness and the evaluation of its influence on KFDV 
outbreaks. As an additional sensitivity analysis to test whether associ
ations with species richness may be influenced by the limited regional 
sample of mammalian species used to estimate species richness, an 
alternate India-wide sample (number of observations = 5833, number of 
species = 30) was used to re-estimate individual species habitat suit
ability and then species richness. The sdm package [50] in the R plat
form [51] was used for fitting each model and the derivation of the 
three-model ensembles to each species. 

2.2.2. Point process modelling 
The KFDV outbreaks were fitted as an inhomogeneous Poisson point 

process [52,53]. Under this model framework the spatial dependence of 
the outbreaks' distribution can be determined and evaluated with 
respect to specific landscape features. The background points used in 
these models were sampled proportional to IMR, as described above, to 
control for potential outbreak reporting bias. Previous work demon
strated a strong association between KFDV outbreaks and both forest 
loss and mammalian species richness [23]. However, the association 
with the latter was 1) based on a crude representation of species richness 
that did not account for local heterogeneity of individual species' dis
tributions and 2) could not be used to evaluate the potential effect 
modification of species richness by forest loss. The current investigation 
provides this critical missing component by incorporating a more suit
able metric of species richness based on the individual estimated species' 
distributions described above and subsequently interrogating the 
interaction between species richness and forest loss. In addition, to ac
count for the important climate features that were incorporated in the 
previous work, precipitation and temperature were also included in the 
current work. Finally, the possibility of confounding of the associations 
between KFDV outbreaks and species richness and forest loss by alter
native forms of human influence in the landscape was assessed by 
including HFP as a covariate in an additional model. Therefore, the suite 
of multiple inhomogeneous Poisson models comprised the newly- 
quantified mammalian species richness metric described above, forest 
loss, an interaction term for species richness and forest loss, mean 
annual precipitation, mean annual temperature, and HFP all aggregated 
up to 2.5 arc minutes. The landscape features included in the multiple 
inhomogeneous Poisson models were not highly correlated so multi
collinearity in the models was not of concern (all values of the Pearson's 
r were < 0.5). Model fit was assessed using the Akaike information 
criterion (AIC) and model performance was tested against an indepen
dent, laboratory-confirmed set of outbreak data, as described above. 
Performance was evaluated using the AUC. The spatstat R package was 
used to fit the point process models [54]. 
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2.2.3. Taluk-level modelling 
Species richness was further adjusted for, and individual species 

abundance and relative abundance were computed based on, the po
tential modulating effects of sympatric species at the scale of the taluk. 
Taluks are 3rd-level, subdistrict administration units in India and are 
small enough to reasonably represent shared space between sympatric 
species, while simultaneously large enough to delineate the minimal 
municipal infrastructure (i.e. delineating the most local focus) used in 
the Western Ghats states for the implementation of animal and human 
disease surveillance. Specifically, biotic constraints were applied to the 
estimates of each species distribution according to the spatially-explicit 
species assemblage modelling (SESAM) framework [55–57]. Under this 
framework, first the landscape suitability for each species was estimated 
according to the ensemble method described above. Second, species 
richness was calculated as the sum of the individual species distribu
tions, again using the method described above. Third, the biotic 
constraint was applied whereby each species is evaluated with respect to 
all other species present within each taluk via the probability ranking 
rule [56,58] to determine whether a given species should be retained 
within, or excluded from, each taluk “community”. The third step ranks 
each species from highest to lowest predicted habitat suitability based 
on each species' suitability obtained in the first step. Then, species are 
selected for inclusion beginning with the species with highest suitability 
and proceeding down the catalogue of ranked species until the sum of 
selected species is equal to the expected species richness value for each 
location calculated in the second step. This provides an estimate of each 
species' presence (or absence) at the taluk level given the potential biotic 
constraints of the other species within the taluk. For those species thusly 
identified as present within the taluk community, all 1 km2 pixels 
exceeding the true skill statistic (TSS) [59] of their ensemble landscape 
suitability estimate were designated present (1 = present, 0 = other
wise) and summed across all pixels within the taluk. This yielded a taluk- 
level estimate of species abundance for each species under consider
ation. Similarly, the taluk-level relative abundance for each species was 
quantified by dividing each individual species abundance by the total 
abundance of all species identified as present within each taluk under 

the SESAM framework. Finally, a new estimate of species richness was 
computed by summing all the species identified as present within each 
taluk under the SESAM framework. This systematic approach thus 
yielded taluk-level community estimates of each species' abundance and 
relative abundance, as well as an updated estimate of species richness, 
all adjusted for the biotic constraints of sympatric species. The SESAM 
framework, including the probability ranking rule was implemented 
using the ecospat package in R [57]. 

Integrated nested Laplace approximation (INLA) models [60] were 
used to estimate the association between KFDV outbreaks and the bio
tically constrained estimate of mammalian species richness and its 
interaction with forest loss at the level of the taluk, as well as associa
tions between KFDV outbreaks and individual species abundance and 
relative abundance to identify potential species that may be good can
didates for initial wildlife surveillance. While the latter may represent 
species that are important as reservoir hosts, we did not attempt to assess 
species' roles as hosts in the current study since we did not measure their 
competence for KFDV. Instead, individual species associations were 
investigated simply to identify whether certain species may be useful 
sentinels of KFDV outbreaks. The binomial likelihood family was used 
for the INLA models with spatial autocorrelation estimated using 
random effects with Besag–York–Mollie priors. Under the binomial 
family, taluks were modelled as either having experienced a KFDV 
outbreak under the period of study (outbreak positive) or not (outbreak 
negative). This approach was taken since the majority of taluks in the 
region did not experience outbreaks, and, among those that did, most 
only experienced one or two outbreaks. Nevertheless, to evaluate the 
effect of different distribution families, we also fitted these models with 
the zero-inflated Poisson family as a sensitivity analysis. Since the KFDV 
outbreaks were necessarily aggregated by taluk, to increase the outbreak 
sample size available for taluk-level modelling, the independent datasets 
described above for the point process models (PPMs) were combined for 
the INLA models. Since the primary objective was estimation rather than 
prediction so as to infer associations between KFDV outbreaks and 
species richness, this was deemed an acceptable trade-off. The fit of 
INLA models was evaluated using the Watanabe-Akaike information 

Fig. 1. The distribution of taluks (beige) across the general region of the Western Ghats comprises five states (Maharashtra, Goa, Karnataka, Kerala, and Tamil Nadu) 
in Peninsular India (left panel). Kyasanur Forest disease virus outbreaks captured via ProMED-mail (red) and independently sourced (black) are superimposed over 
taluks. The distribution of mammalian species richness as estimated from a sample of Western Ghats species from 2010 to 2020 is presented in the right panel. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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criterion (WAIC). The INLA models were fit using the inla package in R 
(www.r-inla.org) [60]. 

3. Results 

The distribution of mammalian species richness, estimated as the 
sum of the sample of individual species' distributions, is presented in 
Fig. 1 juxtaposed with the distribution of KFDV outbreaks. The indi
vidual species distribution models generally performed well (Supple
mentary material, S1 Table 1). The distribution of each species' 
landscape suitability is presented in S2 Fig. 1 and S3 Fig. 2. Both forest 
loss and the new quantification of mammalian species richness based on 
individual species' landscape suitability alone were very strongly asso
ciated with KFDV outbreaks at local scale (Table 1). Strong associations 
were apparent whether these features were considered alone in the 
crude bivariate PPMs (Table 1A), or together in the multiple PPMs 
(Table 1B, C, and D). Critically, while species richness demonstrated a 
similar association with KFDV outbreaks to that shown previously [23], 
the current investigation identified significant and substantial interac
tion between species richness and forest loss. As such, increasing 
mammalian species richness was crudely associated with increasing 
KFDV outbreak occurrence. However, when species richness was 
considered in concert with forest loss, the KFDV association with the 
former was modified by the latter (coefficient = − 0.41). This 

relationship was maintained in the final model (Table 1C), which 
incorporated the climate features and was a markedly better fit (AIC =
− 36.34 vs. − 22.80) although performance was slightly diminished 
(AUC = 0.74 vs. 0.78). Finally, confounding of these associations by HFP 
was not supported since the regression coefficients were unaltered by 
the inclusion of HFP, HFP itself was not associated with outbreaks, and 
the model overall was a poorer fit to the data (Table 1D). The distri
bution of KFDV outbreak risk across the Western Ghats based on the best 
fitting model (Table 1C) is presented in Fig. 2. The individual species 
distribution models and projected suitability using the alternate 
country-wide sample are presented in S4 Table 2 and S5 Figure 3 and S6 
Fig. 4. There was no marked difference in the strength or direction of the 
association between KFDV outbreak risk and species richness or its 
interaction with forest loss in the sensitivity analysis using the India- 
wide sample, however the model based on the latter demonstrated 
both poorer fit and performance (S7 Table 3, S8 Fig. 5), so the original 
model based on the regional sample was retained as the primary model 
for this analysis. 

The newly quantified metric for taluk-level species richness based on 
the SESAM framework is presented in Fig. 3. In comparison to the best- 
fitting high-resolution PPM model (Table 1C), the taluk-level INLA 
model showed the same strong interaction between forest loss and 
mammal species richness, even as the latter was adjusted for biotic 
constraint under the SESAM framework and scaled up to taluk (Table 2, 
Fig. 4). Further sensitivity analysis showed that these associations all 
persisted when the distribution family was specified as zero-inflated 
Poisson (S9 Table 4 and S10 Fig. 6), although temperature was no 
longer associated with outbreak occurrence. Finally, as with the PPMs 
described above, the associations persisted (S11 Table 5) when species 
richness was estimated based on the alternate India-wide sample (S12 
Fig. 7) although the model overall was a poorer fit. Based on taluk-level 
outbreak risk (Fig. 4), we identified the 50th percentile of risk where 
deforestation and species richness optimally converge for targeted se
lection for a state-administered (e.g. Karnataka) animal surveillance 
program (Fig. 5). In addition to the broad metric of species richness, we 
also explored the associations between KFDV outbreaks and each indi
vidual species' abundance and relative abundance to determine if any 
particular species may prove useful as a sentinel surveillance target. 
Despite several species demonstrating significant individual associations 
with KFDV occurrence at fine scale based on their estimated landscape 
suitability (S13 Table 6), most species did not demonstrate associations 
with outbreaks at the level of the taluk (S14 Table 7). However, there 
were a few notable exceptions. Species abundance of the primates 
Macaca radiata, Semnopithecus hypoleucos and Semnopithecus priam, were 
all associated with increased KFDV occurrence at the taluk level. Species 
relative abundance was also associated with KFDV outbreaks for 
S. hypoleucos, but not for any other primate species. The distributions of 
these species' abundances and relative abundances per taluk are pre
sented in S15 Fig. 8. Finally, both the abundance and relative abundance 
of Panthera pardus, and the abundance of Axis axis, were also associated 
with increased KFDV outbreak occurrence. 

4. Discussion 

This is the first study to attempt a general estimate of mammalian 
species richness across the Western Ghats region based on ensemble 
modelling of the landscape suitability of several extant species, and to 
extend this by adding biotic constraints of sympatric species to the es
timates of species richness, as well as individual species abundance and 
relative abundance. This is also the first study to demonstrate negative 
effect modification of the association between mammalian species 
richness and KFDV outbreak occurrence by forest loss such that higher 
species richness was associated with increased KFDV outbreak risk 
where deforestation was minimal, but in areas of increasing forest loss 
lower species richness was associated with increased risk. This associ
ation was identified at both fine scale and at the level of the taluk. 

Table 1 
Unadjusted (A) and adjusted (B, C, and D) regression coefficients and 95% 
confidence intervals for the associations between Kyasanur Forest disease virus 
outbreaks and landscape features as derived from inhomogeneous Poisson point 
process models (PPMs) of the outbreaks. Coefficients in A represent crude as
sociations from bivariate PPMs, whereas those in B, C, and D represent adjusted 
associations wherein each landscape feature is adjusted for all other features 
included in the multiple PPMs. The Akaike information criterion (AIC) and area 
under the receiver operating characteristic curve (AUC) show model fit and 
performance, respectively.  

Landscape features Coefficient 95% confidence 
interval 

AIC AUC 

A. Bivariate PPM     
Mammal richness 0.08 0.02–0.15 31.79 0.62 
Forest loss (deciles) 1.22 0.85–1.59 27.14 0.76 
Annual precipitation (100 

mm) 
0.06 0.04–0.08 28.64 0.63 

Annual temperature 
(Celsius) 

− 0.02 − 0.03 to − 0.01 56.88 0.53 

B. Multiple PPM – without 
climate     

Mammal richness 0.59 0.37–0.82 − 22.80 0.78 
Forest loss (deciles) 5.21 3.94–6.48   
Mammal richness:forest loss 

interaction 
− 0.41 − 0.54 to − 0.28   

C. Multiple PPM – with 
climate     

Mammal richness 0.39 0.12–0.65 − 36.34 0.74 
Forest loss (deciles) 4.82 3.46–6.19   
Mammal richness:forest loss 

interaction 
− 0.37 − 0.51 to − 0.23   

Annual precipitation (100 
mm) 

0.05 0.02–0.08   

Annual temperature 
(Celsius) 

− 0.03 − 0.05 to − 0.01   

D. Multiple PPM – with the 
human footprint     

Mammal richness 0.39 0.12–0.66 − 35.34 0.75 
Forest loss (deciles) 4.86 3.47–6.24   
Mammal richness:forest loss 

interaction 
− 0.37 − 0.51 to − 0.23   

Annual precipitation (100 
mm) 

0.05 0.02–0.08   

Annual temperature 
(Celsius) 

− 0.03 − 0.05 to − 0.01   

Human footprint (%) − 0.02 − 0.05 to 0.02    
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Finally, three monkey species were identified (M. radiata, S. hypoleucus, 
and S. priam) whose taluk-level species abundances were indicators of 
outbreaks. Taken together, these findings have identified important 
interaction between landscape degradation and mammalian species 
richness that may influence the ecology of this tick-borne virus in its 
natural foci. The fact that this relationship held at the taluk level even 

after controlling for biotic constraints indicates that enhanced moni
toring of wildlife and human populations at the level of the taluk, which 
is well-suited to the municipal infrastructure of current human and 
animal health systems in the Western Ghats states, may offer promise as 
the focus of novel One Health surveillance development. In addition, the 
incorporation of some primate species as sentinels of KFDV circulation 
into general wildlife surveillance may add further value to such a One 
Health program. 

Previous work identified increased risk of KFDV outbreaks associated 
with both forest loss and high mammalian species richness [23]. How
ever, the latter association was difficult to interpret due to the fairly 
crude measure of species richness, which was simply a composite of 
IUCN mammal species' ranges across the region. Moreover, this work 
was not able to assess interaction between forest loss and mammalian 
biodiversity. The positive association between KFDV outbreak risk and 
species richness shown in that study was reasonable given the expec
tation of greater exposure to potential KFDV hosts and their tick vectors 
following increasing incursion into areas of high species richness. 
Nevertheless, it is also of particular interest to identify how habitat loss 

Fig. 2. The distribution of Kyasanur Forest disease virus outbreak risk derived from the inhomogeneous Poisson model is presented in the centre panel with the lower 
and upper 95% confidence limits to the left and right, respectively. 

Fig. 3. The adjusted distribution of mammalian species richness as estimated 
from a sample of Western Ghats species. Species richness was adjusted using the 
SESAM framework to introduce biotic constraints to adjust the presence of each 
species for the presence of other species within each taluk. 

Table 2 
Taluk-level integrated nested Laplace approximation model (binomial family) of 
Kyasanur Forest disease virus outbreaks. Mammal species richness was adjusted 
for the biotic constraints of sympatric species using the SESAM framework. The 
Watanabe-Akaike information criterion (WAIC) was used to assess model fit.  

Landscape features Coefficient 95% credible 
interval 

WAIC 

Mammal richnessSESAM 0.86 0.39–1.35 150.03 
Forest loss (deciles) 5.62 2.67–8.79 
Mammal richness:forest loss 

interaction 
− 0.54 − 0.85 to − 0.26 

Annual precipitation (100 mm) 0.00 0.000–0.1 
Annual temperature (Celsius) − 0.02 − 0.034 to − 0.004  
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may affect the community ecology of mammalian hosts in ways that 
could influence KFDV spillover to humans. Therefore, better metrics of 
species richness were required across the region to more appropriately 
evaluate the modifying effect of forest loss on the association between 
species richness and KFDV outbreaks. The results presented in this 
current investigation indicated that the relationship between species 
richness and forest loss is indeed more nuanced. As shown previously 
[23], increased species richness was associated with increased KFDV 
outbreak risk but in the current study this relationship only held in 
landscapes with minimal forest loss. In contrast, as forest loss increased, 
lower species richness was associated with increased risk. While this 
finding allows no definitive assertion regarding the nature of KFDV 
circulation among mammalian hosts, such as the relative importance of 
the dilution effect to transmission dynamics [61], it does provide 
important evidence that KFDV circulation among reservoir hosts per
sists, and spillover to humans continues, in human-altered landscapes 
exhibiting lower biodiversity, which is consistent with previous evi
dence showing clear pathways from habitat fragmentation and biodi
versity loss to increased spillover [1,62]. Despite the current study's 
inability to make specific claims about the role of any individual species 
in the viral maintenance and infection ecology of KFDV, the findings do 
suggest that, in general, species resilient to anthropogenic landscape 
change may be most relevant to the expansion of KFDV spillover across 
the region. This finding closely parallels recent work demonstrating 
similar relationships more globally for other zoonotic pathogens 
[26,27]. Moreover, the work may help to address a critical surveillance 
gap currently impeding a fuller understanding of KFDV infection ecol
ogy. Following the initial identification of KFDV in 1957, there was a 
rapid but limited flurry of research attempting to identify wildlife res
ervoirs for KFDV in the Bandipur Forest range [15]. Several mammalian 
species were identified as hosts, but these studies were not definitive 
with respect to KFDV infection ecology as many relied on serology, 
rather than measuring host competence, and many of the studies 
employed limited sampling strategies [15]. Subsequently, wildlife in
vestigations all but stopped by the early 1980s before KFDV reservoirs 

could be established. Therefore, the current study could have important 
implications for reinstating widespread wildlife surveillance of KFDV in 
the Western Ghats with a focus on synanthropic species. 

It is important to caution against interpretation of these findings to 
infer specific dynamics of infection ecology at either the level of the 
community or individual species because infection competence was not 
assessed in any of the mammals under investigation nor was interspe
cific interaction among species directly observed at species' locations. 
However, the results do provide some of the most actionable evidence to 
date for targeted, landscape-designed wildlife surveillance across the 
region. Specifically, these findings can help to frame a landscape-based 
cluster sampling design for the monitoring of wildlife distribution and 
movement in response to human induced landscape change in concert 
with pathogen surveillance in animals and humans (Fig. 5). Critically, 
the fact that this study's findings were consistent at the level of the taluk 
indicates that the existing municipal infrastructure for animal and 
human health can be used as the necessary scaffolding for novel One 
Health surveillance architecture and service delivery. Moreover, the 
taluk-level abundance of bonnet macaques (M. radiata) and grey langurs 
(Semnopithecus spp.), which have previously been identified as highly 
susceptible to KFDV [63–65], were also associated with outbreaks. As 
mentioned above, the current study can make no claims regarding the 
roles of individual species in the infection ecology of KFDV, but the 
associations with these primate species' abundance within taluks in
dicates that these species may provide useful sentinels under a One 
Health surveillance framework. In addition, leopard (P. pardus) abun
dance and relative abundance and chital (A. axis) abundance were also 
associated with outbreak risk. While neither of these species have been 
shown to be susceptible to KFDV, both are known to host KFDV-relevant 
ticks and distribute these vectors in the landscape [66,67]. Therefore, 
their associations with increased KFDV outbreak occurrence in the 
current study merits a closer look at the role these species could play as 
tick distributors, particularly since both of these species are highly 
adaptive to anthropogenic landscapes. As such leopards and chital could 
have repercussions for human exposure to KFDV vectors, their unlikely 

Fig. 4. The distribution of Kyasanur Forest disease virus outbreak risk derived from the integrated nested Laplace approximation model (binomial family) is pre
sented in the centre panel with the lower and upper 95% credible limits to the left and right, respectively. 
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role as important KFDV hosts notwithstanding. 
Further to the cautionary interpretation around KFDV infection 

ecology encouraged above, some further description of this study's 
limitations is provided. First, as previously mentioned direct observation 
of interspecific interaction was not possible under the current investi
gation, which precludes the ability to make specific claims about the 
true nature and influence of interaction among communities at various 
scales across the region. The findings reported here will need to be 
verified by systematically conducted field investigations of directly 
observed interspecific interaction at multiple scales. Second, sufficient 
observations were not available for each extant mammal species of the 
Western Ghats and so the new quantification of species richness pre
sented here, although much improved over previous estimates, is based 
on only a sample of Western Ghats mammals and therefore remains a 
proxy for true species richness. Third, spatial biases may affect the dis
tribution of species observations, as well as the reporting of KFDV out
breaks, across the region. To control for these biases, respectively, 
background points were not selected randomly but instead selected 
proportional to the human footprint as a measure of accessibility and 
IMR as a measure of health system performance and access. Finally, this 
study provides no description of the roles of individual species as res
ervoirs, whether operating as maintenance, amplification, or bridging 
hosts, since neither infection competence nor infection susceptibility 
was measured in these species in the current study. Rather, individual 
species' landscape suitability was used to 1) calculate species richness 
and evaluate this as a landscape feature of importance to the distribution 
of KFDV outbreak occurrence, particularly with respect to forest loss, 
and 2) identify individual species that may serve as useful sentinels in 
the development of wildlife surveillance mechanisms. Therefore, rather 

than defining how mammalian community ecology determines KFDV 
infection ecology, the current work delineates optimal landscape targets 
for developing the surveillance instruments necessary to appropriately 
monitor and sample wildlife so that the necessary community ecology 
and infection ecology data that are needed can be generated. 

5. Conclusions 

This study provides novel metrics of mammalian species richness in 
the Western Ghats, one of the world's critical biodiversity hotspots, and 
demonstrates the influence of this landscape feature and its interaction 
with deforestation on the expansion of one of India's most important 
emerging zoonotic arboviruses. The insight gained can provide 
municipally-directed targets for landscape-based One Health surveil
lance of animals and humans in the face of anthropogenic landscape 
change, which can begin to provide a definitive understanding of KFDV 
infection ecology while simultaneously identifying the wildlife-human 
interfaces most vulnerable to pathogen spillover and which may yield 
the highest benefit from tailored intervention. 
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