
© 2022 Journal of Pathology Informatics | Published by Wolters Kluwer - Medknow 1

Abstract

Technical Note

Introduction

A recent push for digitization in the field of pathology
has created exciting opportunities for the application of
neural networks in diagnostic, prognostic, and theragnostic
applications, beyond what could be accomplished with
native histology image formats.[1] Whole slide images (WSIs)
are high‑resolution scans of tissue sections, they are often
gigapixel sized and saved with multi‑resolution compression
formats.[2] This makes them too large to fit into the memory
of hardware (i.e., graphics processing units [GPUs]) typically
used to train convolutional neural networks (CNNs).[3] To
manage the data volume, WSIs are preprocessed by chopping
them into patches which are fed to CNN architectures.[3‑9]
Traditionally, chopping is performed before training, and
predetermined patch locations are saved to the disk as images.
While this approach works, it is far from ideal and has limited
scalability. Large WSI datasets are storage intensive, and
chopping before training duplicates this data locally on the
disk. To overcome this constraint, we developed histo‑fetch,
an innovative input pipeline for training CNNs on WSIs with
the popular Tensorflow (tf) library.[10] Histo‑fetch samples
stochastic patch locations from WSI datasets actively during
the network training, executing preprocessing, and common

data augmentation operations of this data on the CPU while the
GPU simultaneously executes training operations [Figure 1].

Methods

Histo‑fetch first does a presegmentation of the WSIs to identify
the tissue regions using morphological image processing.
A combination of blurring, thresholding through the Otsu
method,[11] and binary erosion identifies tissue and background
regions. To maintain efficiency, we utilize the multiresolution
decoding ability of WSI formats, using the thumbnail resolution
for this presegmentation. The low‑resolution tissue mask
images are saved to the disk as an extremely space‑efficient
2‑bit portable network graphics file. We use the Tensorflow
data.Dataset class to setup the input pipeline.[10] Specifically,
a custom python function generates random coordinates

Background: Training convolutional neural networks using pathology whole slide images (WSIs) is traditionally prefaced by the extraction
of a training dataset of image patches. While effective, for large datasets of WSIs, this dataset preparation is inefficient. Methods: We
created a custom pipeline (histo-fetch) to efficiently extract random patches and labels from pathology WSIs for input to a neural network
on-the-fly. We prefetch these patches as needed during network training, avoiding the need for WSI preparation such as chopping/tiling.
Results & Conclusions: We demonstrate the utility of this pipeline to perform artificial stain transfer and image generation using the popular
networks CycleGAN and ProGAN, respectively. For a large WSI dataset, histo-fetch is 98.6% faster to start training and used 7535x less disk space.

Keywords: Convolutional neural network, generative adversarial network, tensorflow, whole slide images

Address for correspondence: Prof. Pinaki Sarder,
Department of Pathology and Anatomical Sciences, SUNY Buffalo, Buffalo,

New York, USA.
E‑mail: pinakisa@buffalo.edu

Access this article online

Quick Response Code:
Website:
www.jpathinformatics.org

DOI:
10.4103/jpi.jpi_59_20

How to cite this article: Lutnick B, Murali LK, Ginley B, Rosenberg AZ,
Sarder P. Histo-fetch – On-the-fly processing of gigapixel whole slide
images simplifies and speeds neural network training. J Pathol Inform
2022;13:7.
Available FREE in open access from: http://www.jpathinformatics.org/
text.asp?2022/13/1/7/335090

Histo‑Fetch – On‑the‑Fly Processing of Gigapixel Whole Slide
Images Simplifies and Speeds Neural Network Training

Brendon Lutnick1, Leema Krishna Murali2, Brandon Ginley1, Avi Z. Rosenberg3, Pinaki Sarder1,2

1Department of Pathology and Anatomical Sciences, SUNY Buffalo, Buffalo, New York, USA, 2Department of Biomedical Engineering, SUNY Buffalo, Buffalo, New York,
USA, 3Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA

Submitted: 14‑Jul‑2020	 Revised: 23‑Jan‑2021		 Accepted: 11‑Nov‑2021		 Published: 06-Jan-2022

This is an open access journal, and articles are distributed under the terms of the Creative
Commons Attribution‑NonCommercial‑ShareAlike 4.0 License, which allows others to
remix, tweak, and build upon the work non‑commercially, as long as appropriate credit
is given and the new creations are licensed under the identical terms.

For reprints contact: WKHLRPMedknow_reprints@wolterskluwer.com

J Pathol Inform 2022, 1:13	 http://www.jpathinformatics.org/content/13/1/7

Journal of Pathology Informatics2

within the previously identified tissue region, which are then
loaded using the OpenSlide‑python library.[2] This code takes
arguments for the size and downsampling of patches and has the
ability to augment the patches through color‑shifting, piecewise
affine transformation, and rotation/flipping at runtime. For
efficiency, we capitalize on the pyramidal multi‑resolution
encoding of WSIs when training with downsampled image
patches, using the optimal slide resolution level for extraction
using OpenSlide. This python function wrapped in a Tensorflow
py_function operation which allows it to be executed as part
of the network graph. Batching the image patches is handled
by tf.data.Dataset, whose prefetch operation allows the CPU to
preemptively prepare data batches during training.

Results and Discussion

To demonstrate the usefulness of histo‑fetch in training
downstream deep learning tasks, we modified two popular
generative adversarial networks (GAN) architectures, enabling
direct implementation on WSIs. The first of these was the
cycle‑consistent adversarial network (CycleGAN),[12] a popular
architecture for translating between two image datasets. We
perform artificial histological stain transfer using our modified
CycleGAN, learning to map between stains. This network is
extremely simple to train, requiring two WSI datasets (in this case
with different stains) to be placed in separate folders. This network
used 256 × 256 pixel patches downsampled to ¼ resolution.
In‑depth details of the training are available in our prior work.[13]

We trained two versions of this network using three different
histological stains. Fifty‑nine silver and 313 hematoxylin and
eosin (H&E) stained WSIs were each used as inputs for the
two separate networks which learned to transfer their input to
an in silico Periodic acid–Schiff (PAS) stain. Fifty‑nine PAS
WSIs were used by both networks for the training. The slides
from all three stains were renal transplant biopsies which were
originally obtained for clinical assessment purposes. Examples
from these stain transfer networks are visualized in Figure 2a.
The generated PAS images preserve the tissue structure of the
input. Overall the results look promising. In silico silver and
H&E images show correctly mapped basement membranes,
and tubular brush borders. However, looking closely, the
network maps H&E red blood cells into PAS nuclei.

Others have applied CycleGAN for histological stain
translation but generally use inefficient WSI chopping before
network training.[14,15] de Bel et al.[16] in their work mention a
random sampling approach seemingly similar to our method;
however, they do not provide any details of their algorithm,
and their code is not publicly available. We propose that our
methodology can be readily used for stain translation across
color spaces that are of utility to pathologists in routine practice,
without incurring an additional computational expense.

In the second application of our preprocessing method, we
adapted NVIDIA’s progressive growing of GANs (ProGAN)
architecture.[17] To generate realistic looking in silico
images, this network progressively grows the resolution of

Figure 1: (a) The traditional method uses the CPU to chop whole slide images into patches which are saved to disk before convolutional neural network
training. These patches are read and fed to the graphics processing unit for training. (b) Histo‑fetch randomly selects indices containing tissue on the
fly. These are processed on the CPU and supplied to the graphics processing unit. (c) Efficiency comparison of the two approaches using ProGAN,
highlighting preprocessing time and additional disk space required using a dataset of 151 human biopsy whole slide images. The average training
step time does not significantly change.

cb

a

J Pathol Inform 2022, 1:13	 http://www.jpathinformatics.org/content/13/1/7

Journal of Pathology Informatics 3

generated images as the training progresses. We trained the
modified network up to an image size of 512 × 512 pixels.
Macroscopically, the in silico images look very realistic,
exhibiting natural histological patterns from different stains.
Looking closely at the image microanatomy, unexpected
morphologies such as fused tubules, thick mesangium, and
poorly generated glomeruli and tubule brush borders can be
observed. We believe that further training would resolve these
issues but this is outside the scope of this paper. Examples
of generated image patches are displayed in Figure 2b, with
more results available through the link discussed under code
and data availability section.

Due to the nature of the progressive training, ProGAN requires
a multi‑resolution dataset. In general, this dataset is prepared
by saving training images at all the intermediate resolutions.
Instead, we use histo‑fetch to extract these patches at different
downsampled resolutions as needed during training on‑the‑fly.
The dataset used to train this network contains 1331 WSIs
totaling 765 GB disk space of data. This data contained
clinically obtained renal biopsies and transplant biopsies
stained with PAS, H&E, and Masson’s trichrome. Without
histo‑fetch, training at this large scale would not be possible
given the computational resources available typical to standard
research labs. This would require extracting all WSI patches
and redundantly saving them at resolutions of 4, 8, 16, 32, 64,
128, 256, and 512 square pixels, requiring a massive use of

disk storage. We hypothesize the diverse tissue morphology
present in the large WSI training‑set directly contributed to
the quality of the synthetic images this network generates.

Training with histo‑fetch is as simple as passing the folder
location of the WSI dataset to the network. To quantify the
efficiency of histo‑fetch, we chopped a dataset of 151 human
biopsies WSIs (18.9 GB) in the traditional method, saving
the images to disk. Only regions containing tissue were saved
as jpeg images (1200 × 1200 pixels) without overlap. This
process took 5 h. 2 min. 57 s. to complete, requiring 15.3
GB of additional disk space. Using more common methods,
which save overlapping patches would be even more
inefficient and more redundant.[8] In comparison, histo‑fetch
was 98.6% faster to start training and used ×7535 less
disk space [Figure 1c]. From an organizational standpoint,
working natively with WSIs greatly streamlines the CNN
training workflow using histological data. Files can be
managed at the slide level simplifying troubleshooting and
data management. While the purpose of histo‑fetch is to
avoid saving patches, a developer can easily audit the patch
selection process by displaying the patches selected at each
training step using a python library such as matplotlib,[18]
verifying the tiles are selected in a random and appropriate
manner. After training is completed, histo‑fetch is easily
modified to extract predetermined patch locations for
prediction on holdout WSIs.

While the scope of this paper focuses on quantifying speed and
space utilization improvements of histo‑fetch on unsupervised
deep learning tasks, in a parallel work we adapted histo‑fetch
for a supervised segmentation task using the DeepLab
v3+ network architecture.[19] This was done by creating
additional criteria for the selection of patches, allowing
the selection of patches that contain a specific structure at
training time. This allows easy class balancing of training
data, augmenting regions that occur less frequently to ensure
they are seen with sufficient frequency. The details of this
implementation and the source code are available in a preprint
version of this work.[20]

One benefit of histo‑fetch is the random selection of training
patches. It is well known that random shuffling of data batches
is beneficial during neural network training.[21] We argue that
histo‑fetch provides a more stochastic delivery of training data
than prechopping WSIs. Without predetermined data patch
locations, the selection of patches is continuously variable
and therefore the network sees greater data variation during
training. This improves upon the popular data augmentation
strategy of randomly cropping training images, which has been
shown to improve training.[22] As a result of the elimination
of a preselected dataset, the notion of the training epoch (one
training loop through all the data) is no longer valid, the number
of training steps should be specified instead.

Processing patches on the CPU at runtime increases the
computational overhead; however, training is GPU rate‑limited.
On our system, the CPU prefetches image patches faster than

Figure 2: (a) Shows results from two CycleGAN networks, which take
hematoxylin and eosin or silver stained input patches and transform them
to in silico periodic acid–schiff stains. (b) Shows synthetic tissue patches
generated using ProGAN trained on 1331 human biopsy (765 GB) whole
slide images with various histological stains.

ba

J Pathol Inform 2022, 1:13	 http://www.jpathinformatics.org/content/13/1/7

Journal of Pathology Informatics4

the GPU requests them. Training the two networks presented in
Figure 2 with a 10 core Intel Xeon ® Silver 4114 CPU and NVIDIA
Quadro RTX 5000 GPU, we found no significant difference in
GPU utilization or the execution speed of training steps when
compared to using preextracted image patches. We quantified
this using the ProGAN network, the average training‑step was
0.813 ± 0.005 s when chopping patches and encoding them into
the default TFRecord format.[10] After updating ProGAN to use
histo‑fetch the training‑step time was 0.819 ± 0.006 s [Figure 1c].
Despite the 0.006 s per step penalty, our ProGAN trained for
1.6M steps using histo‑fetch (without WSI chopping and prep of
TFRecord files) would still be much faster.

Conclusion

We have developed a method for on‑the‑fly extraction and
processing of patches from WSIs during neural network
training. Using this method does not affect the speed of
the training, but greatly reduces the time and diskspace
requirements of dataset preparation before training. As an
added benefit, our method provides greater randomness of
data during training than the traditional method, this is due
to the continuous randomized sampling of patches during the
training process. Added randomness in the training data is
commonly believed to be beneficial for network training.[21]
Finally, we believe that once set up, this method is easier to
use for novices and experienced data‑scientists alike. WSI
datasets are intuitively managed at the slide level, and changes
do not require repreparing the dataset. We believe that any
CNN trained on gigapixel scale WSIs would benefit from the
use of this method.

Acknowledgment
This project was supported by NIH-NIDDK grant R01
DK114485 (PS), NIH-OD grant R01 DK114485 03S1 (PS),
a glue grant (PS) of the NIH-NIDDK Kidney Precision
Medicine Project grant U2C DK114886 (Contact: Dr. Jonathan
Himmelfarb), and NIH-OD grant U54 HL145608 (PS).

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

Code and data availability
Histo-fetch and modified GANs codes with trained models
are available at:

https://github.com/SarderLab/tf-WSI-dataset-utils

https://github.com/SarderLab/WSI-cycleGAN

https://github.com/SarderLab/WSI-ProGAN

ProGAN generated in silico images are available at:

https://bit.ly/3oOQjHn

References
1.	 Al-Janabi S, Huisman A, Van Diest PJ. Digital pathology: current status

and future perspectives. Histopathology 2012;61:1‑9.
2.	 Goode A, Gilbert B, Harkes J, Jukic D, Satyanarayanan M. OpenSlide:

A vendor‑neutral software foundation for digital pathology. J Pathol
Inform 2013;4:27.

3.	 Cruz‑Roa A, Gilmore H, Basavanhally A, Feldman M, Ganesan S,
Shih N, et al. High‑throughput adaptive sampling for whole‑slide
histopathology image analysis (HASHI) via convolutional neural
networks: Application to invasive breast cancer detection. PLoS One
2018;13:e0196828.

4.	 Lutnick B, Ginley B, Govind D, McGarry SD, LaViolette PS,
Yacoub R, et al. An integrated iterative annotation technique for easing
neural network training in medical image analysis. Nat Mach Intell
2019;1:112‑9.

5.	 Cruz-Roa A, A. Basavanhally F. González, H. Gilmore, M. Feldman,
S. Ganesan, et al. Automatic Detection of Invasive Ductal Carcinoma in
Whole Slide Images with Convolutional Neural Networks. In Medical
Imaging 2014: Digital Pathology. International Society for Optics and
Photonics; 2014.

6.	 Ni H, H. Liu, K. Wang, X. Wang, X. Zhou, Y. Qian. WSI‑Net:
Branch‑Based and Hierarchy‑Aware Network for Segmentation and
Classification of Breast Histopathological Whole‑Slide Images. In
International Workshop on Machine Learning in Medical Imaging.
Springer; 2019.

7.	 Folmsbee, J., X. Liu, M. Brandwein-Weber, S. Doyle. Active Deep
Learning: Improved Training Efficiency of Convolutional Neural
Networks for Tissue Classification in Oral Cavity Cancer. In 2018 IEEE
15th International Symposium on Biomedical Imaging (ISBI 2018).
IEEE; 2018.

8.	 Ronneberger O, Fischer P, Brox T. U‑net: Convolutional Networks
for Biomedical Image Segmentation. In International Conference
on Medical Image Computing and Computer‑Assisted Intervention.
Springer; 2015.

9.	 Hou L, D. Samaras TM Kurc, Y. Gao, J.E. Davis, J.H. Saltz. Patch‑Based
Convolutional Neural Network for Whole Slide Tissue Image
Classification. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition; 2016.

10.	 Abadi M, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
et al. Tensorflow: A System for Large‑Scale Machine Learning.
In 12th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 16); 2016.

11.	 Otsu N. A Threshold Selection Method from Gray‑Level Histograms.
Vol. 9. IEEE Transactions on Systems, Man, and Cybernetics; 1979.
p. 62‑6.

12.	 Zhu JY, T Park, P. Isola, AA. Efros. Unpaired Image‑to‑Image Translation
Using Cycle‑Consistent Adversarial Networks. In Proceedings of the
IEEE International Conference on Computer Vision; 2017.

13.	 Murali LK, B. Lutnick, B. Ginley, JE Tomaszewski, P. Sarder.
Generative Modeling for Renal Microanatomy. In Medical Imaging
2020: Digital Pathology. International Society for Optics and Photonics;
2020.

14.	 Shaban MT, C. Baur, N. Navab, S. Albarqouni. Staingan: Stain Style
Transfer for Digital Histological Images. In 2019 IEEE 16th International
Symposium on Biomedical Imaging (ISBI 2019). IEEE; 2019.

15.	 Xu Z, CF Moro, B Bozóky, Q Zhang. GAN‑Based Virtual re‑Staining:
A Promising Solution for Whole Slide Image Analysis. arXiv preprint
arXiv: 1901.04059; 2019.

16.	 de Bel T, M. Hermsen, J. Kers, J. van der Laak, G. Litjens.
Stain‑Transforming Cycle‑Consistent Generative Adversarial Networks
for Improved Segmentation of Renal Histopathology. In Proceedings
of the 2nd International Conference on Medical Imaging with Deep
Learning; Proceedings of Machine Learning Research; 2019.

17.	 Karras T, T. Aila, S. Laine, J. Lehtinen. Progressive Growing of Gans
for Improved Quality, Stability, and Variation. arXiv preprint arXiv:
1710.10196; 2017.

18.	 Hunter JD. Matplotlib: A 2D graphics environment. Comput Sci Eng
2007;9:90‑5.

19.	 Chen LC, Y Zhu, G Papandreou, F Schroff, H. Adam. Encoder‑Decoder
with Atrous Separable Convolution for Semantic Image Segmentation. In
Proceedings of the European Conference on Computer Vision (ECCV);
2018.

J Pathol Inform 2022, 1:13	 http://www.jpathinformatics.org/content/13/1/7

Journal of Pathology Informatics 5

20.	 Lutnick B, D. Manthey, JU Becker, B. Ginley, K. Moos, JE Zuckerman,
et al. A user‑friendly tool for cloud‑based whole slide image
segmentation, with examples from renal histopathology. bioRxiv 2021:
p. 2021.08.16.456524.

21.	 LeCun YA, L. Bottou, GB Orr, KR. Müller. Efficient Backprop, In

Neural Networks: Tricks of the Trade. Springer; 2012. p. 9‑48.
22.	 Takahashi R, Matsubara T, Uehara K. Data Augmentation Using

Random Image Cropping and Patching for Deep CNNs. Vol. 30. IEEE
Transactions on Circuits and Systems for Video Technology; 2019.
p. 2917‑31.

