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Abstract

Technical Note

Introduction

A recent push for digitization in the field of pathology 
has created exciting opportunities for the application of 
neural networks in diagnostic, prognostic, and theragnostic 
applications, beyond what could be accomplished with 
native histology image formats.[1] Whole slide images (WSIs) 
are high‑resolution scans of tissue sections, they are often 
gigapixel sized and saved with multi‑resolution compression 
formats.[2] This makes them too large to fit into the memory 
of hardware (i.e., graphics processing units [GPUs]) typically 
used to train convolutional neural networks  (CNNs).[3] To 
manage the data volume, WSIs are preprocessed by chopping 
them into patches which are fed to CNN architectures.[3‑9] 
Traditionally, chopping is performed before training, and 
predetermined patch locations are saved to the disk as images. 
While this approach works, it is far from ideal and has limited 
scalability. Large WSI datasets are storage intensive, and 
chopping before training duplicates this data locally on the 
disk. To overcome this constraint, we developed histo‑fetch, 
an innovative input pipeline for training CNNs on WSIs with 
the popular Tensorflow  (tf) library.[10] Histo‑fetch samples 
stochastic patch locations from WSI datasets actively during 
the network training, executing preprocessing, and common 

data augmentation operations of this data on the CPU while the 
GPU simultaneously executes training operations [Figure 1].

Methods

Histo‑fetch first does a presegmentation of the WSIs to identify 
the tissue regions using morphological image processing. 
A  combination of blurring, thresholding through the Otsu 
method,[11] and binary erosion identifies tissue and background 
regions. To maintain efficiency, we utilize the multiresolution 
decoding ability of WSI formats, using the thumbnail resolution 
for this presegmentation. The low‑resolution tissue mask 
images are saved to the disk as an extremely space‑efficient 
2‑bit portable network graphics file. We use the Tensorflow 
data.Dataset class to setup the input pipeline.[10] Specifically, 
a custom python function generates random coordinates 
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within the previously identified tissue region, which are then 
loaded using the OpenSlide‑python library.[2] This code takes 
arguments for the size and downsampling of patches and has the 
ability to augment the patches through color‑shifting, piecewise 
affine transformation, and rotation/flipping at runtime. For 
efficiency, we capitalize on the pyramidal multi‑resolution 
encoding of WSIs when training with downsampled image 
patches, using the optimal slide resolution level for extraction 
using OpenSlide. This python function wrapped in a Tensorflow 
py_function operation which allows it to be executed as part 
of the network graph. Batching the image patches is handled 
by tf.data.Dataset, whose prefetch operation allows the CPU to 
preemptively prepare data batches during training.

Results and Discussion

To demonstrate the usefulness of histo‑fetch in training 
downstream deep learning tasks, we modified two popular 
generative adversarial networks (GAN) architectures, enabling 
direct implementation on WSIs. The first of these was the 
cycle‑consistent adversarial network (CycleGAN),[12] a popular 
architecture for translating between two image datasets. We 
perform artificial histological stain transfer using our modified 
CycleGAN, learning to map between stains. This network is 
extremely simple to train, requiring two WSI datasets (in this case 
with different stains) to be placed in separate folders. This network 
used 256 × 256 pixel patches downsampled to ¼ resolution. 
In‑depth details of the training are available in our prior work.[13]

We trained two versions of this network using three different 
histological stains. Fifty‑nine silver and 313 hematoxylin and 
eosin (H&E) stained WSIs were each used as inputs for the 
two separate networks which learned to transfer their input to 
an in silico Periodic acid–Schiff (PAS) stain. Fifty‑nine PAS 
WSIs were used by both networks for the training. The slides 
from all three stains were renal transplant biopsies which were 
originally obtained for clinical assessment purposes. Examples 
from these stain transfer networks are visualized in Figure 2a. 
The generated PAS images preserve the tissue structure of the 
input. Overall the results look promising. In silico silver and 
H&E images show correctly mapped basement membranes, 
and tubular brush borders. However, looking closely, the 
network maps H&E red blood cells into PAS nuclei.

Others have applied CycleGAN for histological stain 
translation but generally use inefficient WSI chopping before 
network training.[14,15] de Bel et al.[16] in their work mention a 
random sampling approach seemingly similar to our method; 
however, they do not provide any details of their algorithm, 
and their code is not publicly available. We propose that our 
methodology can be readily used for stain translation across 
color spaces that are of utility to pathologists in routine practice, 
without incurring an additional computational expense.

In the second application of our preprocessing method, we 
adapted NVIDIA’s progressive growing of GANs (ProGAN) 
architecture.[17] To generate realistic looking in silico 
images, this network progressively grows the resolution of 

Figure 1: (a) The traditional method uses the CPU to chop whole slide images into patches which are saved to disk before convolutional neural network 
training. These patches are read and fed to the graphics processing unit for training. (b) Histo‑fetch randomly selects indices containing tissue on the 
fly. These are processed on the CPU and supplied to the graphics processing unit. (c) Efficiency comparison of the two approaches using ProGAN, 
highlighting preprocessing time and additional disk space required using a dataset of 151 human biopsy whole slide images. The average training 
step time does not significantly change.
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generated images as the training progresses. We trained the 
modified network up to an image size of 512 × 512 pixels. 
Macroscopically, the in silico images look very realistic, 
exhibiting natural histological patterns from different stains. 
Looking closely at the image microanatomy, unexpected 
morphologies such as fused tubules, thick mesangium, and 
poorly generated glomeruli and tubule brush borders can be 
observed. We believe that further training would resolve these 
issues but this is outside the scope of this paper. Examples 
of generated image patches are displayed in Figure 2b, with 
more results available through the link discussed under code 
and data availability section.

Due to the nature of the progressive training, ProGAN requires 
a multi‑resolution dataset. In general, this dataset is prepared 
by saving training images at all the intermediate resolutions. 
Instead, we use histo‑fetch to extract these patches at different 
downsampled resolutions as needed during training on‑the‑fly. 
The dataset used to train this network contains 1331 WSIs 
totaling 765 GB disk space of data. This data contained 
clinically obtained renal biopsies and transplant biopsies 
stained with PAS, H&E, and Masson’s trichrome. Without 
histo‑fetch, training at this large scale would not be possible 
given the computational resources available typical to standard 
research labs. This would require extracting all WSI patches 
and redundantly saving them at resolutions of 4, 8, 16, 32, 64, 
128, 256, and 512 square pixels, requiring a massive use of 

disk storage. We hypothesize the diverse tissue morphology 
present in the large WSI training‑set directly contributed to 
the quality of the synthetic images this network generates.

Training with histo‑fetch is as simple as passing the folder 
location of the WSI dataset to the network. To quantify the 
efficiency of histo‑fetch, we chopped a dataset of 151 human 
biopsies WSIs (18.9 GB) in the traditional method, saving 
the images to disk. Only regions containing tissue were saved 
as jpeg images (1200 × 1200 pixels) without overlap. This 
process took 5 h. 2 min. 57 s. to complete, requiring 15.3 
GB of additional disk space. Using more common methods, 
which save overlapping patches would be even more 
inefficient and more redundant.[8] In comparison, histo‑fetch 
was 98.6% faster to start training and used  ×7535 less 
disk space [Figure 1c]. From an organizational standpoint, 
working natively with WSIs greatly streamlines the CNN 
training workflow using histological data. Files can be 
managed at the slide level simplifying troubleshooting and 
data management. While the purpose of histo‑fetch is to 
avoid saving patches, a developer can easily audit the patch 
selection process by displaying the patches selected at each 
training step using a python library such as matplotlib,[18] 
verifying the tiles are selected in a random and appropriate 
manner. After training is completed, histo‑fetch is easily 
modified to extract predetermined patch locations for 
prediction on holdout WSIs.

While the scope of this paper focuses on quantifying speed and 
space utilization improvements of histo‑fetch on unsupervised 
deep learning tasks, in a parallel work we adapted histo‑fetch 
for a supervised segmentation task using the DeepLab 
v3+  network architecture.[19] This was done by creating 
additional criteria for the selection of patches, allowing 
the selection of patches that contain a specific structure at 
training time. This allows easy class balancing of training 
data, augmenting regions that occur less frequently to ensure 
they are seen with sufficient frequency. The details of this 
implementation and the source code are available in a preprint 
version of this work.[20]

One benefit of histo‑fetch is the random selection of training 
patches. It is well known that random shuffling of data batches 
is beneficial during neural network training.[21] We argue that 
histo‑fetch provides a more stochastic delivery of training data 
than prechopping WSIs. Without predetermined data patch 
locations, the selection of patches is continuously variable 
and therefore the network sees greater data variation during 
training. This improves upon the popular data augmentation 
strategy of randomly cropping training images, which has been 
shown to improve training.[22] As a result of the elimination 
of a preselected dataset, the notion of the training epoch (one 
training loop through all the data) is no longer valid, the number 
of training steps should be specified instead.

Processing patches on the CPU at runtime increases the 
computational overhead; however, training is GPU rate‑limited. 
On our system, the CPU prefetches image patches faster than 

Figure 2: (a) Shows results from two CycleGAN networks, which take 
hematoxylin and eosin or silver stained input patches and transform them 
to in silico periodic acid–schiff stains. (b) Shows synthetic tissue patches 
generated using ProGAN trained on 1331 human biopsy (765 GB) whole 
slide images with various histological stains.
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the GPU requests them. Training the two networks presented in 
Figure 2 with a 10 core Intel Xeon ® Silver 4114 CPU and NVIDIA 
Quadro RTX 5000 GPU, we found no significant difference in 
GPU utilization or the execution speed of training steps when 
compared to using preextracted image patches. We quantified 
this using the ProGAN network, the average training‑step was 
0.813 ± 0.005 s when chopping patches and encoding them into 
the default TFRecord format.[10] After updating ProGAN to use 
histo‑fetch the training‑step time was 0.819 ± 0.006 s [Figure 1c]. 
Despite the 0.006 s per step penalty, our ProGAN trained for 
1.6M steps using histo‑fetch (without WSI chopping and prep of 
TFRecord files) would still be much faster.

Conclusion

We have developed a method for on‑the‑fly extraction and 
processing of patches from WSIs during neural network 
training. Using this method does not affect the speed of 
the training, but greatly reduces the time and diskspace 
requirements of dataset preparation before training. As an 
added benefit, our method provides greater randomness of 
data during training than the traditional method, this is due 
to the continuous randomized sampling of patches during the 
training process. Added randomness in the training data is 
commonly believed to be beneficial for network training.[21] 
Finally, we believe that once set up, this method is easier to 
use for novices and experienced data‑scientists alike. WSI 
datasets are intuitively managed at the slide level, and changes 
do not require repreparing the dataset. We believe that any 
CNN trained on gigapixel scale WSIs would benefit from the 
use of this method.
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Code and data availability
Histo-fetch and modified GANs codes with trained models 
are available at:

https://github.com/SarderLab/tf-WSI-dataset-utils

https://github.com/SarderLab/WSI-cycleGAN

https://github.com/SarderLab/WSI-ProGAN

ProGAN generated in silico images are available at:

https://bit.ly/3oOQjHn
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