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Abstract

Airborne particulate matter in fine and ultrafine ranges (aerodynamic diameter less than 2.5 

μm, PM2.5) is a primary air pollutant that poses a serious threat to public health. Accumulating 

evidence has pointed to a close association between inhalation exposure to PM2.5 and increased 

morbidity and mortality associated with modern human complex diseases. The adverse health 

effect of inhalation exposure to PM2.5 pollutants is systemic, involving multiple organs, different 

cell types and various molecular mediators. Organelle damages and oxidative stress appear to 

play a major role in the cytotoxic effects of PM2.5 by mediating stress response pathways related 

to inflammation, metabolic alteration and cell death programmes. The organs or tissues in the 

digestive tract, such as the liver, pancreas and small intestines, are susceptible to PM2.5 exposure. 

This review underscores PM2.5-induced inflammatory stress responses and their involvement in 

digestive diseases caused by PM2.5 exposure.

INTRODUCTION

Epidemiological studies and biomedical research have consistently linked real-world 

airborne pollutants to the increase of mortality and morbidity associated with modern human 

complex diseases.1-5 In particular, environmental airborne particulate matter in fine and 

ultrafine ranges (aerodynamic diameter <2.5 μm, PM2.5) is strongly associated with the 

development of air pollution-associated systemic diseases (figure 1).1 5 6 There exist linear 

dose-risk relationships between PM2.5 concentrations and the occurrence of cardiovascular 

and metabolic diseases, as a 3% increase in cardiovascular disease incidence or a 1% 

increase in diabetes prevalence was observed in populations under 10 μg/m3 increase in 

PM2.5 exposure.4 5 This relationship remained consistent even for countries within the 

guidelines for US Environmental Protection Agency (EPA) PM2.5 exposure limits, such 

as Europe and USA. Chronic PM2.5 exposure increases the danger of cardiovascular and 
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metabolic diseases to an even greater degree and effects may be more pronounced in 

susceptible populations such as older adults, lower socioeconomic status and individuals 

with pre-existing conditions.4 Short-term exposure to polluted air at levels generally 

considered ‘acceptable’ may impair mental ability in elderly people in the USA.7

In most cases, airborne PM2.5 is a complex mixture of particles and gases from gasoline 

and diesel engines, mixed with dust from wear of road surfaces and tires.8 9 Airborne PM2.5 

particles have an incremental capacity to penetrate the distal airway units and the systemic 

circulation.10 Under inhalation exposure to PM2.5, fine PM2.5 nanoparticles can reach the 

terminal bronchioles, pass through the air–blood barrier and enter the blood circulation 

(figure 1).11 12 Both transmission electron microscopy (TEM) and in vivo real-time 

visualisation of PM2.5-simulating fluorescent dyed nanoparticles revealed the deposition 

of PM2.5 particles in the extrapulmonary organs.13 14 While ultrafine PM particles, such 

as PM0.2, have a more uniform deposition pattern in acinar regions through endocytosis 

or diffusion, ambient PM2.5 particles of various sizes can enter into the gastrointestinal 

tract and the lymphatic system and be retained in the liver and kidney.13 15-18 One of the 

possible mechanisms through which PM2.5 is retained in extrapulmonary organs/tissues is 

internalisation of particles by macrophages.13 14 19

It has been demonstrated that the cytotoxic effects of PM2.5 are more associated with PM2.5 

as a complex rather than single or a few components of PM2.5 particles.20 The specialised 

cell types of inflammatory and metabolic nature are exquisitely sensitive to PM2.5 

particles and play major roles in promoting air pollution-associated systemic diseases.9 

19 21 At the molecular level, PM2.5 particles appear to be highly effective in triggering 

inflammatory stress responses in inflammatory and/or metabolic cell types. Emerging 

evidence suggests that intracellular stress responses originated from the endoplasmic 

reticulum (ER), mitochondria or lysosome, which are targeted by PM2.5, interact with 

inflammatory signalling pathways to modulate inflammatory equilibrium and metabolic 

homeostasis in multiple organs/tissues.14 22-25 PM2.5-induced, integrated inflammatory 

stress responses play major roles in driving the pathogenesis of complex diseases associated 

with air pollution.

During the past two decades, the research community has been using both in vivo and 

in vitro PM2.5 exposure systems, genetically engineered animal models, molecular and 

cellular approaches, as well as bioinformatics to determine the cytotoxic effects and stress 

mechanisms through which environmental PM2.5 causes systemic diseases. Towards this 

direction, a large amount of published information and data repositories in public domains 

have been accumulated. In this review, the recently reported studies on PM2.5-induced 

inflammatory stress responses in the digestive system are summarised and interpreted, with 

the intention to help the understanding, prevention and treatment of air pollution-associated 

diseases.
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THE RESPONSES TO PM2.5: ORGANELLE STRESS, INFLAMMATION AND 

METABOLISM

Maintenance of inflammatory equilibrium and metabolic homeostasis is among the most 

fundamental requirements for survival and well-being. In response to environmental 

challenges, nutritional signals or pathological conditions, inflammatory response and 

metabolic regulation interact and are highly integrated, and the proper function of each is 

dependent on the other.26 This interface serves as a central homeostatic mechanism, and its 

dysregulation critically contributes to the development of modern human complex diseases, 

such as cardiovascular disease, metabolic syndrome, neurodegenerative disease and cancer. 

Accumulating evidence has established that stress signalling originated from intracellular 

organelles, particularly from the ER, mitochondria and lysosome, acts as a major driving 

force that facilitates inflammatory and metabolic responses.23 24 26 27 Research from 

our group and others have identified that chronic inflammation, altered organelle stress 

responses and dysregulated energy metabolism in major inflammatory metabolic organs/

tissues represent the major driving forces of PM2.5-caused pathogenesis.

PM2.5-induced ER stress response

ER stress response, also known as unfolded protein response (UPR), is an intracellular 

stress signalling from the ER to protect cells from stress caused by the accumulation 

of unfolded or misfolded proteins in the ER.28 29 As a protein-folding compartment and 

a dynamic calcium store, the ER is delicately sensitive to intracellular and extracellular 

stimuli. Environmental stressors, pharmacological stimuli and pathological conditions, such 

as chronic disease, viral infection, oxidative stress and inflammatory challenges, can directly 

or indirectly cause ER stress and induce UPR in specialised cells or organs/tissues.23 24 

30 The basic UPR pathways in mammalian cells are composed of three main signalling 

cascades mediated by three ER membrane-localised transducers: inositol-requiring 1 

(IRE1α), double-strand RNA-activated protein kinase-like ER kinase (PERK) and activating 

transcription factor 6 (ATF6). In response to ER stress, PERK phosphorylates eukaryotic 

translation initiation factor 2α (eIF2α) to attenuate general protein translation to limit newly 

synthesised proteins entering the ER lumen, which is saturated by unfolded or misfolded 

proteins. However, under prolonged ER stress, phosphorylated eIF2α can recognise the 

unique 5’-untranslated regions and initiate translation of select mRNAs to encode proteins 

involved in amino acid metabolism, oxidative stress response and cell death programmes. 

On activation of the UPR, IRE1α functions as an RNase to splice the mRNA encoding 

X-box binding protein 1 (XBP1), leading to transcriptional reprogramming of the stressed 

cells. As an RNase, IRE1α can also process select mRNAs or microRNAs, leading to 

their degradation under pathophysiological ER stress, a pathway called ‘Regulated IRE1α-

dependent decay (RIDD)’.31-36 Additionally, under ER stress, ATF6 is activated to function 

as a transcription factor to induce expression of the UPR genes encoding functions aiding 

ER recovery from the stress.37-39 The UPR pathways are orchestrated to help the cells adapt 

to and survive stress conditions. However, when ER stress gets prolonged or too severe 

to handle, the UPR will initiate a cell death programme to eliminate the stressed cells. 

Under pathophysiological conditions, the UPR can modulate cell metabolism, inflammation 
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and programmed cell death, engaging the pathogenesis of a variety of diseases, such as 

metabolic disease, cardiovascular disease, neurodegenerative disease, and cancer.23

The macrophage cell type is susceptible to environmentally relevant PM2.5 in inducing 

ER stress and activation of the UPR.14 Inhalation exposure of wild-type mice of C57BL/6 

strain background to concentrated environmental PM2.5 (mean concentration 74.6 μg/m3) 

for 10 weeks induced ER stress and selective activation of UPR pathways in the lung and 

liver tissues.14 Ambient PM2.5 exposure activates PERK, leading to phosphorylation of 

eIF2α and induction of C/EBP homologous transcription factor CHOP/GADD153 (figure 

2). Activation of PERK-mediated UPR pathway relies on the production of reactive oxygen 

species (ROS) and is critical for PM2.5-induced, ER stress-associated apoptosis.14 PM2.5 

exposure exerts discernable effects on the primary UPR transducer IRE1α. Interestingly, 

PM2.5 decreased the activity of IRE1α RNase in splicing the Xbp1 mRNA, while it elevated 

IRE1α protein levels and phosphorylation state in mouse livers (figure 2).14 Because 

functional XBP1 plays an essential role in cell metabolism, inflammation and secretory 

pathways,40-42 PM2.5 may elicit its cytotoxicity by inhibiting Xbp1 mRNA splicing and thus 

XBP1 maturation. Furthermore, IRE1α is known to activate the c-Jun N-terminal kinase 

(JNK)-mediated or tumour necrosis factor receptor associated factor (TRAF)-mediated 

pathway to promote inflammatory or apoptotic responses under ER stress conditions.24 43-45 

In the liver tissue of mice exposed to PM2.5 for 10 weeks, levels of phosphorylated JNK 

were increased, coinciding with the increased expression and phosphorylation of IRE1α 
as well as hepatic inflammation and injuries triggered by PM2.5 (figure 2).14 Moreover, 

the levels of several mRNA targets of RIDD were also decreased in the PM2.5-exposed 

mouse livers.14 However, it remains to be validated whether the PM2.5-triggered suppression 

of these mRNAs was through the IRE1α-mediated RIDD pathway, given that IRE1α 
RNase activity was repressed by PM2.5. Additionally, PM2.5 exposure can activate the 

ATF6-mediated UPR branch in the liver,14 with its pathophysiological significance yet to be 

determined.

PM2.5-induced ER stress response and toxic health effects can differ with the exposure 

scenarios. Acute exposure to high-dose PM2.5 (96 μg/cm2) for 10 days induced ROS burst, 

DNA damage, activation of the three major UPR pathways, autophagy and necrotic cell 

death in human bronchial epithelial cells.46 In comparison, low-dose PM2.5 exposure (6 

μg/cm2) led to low-grade ROS accumulation, milder DNA damage, ER stress response, 

cell cycle arrest, apoptosis and autophagy. In rats that were intratracheally instilled with 

PM2.5, the PM2.5 challenge induced IRE1α/XBP1 branch of UPR, which depended on the 

assembly of XBP1/hypoxia-inducible factor 1α (HIF1α) transcriptional complex, in the 

vascular endothelium.47 Associated with the development of metabolic syndrome, chronic 

inhalation exposure to PM2.5 for 10 months induced macrophage infiltration and UPR 

in mouse white adipose tissue.48 PM2.5 exposure induced two distinct UPR pathways 

mediated through IRE1α: ER-associated degradation and RIDD of mRNAs. Correlated 

with the induction of the UPR and macrophage infiltration, expression of genes involved 

in lipogenesis, adipocyte differentiation and lipid droplet formation were increased in the 

adipose tissue of the PM2.5-exposed mice,47 48 implicating a pathophysiological role of the 

UPR in PM2.5-induced metabolic disorders. Consistently, in humans, maternal exposure to 

PM2.5 increased adiposity in infants.49 50
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In summary, the current literature illustrates that inhalation exposure to PM2.5 selectively 

activates the UPR pathways in the liver, the major digestive organ, in an ROS-dependent 

manner. PM2.5-induced hepatic UPR pathways include ER stress-associated pro-apoptotic 

response mediated through PERK-eIF2α-CHOP and proinflammatory response mediated 

through IRE1α-JNK However, PM2.5 exposure represses IRE1α RNase activity in splicing 

Xbp1 mRNA, although it increases expression and phosphorylation of hepatic IRE1α 
protein.14 How the UPR pathways are selectively activated by PM2.5 exposure remains to be 

further elucidated.

PM2.5-induced mitochondrial stress response

PM2.5 exposure has a major impact on mitochondrial homeostasis and function. Depending 

on the exposure scenarios, PM2.5 can stimulate mitochondrial ROS release, activate 

mitophagy, cause mitochondrial damage and decrease mitochondria numbers in multiple 

organs/tissues. Mitochondria are exquisitely sensitive to PM2.5 stimulation in releasing ROS. 

This has been evidenced in PM2.5-exposed macrophages14 51 and in the lung,14 52 liver,14 

heart,53 adipose tissue54 55 and blood vessels56 57 of mice or rats exposed to PM2.5. With 

mouse primary hepatic stellate cells and human hepatic stellate cell line LX-2, Qiu et al22 

demonstrated that PM2.5 exposure triggered the mitophagy process by activating the PINK1/

Parkin pathway in a manner depending on mitochondrial ROS release. The PM2.5-induced 

mitophagy was concomitant with the activities of mitochondrial fission and cytochrome c 

release in hepatic stellate cells. Interestingly, inhibition of mitophagy diminished hepatic 

fibrosis induced by PM2.5.22 The PM2.5-induced mitophagy and redox imbalance were 

confirmed by an in vivo study with mice exposed to PM2.5.58

Studies with animal models confirmed that PM2.5 exposure caused mitochondrial damage, 

characterised by a decline in mitochondrial membrane potential, fragmented mitochondria 

and increased mitochondrial ROS released in the lung, liver and adipose tissues.22 52 

54 59 PM2.5-caused mitochondrial damage appears to be responsible, at least partially, 

for the development of pulmonary fibrosis,52 non-alcoholic steatohepatitis (NASH)19 

21 22 and type 2 diabetes (T2D)19 21 under air pollution. Exposure to PM2.5 can 

also modulate mitochondrial UPR (UPRmt), a mitochondria-originated stress signalling 

required to maintain mitochondrial proteostasis and function,60 in spermatogenic cells of 

prepubertal rats.61 Intratracheal instillation of low-dose PM2.5 (5 mg/kg) to prepubertal 

rats induced UPRmt, reflected by induction of the master UPRmt regulators ATF5 and 

ATF4 in spermatogenic cells. However, the instillation of high-dose PM2.5 (10 mg/kg) to 

the rats suppressed UPRmt, which was correlated with the declined spermatogenic cell 

numbers and conception rates. Interestingly, supplementation of vitamin C and vitamin 

E (100 mg/kg of vitamin C and 50 mg/kg of vitamin E) can attenuate the effect of 

high-dose PM2.5 (10 mg/kg) on suppressing UPRmt in spermatogenic cells, and the 

vitamin intervention promoted conception rate recovery, alleviated mitochondrial damage 

and reduced spermatogenic cell apoptosis in rats under high-dose PM2.5 exposure.61

PM2.5-induced lysosomal stress response

PM2.5 exposure elicits strong effects on the autophagic response by activating lysosome-

associated pathways. Macroautophagy or autophagy was induced in human bronchial 
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epithelial cells on exposure to environmental PM2.5 particles.62 PM2.5-induced autophagy, 

which requires tumour protein p53 (TP53) activation and expression of its downstream 

target DNA damage-regulated autophagy modulator 1 (DRAM1), led to upregulation of 

vascular endothelial growth factor A by activating the SRC (SRC proto-oncogene, non-

receptor tyrosine kinase)-signal transducer and activator of transcription 3 pathway. This 

signalling network extended the role of TP53-DRAM1-dependent autophagy beyond cell 

fate determination to the control of proinflammatory response in bronchial epithelial cells 

under PM2.5 exposure.62 However, a study by Wang and Tang63 showed that PM2.5 induced 

both autophagy and apoptosis through ER stress response pathways in human endothelial 

cells, where autophagy protected against PM2.5-induced apoptosis.

Intriguingly, our studies with animal models showed that inhalation exposure to 

environmental PM2.5 induced autophagy in the liver that counteracted hepatic steatosis 

induced by a high-fat diet (figure 3).64 PM2.5 exhibited a strong effect on triggering hepatic 

autophagy programme in a manner depending on the inflammatory pathway mediated 

through Toll-like receptor-myeloid differentiation primary response 88 (MyD88).64 In 

contrast to a ‘two-hits’ hypothesis that PM2.5 exposure may interact with a high-fat diet 

or obese condition to exacerbate metabolic disorders, PM2.5 exposure counteracted hepatic 

steatosis and hyperlipidaemia of obese mice under the high-fat diet through stimulating 

hepatic autophagy. Under normal chow, PM2.5 exposure triggers hepatic autophagy, but 

meanwhile represses PPARα, PPARγ SIRT1 and CREBH, the key regulators of fatty 

acid oxidation and lipolysis (figure 3A).64 Because PM2.5-caused repression of fatty acid 

oxidation and lipolysis outweighed the effect of hepatic autophagy, the normal chow-fed 

animals exhibited hepatic steatosis and hypertriglyceridaemia under PM2.5 exposure. Under 

the high-fat diet or obese condition, however, overnutrition-caused hepatic steatosis and 

hypertriglyceridaemia were alleviated by hepatic autophagy triggered by PM2.5 (figure 

3B).64-66 Apparently, the steatosis-relieving effect of PM2.5-induced hepatic autophagy 

overrides the repressive effect of lipid mobilisation caused by PM2.5 exposure, and thereby, 

PM2.5 stimulation displays discernable effects on mitigating hepatic steatosis, liver injuries 

and hyperlipidaemia in the obese animals under the high-fat diet.64 The identification of the 

‘beneficial’ effect of PM2.5 on activating hepatic autophagy provides new insights into the 

complex effects of airborne PM2.5 pollution and the mechanistic basis by which multiple 

stressors interact to modulate pathophysiology in complex diseases. This also changes our 

view on the ‘two-hits’ hypothesis that two stressors or insults act in synergy to promote 

pathogenesis. The second hit, PM2.5 exposure, could mitigate the detrimental effect of the 

first ‘hit’, obesity or high-fat diets, in driving liver steatosis.

PM2.5-INDUCED STRESS RESPONSES IN THE DIGESTIVE SYSTEM AND 

DISEASES

Inflammatory stress responses and dysregulated energy metabolism in major inflammatory 

metabolic organs/tissues have been identified as the driving force of PM2.5-caused 

pathogenesis.67-71 Increasing evidence showed that inhalation exposure to environmentally 

relevant PM2.5 induces integrated inflammatory stress responses in the digestive system that 

contribute to the progression of complex diseases. Among the organs/tissues of the digestive 
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tract, the liver, pancreas and small intestine are particularly susceptible to PM2.5 exposure in 

promoting pathological stress responses and metabolic or digestive diseases (figure 1).

PM2.5-induced stress responses in the liver

Chronic or subchronic exposure to concentrated PM2.5 causes injuries to the liver, the major 

detoxification and metabolic organ. Inhalation exposure to PM2.5 may impose stress on the 

liver through three major paths13 21 72: (1) systemic effects of circulating proinflammatory 

cytokines or chemokines from pulmonary inflammation triggered by PM2.5 exposure, (2) 

retention of activated neutrophils and monocytes to the liver tissues under PM2.5 exposure 

and (3) PM2.5 nanoparticles reach to and are deposited in the liver. In the past 15 years, we 

and others demonstrated that inhalation exposure to PM2.5 caused liver-associated diseases 

by exaggerating hepatic inflammation, inducing organelle stress and oxidative damage, and 

disrupting energy homeostasis. On a normal chow diet, wild-type C57BL/6 mice exposed to 

environmentally relevant PM2.5 at a concentration of approximately 80 μg/m3 or higher for 

10 weeks developed NASH-like and T2D-like phenotypes.19 21 67 73 After PM2.5 exposure, 

the mice displayed hepatic steatosis, inflammation and fibrosis, coincided with impaired 

hepatic glycogen storage, glucose intolerance and insulin resistance.19 21 Interestingly, these 

phenotypes were accompanied by significant loss of body weight of the mice. Linked to 

the PM2.5-induced liver-associated phenotypes, the livers of PM2.5-exposed mice exhibited: 

(1) activation of inflammatory responses mediated through JNK, nuclear factor kappa B 

(NF-κB) and Toll-like receptor 4 (TLR4) in Kupffer cells14 19 21 67; (2) selective activation 

of the UPR,14 oxidative stress14 19 and autophagy22 64; and (3) suppression of the insulin 

receptor substrate 1 (IRS1)-mediated signalling.21 Moreover, PM2.5 exposure repressed the 

major metabolic regulators PPARα, SIRT1, CREBH and Farnesoid X receptor (FXR) as 

well as the anti-inflammatory regulator PPARα in the liver.19 21 64 74 Consistent with 

the repression of metabolic regulators by PM2.5, hepatic circadian oscillation and lipid 

metabolism were disrupted in mice exposed to PM2.5.75-77 Specific to liver fibrogenesis, 

PM2.5 exposure stimulated the transforming growth factor β (TGFβ)-SMAD3 signalling and 

promoted the production of collagens by hepatic stellate cells.19 Importantly, PM2.5-induced 

TGFβ signalling, collagen production and hepatic fibrogenesis as well as suppression of 

PPARγ relied on NADPH oxidase-dependent ROS production.19

A variety of studies have confirmed that PM2.5-triggered ROS or oxidative stress is the root 

of inflammatory stress responses and tissue injuries,14 78 79 and the reduction of nuclear 

factor erythroid-derived 2-related factor 2 (NRF2), a master regulator of anti-oxidative stress 

response, is heavily involved in air pollution-associated complex diseases.80 81 Interestingly, 

AMPK activators, monounsaturated fatty acids (MUFAs) (eg, oleanolic acid) and melatonin 

can mitigate PM2.5-caused oxidative stress as well as hepatic inflammation, fibrosis and liver 

injuries in animal models.82-84 Additionally, a meta-analysis of epidemiological evidence 

suggested that exposure to airborne PM2.5 pollution increased the risk of gastrointestinal 

cancers.85 The impact of PM2.5 on the risk of hepatocellular carcinoma (HCC) has been 

observed in East Asia, Europe and USA.86-90 Ambient PM2.5 pollution was associated 

with increased mortality in patients with HCC91. PM2.5-induced NASH activities may be 

associated with the progression of HCC under air pollution; however, the mechanistic basis 

by which PM2.5 pollutant is involved in HCC remains to be elucidated.

Zhang Page 7

eGastroenterology. Author manuscript; available in PMC 2024 June 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PM2.5-induced stress responses in the pancreas

The association between exposure to PM2.5 and type 1 or T2D mellitus has been confirmed 

in population studies.92 93 Exposure to PM2.5 reduced pancreatic homogenate glutathione 

peroxidase (GSH-Px), increased methane dicarboxylic aldehyde and decreased pancreas 

glucose transporter 2 expression in a rat model of gestational diabetes mellitus.94 PM2.5-

induced oxidative response and inflammation in the pancreas are responsible for the 

increased risk of pancreatic impairment and glycaemic consequences under PM2.5 exposure. 

In a mouse model of streptozotocin-induced type 1 diabetes, PM2.5 promoted pancreatic β 
cell damage by stimulating interleukin 1β (IL1β) and tumour necrosis factor α (TNFα) 

production in macrophages and β cells.95 PM2.5 exposure can also attenuate insulin 

secretion from β cells in a dose-dependent manner.95

PM2.5-induced stress responses in small intestines

In mice exposed to real-world PM2.5 at a concentration of approximately 90 μg/m3, the 

intestines displayed oedema and discrete epithelial lesions (loss of crypts) after 3 weeks of 

PM exposure.96 Sporadic inflammatory cell infiltration was observed in mouse intestines 

after 6 weeks of exposure. At the 12th week post PM exposure, the epithelial lesions 

and confluence of inflammatory cell infiltration were profound in mouse intestines.96 

In human small intestinal cells, treatment of PM2.5 particles increased ROS production, 

iron accumulation, lipid peroxidation and ferroptosis.97 Like the scenarios in the lung 

and liver tissues, PM2.5-caused damage to small intestines is through oxidative stress and 

inflammatory challenges.96 97 Direct administration of high-dose PM2.5 (200 μg/mice) 

via gavage caused intestinal epithelial cell death, tight junction damage and increased 

intestinal permeability in a manner depending on oxidative stress and inflammatory 

response.98 Additionally, chronic inhalation exposure to concentrated ambient PM2.5 can 

alter the composition of intestinal microbiota and modulate metabolic profiles in mice.99-102 

Interestingly, in spontaneously hypertensive rats, exposure to ambient PM2.5 pollutants led 

to alterations of intestine microbiota that are associated with cardiovascular diseases.103

PERSPECTIVE

Inhalation exposure to environmentally relevant PM2.5 exerts systemic adverse health 

effects, causing injuries to multiple organs/tissues. At the molecular level, PM2.5 

nanoparticles directly or indirectly target intracellular organelles, particularly the ER, 

mitochondria and lysosome, inducing integrated inflammatory stress responses. At the 

organ/tissue level, PM2.5-caused oxidative damage and inflammatory challenge represent 

the major cytotoxic consequence caused by PM2.5 exposure that drives the pathogenesis 

of complex diseases, including those that are associated with the digestive system. In the 

past decade, the pathological impact, cytotoxic effects and mechanistic basis by which 

PM2.5 inhalation causes liver-associated diseases have been well studied. PM2.5 exposure 

causes mitochondrial damage, oxidative stress, selective activation of the UPR pathways, 

autophagy and mitophagy, coinciding with the inflammatory responses mediated through 

TLR, JNK and NF-κB in the liver. These inflammatory stress response pathways are 

orchestrated to promote the development of NASH and obesity-independent T2D. While 

the progress is intriguing, some open questions remain. First, as the ER, mitochondria and 
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lysosome are sensitive to PM2.5 exposure in activating organelle stress responses, what are 

the mechanisms by which the cells sense PM2.5 and how PM2.5 exposure can differentially 

induce stress response pathways in different organs or tissues? Second, inhalation exposure 

to PM2.5 adversely affects the functions of the liver, pancreas and intestine. Does PM2.5 

exposure disrupt the interorgan communication among the major digestive organs? For 

example, does the PM2.5-induced pancreatic damage worsen hepatic insulin resistance? Are 

intestinal injuries or microbiota dysregulation caused by PM2.5 pollution contributing to 

liver pathogenesis? Additionally, is there any nutritional or pharmaceutical intervention 

to prevent or mitigate the cytotoxic effects caused by PM2.5 exposure? This seems a 

trivial question, as air pollution and the relevant problems cannot be resolved unless the 

industrialised, resource-exhausting lifestyle is changed. However, multiple studies have shed 

light that MUFAs, vitamin C plus E or melatonin can mitigate PM2.5-caused oxidative 

stress, inflammation, mitochondrial damage and tissue/cell injuries in animal models.61 83 

84 For future research, it is interesting to test whether MUFAs or vitamins, as a nutritional 

supplement, can prevent or alleviate the systemic diseases caused by PM2.5.
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Figure 1. 
The systemic effects of inhalation exposure to PM2.5. The diseases caused by PM2.5 

pollution in different systems are shown. CAD, coronary artery disease; HCC, hepatocellular 

carcinoma; NASH, non-alcoholic steatohepatitis.
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Figure 2. 
Illustration of endoplasmic reticulum (ER) stress and unfolded protein response (UPR) in 

mouse lung and liver tissues induced by PM2.5 exposure. ATF6, activating transcription 

factor 6; IRE1α, inositol-requiring 1; JNK, c-Jun N-terminal kinase; PERK, protein kinase-

like ER kinase.
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Figure 3. 
The effects and pathways by which PM2.5 exposure promotes or mitigates hepatic steatosis 

and hypertriglyceridaemia in mice under normal chow or a high-fat diet (HFD). (A) The 

effects and pathways by which PM2.5 represses lipid metabolic and anti-inflammatory 

pathways and induces hepatic autophagy in the livers of mice under normal chow. (B) The 

effects and pathways by which PM2.5 and HFD repress or promote hepatic autophagy as 

well as lipid metabolic and anti-inflammatory pathways in the fatty livers of HFD-fed mice. 

FA, fatty acid.
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