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Abstract

Background: Many bioinformatics studies aim to identify markers, or features, that can be used to discriminate
between distinct groups. In problems where strong individual markers are not available, or where interactions
between gene products are of primary interest, it may be necessary to consider combinations of features as a marker
family. To this end, recent work proposes a hierarchical Bayesian framework for feature selection that places a prior on
the set of features we wish to select and on the label-conditioned feature distribution. While an analytical posterior
under Gaussian models with block covariance structures is available, the optimal feature selection algorithm for this
model remains intractable since it requires evaluating the posterior over the space of all possible covariance block
structures and feature-block assignments. To address this computational barrier, in prior work we proposed a simple
suboptimal algorithm, 2MNC-Robust, with robust performance across the space of block structures. Here, we present
three new heuristic feature selection algorithms.

Results: The proposed algorithms outperform 2MNC-Robust and many other popular feature selection algorithms
on synthetic data. In addition, enrichment analysis on real breast cancer, colon cancer, and Leukemia data indicates
they also output many of the genes and pathways linked to the cancers under study.

Conclusions: Bayesian feature selection is a promising framework for small-sample high-dimensional data, in
particular biomarker discovery applications. When applied to cancer data these algorithms outputted many genes
already shown to be involved in cancer as well as potentially new biomarkers. Furthermore, one of the proposed
algorithms, SPM, outputs blocks of heavily correlated genes, particularly useful for studying gene interactions and
gene networks.
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Background
Many bioinformatics studies aim to identify predictive
biomarkers that can be used to establish diagnosis or
prognosis, or to predict a drug response [1–3]. This prob-
lem can often be framed as a feature selection task,
where the goal is to identify a list of features (molecu-
lar biomarkers) that can discriminate between groups of
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interest based on high-dimensional data from microarray,
RNA-seq, or other high-throughput technologies.

Initially, exploratory studies are often conducted on
small samples to generate a shortlist of biomarker candi-
dates before a large-sample validation study is performed
[4]. However, such studies have too often been unsuc-
cessful at producing reliable and reproducible biomarkers
[5]. Biomarker discovery is inherently difficult, given the
large number of features, highly complex interactions
between genes and gene products, enormous variety of
dysfunctions that can occur, and many sources of error
in the data. As a result, feature selection algorithms are
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often implemented without much consideration of the
particular demands of the problem. For instance, vari-
ants of t-test are perhaps the most widely implemented
selection strategies in bioinformatics, but can only detect
strong individual features, and fail to take correlations
into account.

Given that molecular signaling is often inherently mul-
tivariate, there is a need for methods that can account
for correlations and extract combinations of features as a
marker family. Wrapper methods do this by ranking sets
of features according to some objective function, usually
the error of a classifier. However, methods based on clas-
sifier error are computationally expensive, and may not
necessarily produce the best markers; indeed, strong fea-
tures can be excluded if they are correlated with other
strong features. Furthermore, analysis downstream from
feature selection may include gene set enrichment analy-
sis, where the hope is to identify known pathways or other
biological mechanisms that contain a statistically signif-
icant number of genes in the reported gene set, or may
involve the development of new pathways and gene net-
works. We are thus motivated to develop methods that not
only select markers useful for discrimination, but select all
relevant markers, even individually weak ones.

To address this, in prior work we proposed a hierar-
chical Bayesian framework for feature selection, labeling
features as “good” or “bad”, where good features are those
we wish to select, i.e., biomarkers. This framework places
a prior on the set of good features and the underly-
ing distribution parameters. Three Gaussian models have
been considered. Under independent features, Optimal
Bayesian Filtering reports a feature set of a given size
with a maximal expected number of truly good features
(CMNC-OBF) [6]. Assuming fully dependent good fea-
tures and independent bad features, 2MNC-DGIB is a
fast suboptimal method that ranks features by evaluating
all sets of size 2 [7]. Finally, assuming good and bad fea-
tures are separately dependent, 2MNC-Robust proposes
an approximation of the posterior on good features and
uses a ranking strategy similar to 2MNC-DGIB to select
features [8].

While 2MNC-DGIB has outstanding performance
when its assumptions are satisfied [7], it performs poorly
when bad features are dependent [9]. On the other hand,
CMNC-OBF and 2MNC-Robust have been shown to have
robust performance across Bayesian models with block-
diagonal covariances [9]. CMNC-OBF is extremely fast
and enjoys particularly excellent performance when mark-
ers are individually strong with low correlations, but, like
all filter methods, may miss weak features that are of inter-
est due to high correlations with strong features [6, 9].
2MNC-Robust is computationally very manageable and
generally improves upon CMNC-OBF in the presence of
correlations.

Although CMNC-OBF and 2MNC-Robust are robust
to different block-diagonal covariance structures, they do
not attempt to detect these underlying structures, and
their assumptions and approximations constrain perfor-
mance. Thus, in this work we propose three new feature
selection algorithms that: (1) use an iterative strategy to
update the approximate posterior used in 2MNC-Robust,
(2) use a novel scoring function inspired by Bayes factors
to improve overall rankings, and (3) attempt to actu-
ally detect the underlying block structure of the data.
We show that these algorithms have comparable com-
putation time to 2MNC-Robust, while outperforming
2MNC-Robust and many other popular feature selection
algorithms on a synthetic Bayesian model assuming block-
diagonal covariance matrices, and a synthetic microarray
data model. Finally, we apply the proposed algorithms
and CMNC-OBF to breast cancer, colon cancer, and AML
datasets, and perform enrichment analysis on each to
address validation.

Feature selection model
We review a hierarchical Bayesian model that serves as
a reference for the approximate posterior developed in
2MNC-Robust [8, 9] and will be used in the algorithms we
present in the next section.

Consider a binary feature selection problem with class
labels y = 0, 1. Let F be the set of feature indices. Assume
features are partitioned into blocks, where features in each
block are dependent, but features in different blocks are
independent. Assume each block is either good or bad. A
good block has different class-conditioned distributions
between the two classes, while a bad block has the same
distribution in both classes. We denote a partitioning of F
to good and bad blocks by P = (PG, PB), and hereafter call
it a feature partition, where PG = {G1, · · · , Gu} is the set
of u good blocks and PB = {B1, · · · , Bv} is the set of v bad
blocks. Furthermore, denote the set of all features in good
blocks as good features, G = ∪u

i=1Gi, and denote all fea-
tures in bad blocks as bad features, B = ∪v

j=1Bj. Denote
the random feature partition by P̄ = (P̄G, P̄B), the ran-
dom set of good features by Ḡ, and the random set of bad
features by B̄.

We define π(P) = P(P̄ = P) to be the prior dis-
tribution on P̄. Let P be fixed. Let θP be the parame-
ter describing the joint feature distribution of P. Since
blocks are independent of each other we can write
θP =

[
θ

G1
0 , · · · , θGu

0 , θG1
1 , · · · , θGu

1 , θB1 , · · · , θBv
]
, where θ

Gi
y

parametrizes class-y features in Gi, and θBj parametrizes
features in Bj. Assume θ

Gi
y and θBj ’s are independent given

P, i.e., π
(
θP) = ∏u

i=1 π
(
θ

Gi
0

)
π

(
θ

Gi
1

) ∏v
j=1 π

(
θBj

)
.

Given a training set, S, of n independent and identically
distributed (i.i.d.) points, with ny points in each class,
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we have π∗
(
θ

Gi
y

)
∝ π

(
θ

Gi
y

)
f
(
S

Gi
y |θGi

y
)

and π∗ (
θBj

) ∝
π

(
θBj

)
f
(
SBj |θBj

)
, where π∗(.) denotes posterior, SGi

y and
SBj are class-y points in Gi and points in Bj, respectively,
and f

(
S

Gi
y |θGi

y
)

= ∏
x∈SGiy

f
(

x|θGi
y

)
and f

(
SBj |θBj

) =
∏

x∈SBj f
(
x|θBj

)
are the likelihoods. Following steps in

[7, 10], we have

π∗(P) ∝ π(P)

u∏
i=1

∫
π

(
θ

Gi
0

)
f
(
S

Gi
0

∣∣θGi
0

)
dθ

Gi
0

×
u∏

i=1

∫
π

(
θ

Gi
1

)
f
(
S

Gi
1

∣∣θGi
1

)
dθ

Gi
1

×
v∏

j=1

∫
π

(
θBj

)
f
(
SBj

∣∣θBj
)

dθBj . (1)

In addition, the marginal posterior of a feature set G is
π∗(G) = P(Ḡ = G|S) = ∑

P:G=∪PG
π∗(P), and marginal

posterior of a feature f is π∗( f ) = P( f ∈ Ḡ|S) =∑
P:f ∈∪PG

π∗(P). Note π∗( f ) = P( f ∈ Ḡ|S) is different
than π∗({f }) = P(Ḡ = {f }|S).

Gaussian model
Here we solve Eq. (1) for jointly Gaussian features. We
assume for a block A, θA

y =
[
μA

y , �A
y

]
and θA = [

μA, �A]
,

where μA
y and μA are the mean vectors, and �A

y and �A

are the covariance matrices.
Let P be a feature partition. Suppose A is a good block

of P. Assume π(θA
y ) is Normal-Inverse-Wishart (NIW).

Hence, π
(
θA

y

)
= π

(
�A

y

)
π

(
μA

y |�A
y

)
, where

π
(
�A

y

)
= KA

y |�A
y |−

κAy +|A|+1
2 exp

(
−0.5Tr

(
SA

y

(
�A

y

)−1
))

,

π
(
μA

y |�A
y

)
= LA

y |�A
y |−0.5

× exp
(
−0.5νA

y

(
μA

y −mA
y

)T(
�A

y

)−1(
μA

y − mA
y

))
,

where for a matrix |.| denotes determinant. SA
y , κA

y , mA
y ,

and νA
y are hyperparameters, which are assumed given and

fixed. SA
y is an |A| × |A| matrix, where for a set |.| denotes

cardinality. For a proper prior SA
y is symmetric and

positive-definite, and κA
y > |A| − 1. If κA

y > |A| + 1, then
E

(
�A

y

)
= SA

y /
(
κA

y − |A| − 1
)

. Furthermore, mA
y is an

|A|×1 vector describing the average mean of features and
for a proper prior we need νA

y > 0. KA
y and LA

y represent
the relative weights of each distribution. For a proper dis-
tribution we have KA

y = |SA
y |0.5κA

y 2−0.5κA
y |A|

/�|A|
(

0.5κA
y

)

and LA
y =

(
2π/νA

y

)−0.5|A|
, where �d denotes the multi-

variate gamma function.

Since NIW is a conjugate prior of Gaussian distribu-
tion, given sample, π∗

(
θA

y

)
is again NIW with updated

hyperparameters: κA∗
y = κA

y + ny, νA∗
y = νA

y + ny, mA∗
y =

νA
y mA

y +nyμ̂A
y

νA∗
y

, and

SA∗
y = SA

y +(ny−1)�̂A
y + νA

y ny

νA
y + ny

(
μ̂A

y − mA
y

) (
μ̂A

y − mA
y

)T
,

where μ̂A
y and �̂A

y are class-conditioned sample mean and
covariance of SA

y , respectively [11]. Now suppose A is a
bad block. We assume the prior on θA is NIW with hyper-
parameters SA, κA, mA, and νA, and relative weights KA

and LA. Given sample, π∗ (
θA)

is NIW with κA∗ = κA +n,
νA∗ = νA + n, mA∗ = νAmA+nμ̂A

νA∗ , and

SA∗ = SA+(n−1)�̂A+ νAn
νA + n

(
μ̂A − mA

) (
μ̂A − mA

)T
,

where μ̂A and �̂A are sample mean and covariance of SA,
respectively [11]. As long as π∗(P) is proper, using the nor-
malization constant of NIW distribution to compute the
integrals in Eq. (1) we have

π∗(P) ∝ π(P)

u∏
i=1

QGi
0 QGi

1

∣∣∣SG∗
i

0

∣∣∣
−0.5κ

G∗
i

0
∣∣∣SG∗

i
1

∣∣∣
−0.5κ

G∗
i

1

×
v∏

j=1
QBj |SB∗

j |−0.5κ
B∗

j ,

where

QA
y = KA

y LA
y 20.5κA∗

y |A|
�|A|

(
0.5κA∗

y

) (
2π/νA∗

y

)0.5|A|
,

QA = KALA20.5κA∗|A|�|A|
(

0.5κA∗) (
2π/νA∗)0.5|A|

.

Assuming: (1) π(P) is such that the block structure, i.e.,
the number and size of good and bad blocks, is fixed, (2)
for each good block A, KA

y , LA
y , κA

y , and νA
y do not depend

on the features indices in A, and (3) for each bad block
A, KA, LA, κA, and νA do not depend on the features
indices in A,

π∗(P) ∝ π(P)

⎛
⎝

u∏
i=1

∣∣∣SG∗
i

0

∣∣∣
κ

G∗
i

0
∣∣∣SG∗

i
1

∣∣∣
κ

G∗
i

1
v∏

j=1

∣∣∣SB∗
j
∣∣∣
κ

B∗
j
⎞
⎠

−0.5

.

Methods
Here we describe the set selection methods used. Note we
aim to find the set of true good features, rather than the
true underlying feature partition. The Maximum Number
Correct (MNC) criterion [7] outputs the set maximizing
the expected number of correctly labeled features and the
Constrained MNC (CMNC) criterion outputs the set with
maximum expected number of correctly labeled features
constrained to having exactly D selected features, where D
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is a parameter of the optimization problem [9]. The solu-
tion of MNC is {f ∈ F : π∗(f ) > 0.5} [7] and the solution
of CMNC is picking the top D features with largest π∗(f )
[9]. Therefore, both MNC and CMNC require computing
π∗(f ) for all f ∈ F , which is not computationally feasi-
ble for an arbitrary block structure unless |F| is very small.
We review two previously proposed algorithms, OBF and
2MNC-Robust, and then present three new algorithms.

Optimal Bayesian filter
Optimal Bayesian Filter (OBF) assumes all blocks have
size one, i.e., all features are independent, and assumes the
events {f ∈ Ḡ} are independent a priori. In this case π∗(f )
can be found in closed form with little computation cost
[6, 9]. OBF is optimal under its modeling assumptions.
As argued in [9], in the presence of correlation OBF is a
robust suboptimal algorithm that can detect individually
strong good features, i.e., those whose mean and/or vari-
ance is very different between the two classes, but cannot
take advantage of correlations to correctly label individu-
ally weak good features, those whose mean and variance
are similar in both classes.

2MNC-Robust
The 2MNC algorithm [7] suggests approximating π∗(f )
using π∗(G) for all sets G such that |G| = 2, and pick-
ing the top D features. Since finding π∗(G) for all feature
partitions where | ∪ PG| = 2 is typically infeasible, an
approximate posterior, π̃∗(G), is proposed [8], where for
all G ⊆ F of size 2,

π̃∗(G) ∝ π̃(G)

∫
π

(
θG

0
)

f
(
SG

0 |θG
0

)
dθG

0
∫

π
(
θG

1
)

f
(
SG

1 |θG
1

)
dθG

1∫
π

(
θG)

f
(
SG|θG)

dθG .

The normalization constant is found such that∑
G⊆F :|G|=2 π̃∗(G) = 1. π̃(G) mimics the role of

π(G) = P(Ḡ = G) = ∑
P:∪PG=G π(P). Using some subop-

timal method might affect one’s decision of the value used
as the prior of a feature set, replacing π∗(G) with π̃∗(G).
For example, knowing |Ḡ| > 2 implies π(G) = 0 for all
sets of size 2; however, 2MNC-Robust only evaluates such
sets. In this case, π̃(G) = P(G ⊆ Ḡ) might be a suitable
choice to replace π(G). π̃∗(f ) = ∑

G:f ∈G π̃∗(G) is the
approximate marginal posterior of f ∈ F . For the Gaus-
sian model, if the number of good features is fixed and
hyperparameters do not depend on the feature indices,

π̃∗(G) ∝ π̃(G)
(
|SG∗

0 |κG∗
0 |SG∗

1 |κG∗
1

/|SG∗ |κG∗ )−0.5
. (2)

2MNC-Robust is implementing 2MNC with π̃∗(f ). As
mentioned before, 2MNC-Robust does not tune itself to
the underlying block structure of data.

Recursive marginal posterior inflation
It is easy to show that

∑
f ∈F π̃∗(f ) = 2 when only sets

of size 2 are used to find π̃∗(f ). Hence, under MNC
criterion one would at most pick 4 good features, imply-
ing we underestimate π∗(f ) by only using sets of size 2
when |Ḡ| >> 2. REcursive MArginal posterior INfla-
tion (REMAIN) aims to sequentially detect good features
by rescaling π̃∗(f ) = ∑

G:f ∈G,|G|=2 π̃∗(G). We initialize
REMAIN with the set of all features, Fr = F . Then,
REMAIN uses the MArginal posterior INflation (MAIN)
algorithm to identify several features as good, removes
them from Fr , and feeds MAIN with the truncated Fr
to select additional features. This process iterates until
MAIN does not output any features. REMAIN is nothing
but repetitive calls to MAIN with shrinking feature sets,
making MAIN the heart of this algorithm.

Algorithm 1 Pseudo-code of MAIN: G̃=MAIN (Ft , T1, T2)

Require: feature index set Ft , and threshold values T1 and
T2.

1: G̃ := φ.
2: π̃∗(f ) := ∑

G:f ∈G,|G|=2 π̃∗(G) for all f ∈ Ft .
3: do
4: Gs := { f ∈ Ft : π̃∗(f ) > T1}.
5: G̃ := G̃ ∪ Gs.
6: Update Ft := Ft\Gs.
7: For all f ∈ Gs set π̃∗( f ) := 0.
8: sum := ∑

f ∈Ft π̃∗( f ).
9: For all f ∈ Ft set π̃∗( f ) := 2π̃∗( f )/sum.

10: while Gs �= φ & maxG⊆Ft ,|G|=2 H(G) > T2.
Ensure: G̃.

Pseudo-code of MAIN is provided in Algorithm 1,
where H(G) is the right hand side of Eq. (2). Inputted with
a feature set Ft , MAIN finds π̃∗(f ) using sets of size 2, and
finds the set Gs = {f ∈ Ft : π̃∗(f ) > T1}. MAIN adds Gs to
G̃, the set of features in Ft already labeled as good. It then
updates Ft to Ft\Gs, and rescales π̃∗(f ) of features f ∈ Ft
so that

∑
f ∈Ft π̃∗(f ) = 2. Note features in G̃ are used to

compute π̃∗(f ) for features f ∈ Ft , but π̃∗(f ) of features
f ∈ G̃ are not used in the scaling of

∑
f ∈Ft π̃∗(f ) = 2.

MAIN iterates until G̃ = φ, or H(G) ≤ T2 for all G ⊆ Ft
with |G| = 2.

Not finding new features in MAIN might be due to
the remaining good features being weaker and indepen-
dent of G̃. Hence, REMAIN removes G̃ from Fr , and feeds
MAIN with the updated Fr . This way, features in G̃ are not
used to compute π̃∗(f ) anymore for any feature f ∈ Fr ,
thus making it easier to detect weaker good features that
are independent of features already selected by REMAIN.
Pseudo-code of REMIAN is provided in Algorithm 2.

T1 mimics the role of the threshold used in the MNC
criterion. Hence, T1 ∈[0, 1]. Recall that by evaluating sets
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of size 2 we underestimate π̃∗(f ) when |Ḡ| >> 2. There-
fore, when confident |Ḡ| >> 2, one might opt for smaller
values for T1 rather than values close to 1. As T2 is a
threshold over un-normalized posteriors, H(G), extra care
must be taken when setting T2. We suggest T2 = n for
high-dimensional feature selection applications, which is
a good rule of thumb based on our simulation results and
asymptotic analysis of H(.).

Algorithm 2 Pseudo-code of REMAIN
Require: feature index set F, and threshold values T1 and

T2.
1: Ĝ := φ.
2: Fr := F .
3: do
4: G̃ := MAIN(Fr , T1, T2).
5: Ĝ := Ĝ ∪ G̃.
6: Fr := Fr\G̃.
7: while G̃ �= φ.

Ensure: Ĝ.

Note the number of features reported by REMAIN is
variable; however, one can easily obtain close to a desired
number of selected features by tuning T1. To illustrate, we
provide an example based on the data generation model
used in the “Synthetic microarray simulations” section,
where we assume there are 100 markers, i.e., good fea-
tures, and 4900 non-markers, i.e., bad features. We use the
synergetic model with block size k = 5 and correlation
coefficients ρ0 = ρ1 = 0.9. Fixing T2 = n, Table 1 lists
the average number of markers and non-markers selected
over 1000 iterations for n = 20 and 100 across different
values of T1. REMAIN outputs very few features when
T1 is large, and too many features when T1 is extremely
low. The best choice for T1 can vary greatly from case to
case, but one strategy is to choose T1 so that REMAIN
selects close to a given number of features. For exam-
ple, T1 = 0.05 is a good choice in this simulation if
one desires approximately 100 selected features. Another
strategy is based on the number of features selected by
REMAIN across various values of T1. When T1 is large,
reducing T1 only slightly increases the output feature
size, for instance when T1 > 0.05 in this simulation.
However, one might observe a rapid increase in the output
size by slightly reducing T1, for instance T1 changing from
0.05 to 0.01 in this simulation. For such observed patterns,

the value for which this phenomenon occurs might be a
desirable choice.

Posterior factor
Feature selection can be construed as a model selection
problem where each model is a set of good features. Let
f be a feature. If f is a good feature, we expect that if we
add f to any model G, i.e., a set of good features, then
π̃∗(G ∪ { f })/π̃∗(G) >> 1. If f is a bad feature, we expect
π̃∗(G ∪ { f })/π̃∗(G) to be much smaller. Hence, if we aver-
age this ratio over a family of models that do not contain f,
and denote it by β( f ), we expect β( f ) >> 1 if f is a
good feature, and comparable to or smaller than 1 if f is
a bad feature. π̃∗(G ∪ { f })/π̃∗(G) is similar, but not iden-
tical, to the Bayes factor encountered in model selection
[12], where here we compare a model with good feature
set G ∪{ f } versus a model with good feature set G exclud-
ing f. The posterior factor, β( f ), averages the approximate
posterior ratio across all feature sets G ∈ F \ { f }, i.e.,

β(f ) = 1
|�f |

∑

G∈�f

π̃∗(G ∪ { f })
π̃∗(G)

, (3)

where �f = {G ⊆ F : f �∈ G}. As the summation over
�f is computationally infeasible, we propose approximate
posterior factor, hereafter denoted by β̃ .

β̃(f ) = 1
|F| − 1

∑
f ′∈F\{f }

π̃∗({ f , f ′})
π̃∗({ f ′}) . (4)

We propose approximate POsterior FActor-Constrained
(POFAC) algorithm as follows: Use β̃( f ) to rank features,
and pick the top D features. Note that D is a parameter of
the algorithm.

Sequential partition mustering
Sequential Partition Mustering (SPM) aims to improve
feature selection performance by sequentially detecting
good blocks, and adding them to the set of previously
selected features. To find a good block, we start with the
most significant feature, i.e., the feature with largest β̃ , and
find the block containing it. Note we do not aim to find
the structure of bad blocks, and as soon as we declare no
more good features remain the algorithm terminates.

Suppose u0 is the current most significant feature. In
order to find the block containing u0 we propose the Good

Table 1 Performance of REMAIN for various values of T1

Objective n T1 = 0.3 T1 = 0.2 T1 = 0.1 T1 = 0.05 T1 = 0.01 T1 = 0.005

Marker found 20 0.9 1.4 2.5 4.6 15.3 26.2

Non-marker found 20 2.0 3.7 9.4 23.3 164.5 403.0

Marker found 100 52.5 56.2 58.2 60.0 68.9 76.1

Non-marker found 100 1.6 3.3 8.8 20.2 124.7 288.5
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Seed Grower (GSG) algorithm, which can be construed
as a seed growing algorithm with u0 as the seed. Pseudo-
code of GSG is presented in Algorithm 3, where for any
two non-empty disjoint sets G1, G2 ⊂ F ,

C1(G1, G2) = π̃(G1, G2)

1 − π̃(G1, G2)
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,

G12 = G1 ∪ G2, and π̃(G1, G2) approximates π(G1, G2),
the prior probability that at least one of the features in G2
is not independent of G1. Note π(G1, G2) = ∑

P∈P π(P),
where P is the family of feature partitions that contain a
block U such that U ∩ G1 �= φ and U ∩ G2 �= φ. At
each iteration, GSG finds the feature u∗ that maximizes
C1(U , {u∗}), where U is the currently detected sub-block
of the block containing u0. GSG declares u∗ and U belong
to the same block if C1(U , {u∗}) > T3, and adjoins u∗ to U ;
otherwise, it terminates and declares U as the block con-
taining u0. Here we assume T3 = t1nt2|U|, where t1, t2 > 0
are parameters of GSG. While we have only considered
one possible family of thresholds, we expect this family to
be large enough for most practical purposes.

Algorithm 3 Pseudo-code of GSG: U = GSG(u0, Fs, t1, t2)

Require: initial seed u0, feature set index Fs, parameters
t1 and t2.

1: U :=[ u0].
2: check := 1.
3: while check = 1 do
4: u∗ := argmaxu∈Fs\U C1(U , {u}).
5: T3 := t1nt2|U|.
6: if C1(U , {u∗}) > T3 then U := U ∪ {u∗},
7: else check := 0.

Ensure: U.

Pseudo-code of SPM is explained in Algorithm 4. Let
Ft be the feature set used by SPM initialized to Ft = F .
We start with the most significant feature u0 and find
the block containing it, U. We then update Ft to Ft\U . If
β̃(f ) < T4 for all f ∈ Ft , then SPM declares Ft does not
contain any good features and terminates; otherwise, it
picks the most significant feature of Ft and iterates. Sim-
ilar to REMAIN, SPM cannot be forced to output a fixed
number of features, but T4 can be used to tune SPM to
output close to a desired number of features. In addition,
t1 and t2 can be used to avoid picking large blocks, which
also affects the output feature set size.

Algorithm 4 Pseudo-code of SPM
Require: feature set F, parameters t1 and t2, threshold T4.

1: Ĝ := φ.
2: Ft := F .
3: check := 1.
4: while check = 1 do
5: u0 := argmaxu∈Ft β̃(u).
6: if β̃(u0) > T4 then
7: U := GSG(u0, Ft , t1, t2),
8: Ĝ := Ĝ ∪ U .
9: Ft := Ft\U .

10: else check := 0.
Ensure: Ĝ.

We again provide an example based on the simulation
we did for REMAIN. We let t1 = 101, 102, · · · , 105, t2 =
1, 2, 3, 4, 5, and T4 = 102, 104, 106, and consider all com-
binations to construct a very wide range of parameters.
Figures 1 and 2 illustrate how parameters of SPM affect
its performance for n = 20 and 100, respectively. While
low thresholds mislabel more non-markers as good fea-
tures, they correctly label more markers compared with
large thresholds. When n = 20, in order to correctly label
at least 10 markers on average, at least 50 non-markers
are mislabeled, and to mislabel at most 5 non-markers on
average, one cannot correctly detect more than 5 markers.
On the other hand, when n = 100, one can simultane-
ously correctly label at least 80 markers and mislabel at
most 10 non-markers for almost all parameters. Moving
from lowest parameter values to highest, we observe the
average outputted feature size varies from approximately
400 to less than 5 when n = 20, while it only varies
from 120 to 70 when n = 100. Thereby, n = 100 is
less sensitive to the choice of parameters than n = 20.
Suppose n = 100 and one aims to find most mark-
ers and few non-markers. Many parameters can achieve
this goal. In addition, within the range of such param-
eters, the number of features labeled as good does not
change very much by slightly varying the parameters.
Hence, for a fixed sample, one can implement SPM over
a wide range of parameters, find the range where the
output feature size does not vary much by slightly chang-
ing the parameters, and pick a value in that region that
outputs a feature set with close to a reasonable number
of features.

Simulations
We compare the performance of proposed algorithms
with many popular feature selection algorithms over a
Bayesian setting, and a synthetic microarray model intro-
duced in [13] and extended in [8, 9].
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a b c

d e f
Fig. 1 Performance of SPM for various values of t1, t2, T4, and n = 20. Average number of markers labeled as good for a T4 = 102, b T4 = 104, and
c T4 = 106. Average number of non-markers labeled as good for d T4 = 102, e T4 = 104, and f T4 = 106

Bayesian simulation
In this simulation we assume |F| = 4100 and |Ḡ| = 100.
We assume there is 1 good block for each of the follow-
ing sizes: 10, 20, 30, and 40. We also assume there are 20
bad blocks for each of the following sizes: 5, 10, 15, 20, 50,
and 100. We first randomly assign each feature to a block
such that the assumed block structure is satisfied, effec-
tively constructing P̄. Afterwards, distribution parameters
are randomly drawn from the following NIW prior. For
each good block, A, we have SA

0 = SA
1 = 0.5×I|A|×|A|, κA

0 =
κA

1 = |A| + 2, mA
0 = mA

1 = 0, and νA
0 = νA

1 = 4,

where I is the identity matrix. Also, for a bad block, A,
we have SA = 0.5 × I|A|×|A|, κA = |A| + 2, mA = 0,
and νA = 4. Given distribution parameters, a strati-
fied sample of size n with equal points in each class is
drawn. The following feature selection methods declare
the set of good features: t-test, Bhatacharrya Distance
(BD), Mutual Information (MI) using the non-parameter
method of [14] with spacing parameter m = 1, Sequential
Forward Search using the bolstered error estimate [15] of
Regularized Linear Discriminant Analysis applied to the
top 300 features of BD (SFS-RLDA), FOrward selection

a b c

d e f
Fig. 2 Performance of SPM for various values of t1, t2, T4, and n = 100. Average number of markers labeled as good for a T4 = 102, b T4 = 104, and
c T4 = 106. Average number of non-markers labeled as good for d T4 = 102, e T4 = 104, and f T4 = 106
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using Hilbert-Schmidt Independence Criterion (FOHSIC)
[16] applied to the top 300 features of BD, CMNC-OBF,
2MNC-Robust, REMAIN, POFAC, and SPM. Note t-test,
MI, BD, and CMNC-OBF are filter methods. All methods
except REMAIN and SPM output |Ḡ| features. CMNC-
OBF assumes the events {f ∈ Ḡ} are independent and
P(f ∈ Ḡ) is constant for all f ∈ F . 2MNC-Robust
and REMAIN assume π̃(G) is uniform over all sets of
size 2, and zero otherwise. POFAC assumes π̃(G) is uni-
form over all sets of size 1 and 2. Finally, SPM assumes
π̃(G1, G2) = 0.5 for all sets G1, G2 ⊆ F , and uses the same
π̃(G) of POFAC to compute β̃(f ). Bayesian algorithms
use proper priors with hyperparameters of the same form
given previously (PP), and Jeffreys non-informative prior
(JP), where for each set, A, SA

y and SA are zero matrices,
KA

y = KA = LA
y = LA = 1, and κA

y = κA = νA
y = νA = 0.

With νA
y = νA = 0 we do not need to specify mA

y and
mA. We use T1 = 0.3 and T2 = n for REMAIN using
both PP and JP. For SPM-PP we set t1 = 100, t2 = 0.5,
and T4 = 100n2, which resulted in adequate performance
among all sample sizes. When using SPM-JP we use the
same t1 and T4, but set t2 = 1 to avoid picking large
blocks. This process iterates 1000 times.

Figure 3 plots the average number of correctly labeled
features as sample size increases from 10 to 100 in steps
of 10. SPM-PP has the best performance; however, SPM-
JP experiences a sharp drop under small sample sizes.
For larger sample sizes, POFAC-PP performs second
only to SPM-PP. However, POFAC-JP outperforms SPM-
JP. REMAIN adequately balances performance across all
sample sizes. All proposed algorithms, except SPM-JP,
outperform 2MNC-Robust, CMNC-OBF, and other fea-
ture selection algorithms. SPM-JP outperforms previous
algorithms if sample size is not very small.

In this simulation filter methods were the fastest with
comparable computation time, and FOHSIC was the most

computationally intensive method. A comparison of run-
times for this specific simulation is provided in Table 2
assuming the run-time of 2MNC-Robust is the unit of
time. Parallel processing can be used to speed up these
algorithms, for instance, in the 4th step of GSG, and to
compute π̃∗(G) in 2MNC-Robust and POFAC. Although
SPM is a sequential algorithm, its bottle-neck is step 4
of GSG, making parallel processing a good strategy to
extensively speed up SPM.

Synthetic microarray simulations
Here an extended version of a synthetic model developed
to mimic microarrays is used to generate data. The orig-
inal model is introduced in [13], and has been extended
in [8, 9]. In these models features are markers or non-
markers. Markers are either global or heterogeneous.
Global markers (GM) are homogeneous within each class.
Heterogeneous Markers (HM) compromise c subclasses,
where for each specific set of heterogeneous markers,
a specific subset of the training sample has a different
distribution than markers in class 0, and the remaining
sample points have the same distribution as class 0. Mark-
ers comprise blocks of size k, where each block in class
y is Gaussian with mean μy and covariance σy�y. Diago-
nal elements of �y are 1 and non-diagonal elements are
ρy. The original model of [13] forced ρ0 = ρ1. We also
have μ0 = [0, · · · , 0]. There are three types of markers
according to their mean in class 1: redundant, synergetic,
and marginal, with μ1 being [1, · · · , 1] , [1, 1/2, · · · , 1/k],
and [1, 0, · · · , 0], respectively. Non-markers are either Low
Variance (LV) or High Variance (HV). In the original
model LV non-markers are independent, each with a
Gaussian distribution, N(0, σ0). However, in the extended
model of [8, 9], similar to markers in class 0, LV non-
markers comprise blocks of size k, where in each block
features are jointly Gaussian with mean μ0 and covariance
σ0�0. HV non-markers are independent with marginal

a b
Fig. 3 Performance of various feature selection algorithms under Gaussian data. Average number of correctly labeled features versus sample size for
randomly generated parameters for (a) 2MNC-Robust-PP, 2MNC-Robust-JP, POFAC-PP, POFAC-JP, REMAIN-PP, REMAIN-JP, SPM-PP, SPM-JP, (b)
CMNC-OBF-PP, CMNC-OBF-JP, t-test, FOHSIC, MI, BD, and SFS-RLDA
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Table 2 Run-time comparison of Bayesian simulation

Alg. Filter 2MNC-Robust REMAIN POFAC SPM SFS-RLDA FOHSIC

Time <10−3 1 2 1.05 1.5 10 15

distribution pN(0, σ0)+ (1 − p)N(1, σ1), where p is drawn
from the uniform distribution over [0, 1].

We assume |F| = 5000, |GM| = 20, |HM| = 80, |HV | =
2000, and c = 2. We consider all possible combina-
tions of the following parameters: all 3 mean types, k =
5, 10, 20, and ρ0, ρ1 = 0.1, 0.5, 0.9. We also consider the
“large and unequal variance” setting of Table 1 in [13],
which sets σ0 = 0.25 and σ1 = 0.64. Given each set of
distribution parameters, we randomly assign features to
blocks of global markers, heterogeneous markers, and LV
non-markers. The remaining features comprise the inde-
pendent HV non-markers. We generate a stratified sample
of size n with equal points in each class. The following
algorithms are used to declare the set of good features:
t-test, BD, MI, SFS-RLDA, CMNC-OBF, 2MNC-Robust,
REMAIN, POFAC, and SPM. We removed FOHSIC due

to its computation cost. All Bayesian algorithms use JP.
We use thresholds of the Bayesian simulation, except we
set T1 = 0.05. One can tune T3 and T4 for one of the
81 possible settings, or a specific sample size, but it can
affect the performance of other settings. We picked the
thresholds of the Bayesian simulation as they provided
satisfactory performance among large sample sizes. This
process iterates 500 times. For each set of distribution
parameters we define performance as the average num-
ber of markers identified as good plus the average number
of non-markers identified as bad. Figure 4 plots the aver-
age and worst case performance for each fixed mean
type across other distribution parameters as sample size
increases from 10 to 100 in steps of 10. Bayesian meth-
ods tend to outperform non-Bayesian methods. While
simpler methods such as CMNC-OBF outperform more

a b

c d

e f
Fig. 4 Average and worst case performance of feature selection algorithms. Average and worst case performance are obtained using 27
combinations of the synthetic microarray model parameters k, ρ0 and ρ1 with fixed mean type, where performance is defined to be the average
number of markers identified as good plus the average number of non-markers identified as bad over 500 iterations: a average performance for
redundant means, b worst case performance for redundant means, c average performance for synergetic means, d worst case performance for
synergetic means, e average performance for marginal means, and f worst case performance for marginal means
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complicated methods when sample size is small, compli-
cated methods such as SPM have superior performance
when sample size is large.

For small sample sizes, or cases where correctly label-
ing good features is more difficult, REMAIN tends to
output very few features resulting in very good perfor-
mance, in contrast to methods that are forced to output
|Ḡ| = 100 features. OBF can be implemented with the
MNC objective instead of CMNC to enjoy this character-
istic of REMAIN. SPM seems to have the most diverse
behavior. While it performs inferior to all feature selec-
tion algorithms when sample size is very small, it tends to
outperform all other methods for larger sample sizes. In
order for the quantities used in SPM to be well-defined
under JP, sample size must be larger than the block size.
Hence, under small samples SPM with JP tends to break
good blocks into smaller blocks, thereby losing some of its
ability to identify weak good features with strong depen-
dencies, and making it more prone to detecting blocks
incorrectly. Also note that we have used the same param-
eters for SPM across all data models and sample sizes, and
performance is expected to improve if t1, t2 and T4 are
calibrated each time it is run.

POFAC is an interesting option, enjoying compet-
itive performance across all sample sizes. It outper-
forms 2MNC-Robust while its computation cost is only
slightly larger. CMNC-OBF tends to select individu-
ally strong markers, i.e., markers with class 1 mean far
from 0. CMNC-OBF performs very similar to BD in

this simulation, with their performance graphs almost
overlapping.

Figure 5 plots average performance for fixed class-
conditioned correlation coefficients across other
distribution parameters. Simpler methods outperform
complicated algorithms when sample size is small, and
REMAIN enjoys outstanding performance for small
sample sizes by reporting very few features. REMAIN
has difficulty detecting weak markers, i.e., heterogeneous
markers with class 1 mean close to 0, as for larger sample
sizes its performance increment is very little for a 10
point increase in sample size. Average performance with
respect to sample size for each of the 81 possible data
generation settings is provided in the supplementary [see
Additional file 1].

While correctly labeling more features tends to result in
lower classification error, maximizing the average num-
ber of correctly labeled features does not necessarily
minimize classification error [see Additional file 1]. An
example can be seen in the Supplementary, where we
examine the prediction error of several popular classifiers
with feature selection on the synthetic microarray model
[see Additional file 1].

Results
We apply CMNC-OBF, POFAC, REMAIN, and SPM with
the same priors used for synthetic microarray simula-
tions to cancer microarray datasets, select the top genes,
and perform enrichment analysis. We list the top 5 genes

a b c

d e f

g h i
Fig. 5 Average performance of feature selection algorithms. Average performance is obtained using 9 combinations of the synthetic microarray
model parameters k and mean type with fixed ρ0 and ρ1, where performance is defined to be the average number of markers identified as good
plus the average number of non-markers identified as bad over 500 iterations: a ρ0 = 0.1, ρ1 = 0.1, b ρ0 = 0.5, ρ1 = 0.1, c ρ0 = 0.9, ρ1 = 0.1,
d ρ0 = 0.1, ρ1 = 0.5, e ρ0 = 0.5, ρ1 = 0.5, f ρ0 = 0.9, ρ1 = 0.5, g ρ0 = 0.1, ρ1 = 0.9, h ρ0 = 0.5, ρ1 = 0.9, and i ρ0 = 0.9, ρ1 = 0.9
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selected by CMNC-OBF, POFAC, and REMAIN. The
top 100 genes are provided in the supplementary [see
Additional file 1]. REMAIN ranks genes as follows. In each
call to MAIN, we rank genes of G̃ by the order they are
added to G̃, and if several genes are added at once in step 5
of MAIN, they are ranked based on π̃∗(f ). In addition, G̃’s
are ranked by the order they are obtained using consecu-
tive calls to the MAIN subroutine. Note SPM outputs a set
of feature blocks, not a feature ranking. Studying blocks
of SPM might provide invaluable information about the
underlying biological mechanisms of the disease under
study, but we leave this for future work.

We perform enrichment analysis using PANTHER
[17, 18]. The top 20 enriched pathways are reported in
the supplementary [see Additional file 1]. We list their
names, number of known genes in each pathway, num-
ber of selected genes that belong to the pathway, and the
corresponding p-value. Here we only list the top 3 path-
ways and their p-values. We study if among the top genes
and pathways any are already suggested to be involved in
the cancer under study. The complete analysis, with refer-
ences that suggest involvement of the top reported genes
and pathways involved in cancer, is provided in the sup-
plementary [see Additional file 1]. Here, we only report
the conclusions made in the supplementary based on our
literature review [see Additional file 1].

CMNC-OBF tends to find individually strong genes,
which are typically those already known to be involved in
cancer. Hence, CMNC-OBF tends to give the best enrich-
ment analysis results, but it might not be the best option
to find biomarkers that are individually weak, but heav-
ily correlated to strong biomarkers. POFAC and REMAIN
tend to find genes that are individually strong or highly
correlated to individually strong biomarkers. Hence, they
might be very useful for many practical applications, par-
ticularly for those where it is desired to target genes
directly involved in cancer, or genes directly interact-
ing with them. SPM is specifically designed to find all
genes correlated to individually strong biomarkers. Hence,
it tends to report large gene sets. Thereby, this algo-
rithm is particularly useful for identifying and hypothesiz-
ing which biological functions are affected in the cancer
under study.

POFAC and CMNC-OBF require the user to specify the
number of genes to select, which we fix to 2000 so that
a reasonable number of genes are identified by the path-
way enrichment analysis database. On the other hand,
REMAIN and SPM cannot take a predetermined num-
ber of genes to select. We adjust their thresholds for each
dataset so that a reasonable number of genes are selected.
We fix T2 = n, and tune T1, t1, t2, and T4.

The following process is used on each dataset. We first
remove probes that are not mapped to any genes. We then
use OBF and POFAC to rank probes, and use REMAIN to

select a subset of probes. If multiple probes are mapped
to the same genes, only the probe with the highest rank
is retained. This gives the selected genes of REMAIN, and
final gene rankings of OBF and POFAC. D = 2000 is
used to obtain gene sets of CMNC-OBF and POFAC. SPM
uses the gene ranking obtained by POFAC with the corre-
sponding β̃(.), where among probes mapped to the same
genes only the probe ranking highest is retained. Running
all algorithms, using MATLAB2015b, on a server with
4 XEON E5-4650L processors and 512GB of RAM took
about 20 minutes for the breast cancer dataset, and about
70 minutes for each of the colon cancer and AML datasets.
For all datasets REMAIN and SPM took about 55% and
25% of the total run-time, respectively.

Breast cancer
Data obtained in [19] is curated on Gene Expression
Omnibus (GEO) [20] with accession number GSE1456,
containing 159 points. 119 breast cancer relapse free
patients comprise class 0 and 40 patients with breast
cancer relapses comprise class 1. In this dataset, “the
raw expression data were normalized using the global
mean method” [19]. Feature selection algorithms pick
the top genes, and enrichment analysis is performed
using PANTHER. Here we implement REMAIN with
T1 = 0.005, and obtain 1413 genes, and SPM with
T4 = 1000n2, t1 = 1000, and t2 = 1, and obtain
101 blocks containing 1048 genes. Top genes and path-
ways are listed in Tables 3 and 4, respectively. PANTHER
pathways recognize 358, 254, 328, and 183 of the genes
selected by CMNC-OBF, REMAIN, POFAC, and SPM,
respectively. Many of the top genes and pathways are
suggested to be involved in breast cancer. For instance,
PHTF1, ZNF192, and MUC5AC are already shown to be
involved in breast cancer. Furthermore, DCT and ZP2
are high-profile biomarkers, and their role in breast can-
cer requires further investigation. Among pathways, the
gonadotropin-releasing hormone receptor pathway, ubiq-
uitin proteasome pathway, CCKR signaling map, and
integrin signalling pathway are shown to be involved in
breast cancer.

Due to different properties of these algorithms, different
types of biomarkers they tend to pick, and our lim-
ited knowledge of cancer pathways, it is natural to

Table 3 Top genes of breast cancer

Rank CMNC-OBF REMAIN POFAC

1 DCT DCT DCT

2 PHTF1 ZNF192 PHTF1

3 ZNF227 ZP2 MUC5AC

4 ZP2 PCSK6 HUWE1

5 CEACAM7 CEACAM7 MLANA
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Table 4 Top pathways of breast cancer

Algorithm Pathway P-value

CMNC-OBF Gonadotropin-releasing hormone
receptor pathway

4.93E − 05

p53 pathway 8.34E − 05

Ubiquitin proteasome pathway 1.26E − 04

REMAIN Ubiquitin proteasome pathway 3.33E − 07

Angiogenesis 3.40E − 04

FAS signaling pathway 7.23E − 04

POFAC CCKR signaling map 3.82E − 05

p53 pathway 2.61E − 04

Ubiquitin proteasome pathway 4.18E − 04

SPM Ubiquitin proteasome pathway 6.25E − 07

Integrin signalling pathway 1.72E − 06

Pyrimidine Metabolism 2.87E − 05

obtain different gene sets, p-values, and pathway rank-
ings. However, there is reasonable consistency between
the enrichment analysis results. For instance, the ubiqui-
tin proteasome pathway, which is in the top 3 pathways
of all algorithms, is shown to be involved in breast cancer.
Many of the top 20 pathways are in common between at
least 3 algorithms and are shown to be involved in breast
cancer. For instance, the gonadotropin-releasing hormone
receptor pathway, FAS signaling pathway, P53 pathway,
CCKR signaling map, de novo purine biosynthesis, TCA
cycle, Cytoskeletal regulation by Rho GTPase, and cell
cycle are involved in breast cancer. In addition, many of
the top 20 genes are in common between algorithms rank-
ing features. For instance, PHTF1, MUC5AC, ZNF192,
PCSK6, and HDGFRP3 are shown to be involved in breast
cancer, and some common genes such as DCT, ZP2, and
CEACAM7 might be involved in breast cancer.

Colon cancer
Data obtained in [21, 22] is curated on GEO [20] with
accession number GSE17538, containing gene expression
levels of 238 patients in stages 1-4 of colon cancer. Twenty
eight stage 1 patients comprise class 0 and the remain-
ing patients comprise class 1. Bioconductor’s affy package
with its default settings has normalized the data. Feature
selection algorithms pick the top genes, and enrichment
analysis is performed using PANTHER. Here we imple-
ment REMAIN with T1 = 0.01 to obtain 1289 genes, and
SPM with T4 = 107n4, t1 = 106, and t2 = 4, to obtain 159
blocks containing 1560 genes. Top genes and pathways are
listed in Tables 5 and 6, respectively. PANTHER pathways
recognize 312, 159, 208, and 174 of the genes selected by
CMNC-OBF, REMAIN, POFAC, and SPM, respectively.
Many of the top genes and pathways are suggested to be
involved in colon cancer. For instance, CPNE4 and EPHA7

Table 5 Top genes of colon cancer

Rank CMNC-OBF REMAIN POFAC

1 CPNE4 EPHA7 EPHA7

2 GAGE1,12,4,5,6,7 NBLA00301 CPNE4

3 GAGE1,12,2,4,5,6,7,8 LOC100133920
LOC286297

LOC100133920
LOC286297

4 S100A7 PDK4 SCN7A

5 EPHA7 MYH11 NBLA00301

are already shown to be involved in colon cancer. Among
pathways, the cadherin signaling pathway and ionotropic
glutamate receptor pathway are shown to be involved in
colon cancer.

In the supplementary (Additional file 1) we show: (1)
CPNE4, EPHA7, and LOC286297, which are among the
top 20 genes of all three algorithms that rank genes, are
shown to be involved in colon cancer, (2) many of the
top 20 genes in common between two of the gene rank-
ing algorithms, such as the GAGE genes, RYR3, PDK4,
and MYH11, are suggested to be involved in colon can-
cer, and (3) among the common top 20 enriched pathways,
the plasminogen activating cascade, blood coagulation,
and the beta1 adrenergic receptor signaling pathway are
suggested to be involved in colon cancer.

Acute myeloid leukemia
Data obtained in [23–25] is deposited on GEO with
accession number GSE13204, containing gene expres-
sion levels of 2096 points. 74 points belong to healthy
people, 542 points belong to Acute Myeloid Leukemia
(AML) patients, and the remaining points are other sub-
types of leukemia. Healthy points comprise class 0 and

Table 6 Top pathways of colon cancer

Algorithm Pathway P-value

CMNC-OBF Cadherin signaling pathway 1.83E − 20

Wnt signaling pathway 7.25E − 14

Plasminogen activating cascade 7.67E − 05

REMAIN Cadherin signaling pathway 2.21E − 10

Plasminogen activating cascade 7.95E − 05

Wnt signaling pathway 9.27E − 05

POFAC Ionotropic glutamate receptor pathway 1.72E − 05

Metabotropic glutamate receptor group III
pathway

1.04E − 02

Nicotinic acetylcholine receptor signaling
pathway

1.70E − 02

SPM Ionotropic glutamate receptor pathway 2.98E − 03

Heterotri. G-prot. sig. P.W., Gi alpha & Gs
alpha med. P.W.

4.73E − 03

Axon guidance mediated by Slit/Robo 5.79E − 03
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AML patients comprise class 1. The data is already pre-
processed, including a summarization and quantile nor-
malization step. Feature selection algorithms pick the
top genes, and enrichment analysis is performed using
PANTHER. Here we implement REMAIN with T1 = 0.05
to obtain 957 genes, and SPM with T4 = 107n10, t1 = 106,
and t2 = 4, to obtain 522 blocks containing 5172 genes.
Although the thresholds of SPM are chosen to be very
large, we still pick very many genes. This might imply that
many of the genes involved in AML might be individually
weak, but highly correlated.

Top genes and pathways are listed in Tables 7 and 8,
respectively. PANTHER pathways recognize 276, 141,
266, and 671 of the genes selected by CMNC-OBF,
REMAIN, POFAC, and SPM, respectively. Many of the
top genes and pathways are suggested to be involved
in AML. For instance, ORM1 and ORM2 are already
shown to be involved in AML, LTF is a high-profile
gene whose role in AML needs further investigation, and
S100A12 is shown to be involved in similar subtypes of
leukemia, such as ALL, and is suggested to be involved
in AML as well. Among pathways, heme biosynthesis,
the interferon-gamma signaling pathway, pentose phos-
phate pathway and ubiquitin proteasome pathway have
suggested involvement in AML.

Studying the top 20 genes and pathways in the supple-
mentary (Additional file 1) we see that ORM1, ORM2,
LTF, CAMP, LCN2, MMP9, CYP4F3, WT1, and CRISP3
are among the top 20 genes of all gene ranking algorithms,
and are shown or suggested to be involved in AML.
Among the top pathways in common between all meth-
ods, the interferon signaling pathway, and the inflam-
mation mediated by chemokine and cytokine signaling
pathway are involved in AML. Many of the top pathways
picked by at least 3 methods, such as heme biosynthesis,
denovo purine biosynthesis, and T-cell activation are also
suggested to be involved in AML.

Discussion
Here we proposed several suboptimal feature selec-
tion algorithms outperforming many popular algorithms.
However, the ability to correctly detect weaker biomark-
ers via these suboptimal methods comes at the expense
of less intuitive objective functions compared with the

Table 7 Top genes of AML

Rank CMNC-OBF REMAIN POFAC

1 ORM1 ORM2 LTF S100A12

2 LTF CRISP3 S100A9

3 CRISP3 ORM1 ORM2 ORM1 ORM2

4 CHIT1 CHIT1 CRISP3

5 DNAH10 DNAH10 LTF

Table 8 Top pathways of AML

Algorithm Pathway P-value

CMNC-OBF Heme biosynthesis 2.78E − 04

Pentose phosphate pathway 7.34E − 03

De novo purine biosynthesis 8.40E − 03

REMAIN Interferon-gamma signaling pathway 5.86E − 04

Alzheimer disease-presenilin pathway 6.11E − 03

Inflammation med. by chemokine & cytokine
sig. P.W.

6.22E − 03

POFAC Pentose phosphate pathway 1.15E − 03

Formyltetrahydroformate biosynthesis 1.15E − 03

Heme biosynthesis 1.77E − 03

SPM Ubiquitin proteasome pathway 1.72E − 08

T cell activation 2.07E − 05

Inflammation med. by chemokine & cytokine
sig. P.W.

3.00E − 05

optimal solutions. Although the proposed algorithms are
more computationally intensive than OBF and 2MNC-
Robust, they are still much faster than many popular
feature selection algorithms.

While the previously introduced OBF is suitable
to find individually strong biomarkers, REMAIN and
POFAC find individually strong biomarkers as well
as individually weak biomarkers heavily correlated to
strong biomarkers, which is useful for many practi-
cal applications. For instance, in drug development it
might be desirable to target genes directly involved
in biological mechanisms of the cancer under study,
or target genes strongly correlated to them to indi-
rectly control the behavior of genes directly involved
in cancer.

When sample size is small or correlations are not very
strong one could use REMAIN to find a small set of
high-profile biomarkers. REMAIN cannot be forced to
output a predetermined number of features, but for a
given fixed dataset its parameters can be tuned to output
close to a desired number of features. Note the output of
REMAIN is a feature ranking that greatly depends on T1.
The larger T1 is, the smaller is the output feature rank-
ing. However, the user would have more confidence that
declared features are biomarkers. While π∗(f ) is a very
intuitive quantity to evaluate the quality of a feature, π̃∗(f )
obtained by finding π̃∗(G) for sets of size 2 is not as easy
to work with.

On the other hand, if sample size is large or correlations
are strong, POFAC is a suitable option. POFAC provides
a feature ranking based on β̃(f ) and the user specifies
how many features to select, similar to CMNC-OBF and
2MNC-Robust. However, β̃(f ) is not as intuitive as π∗(f ).
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SPM outputs a family of good blocks, which is very
useful in studying the interactions between biomarkers,
and is very useful to hypothesize about biological mech-
anisms that are involved in the disease under study.
As SPM is designed to pick all biomarkers correlated
to strong ones, it typically reports larger feature sets.
SPM is very desirable when correlations are large; how-
ever, it should only be used when sample size is rel-
atively large. Finally, parameters of SPM can be used
to adjust the trade-off between the size of detected
blocks, and the minimum desired dependence between
biomarkers. However, one cannot intuitively determine
what values should be used to achieve a certain point
in the trade-off. Trial-and-error can be used on a
fixed sample to find the desired parameters, as we
did in this paper. One of the main reasons it is not
easy to predetermine SPM parameters is their depen-
dence on sample size and the underlying distribution
parameters.

Conclusion
The proposed Bayesian framework is indeed promis-
ing for biomarker discovery applications. The objective
of finding the posterior probability that a feature set is
the set of good features does not suffer many of the
drawbacks of heuristics used in biomarker discovery. For
instance, while t-test only captures differences in the
means, OBF can capture differences in variances, 2MNC-
Robust, REMAIN, and POFAC take pairwise dependen-
cies into account, and SPM looks at the joint distribution
of good blocks. While the proposed suboptimal meth-
ods can efficiently take advantage of dependencies to
find the set of good features, many heuristics pro-
posed to consider dependencies do not perform well
under small samples [13], which is observed in our
simulations as well.

While the optimal solution under the general block
model is computationally infeasible, the success of
proposed suboptimal algorithms shows the Bayesian
framework can serve as a foundation to model biomarker
discovery problems and develop efficient suboptimal
methods. Future work includes studying the properties
of the proposed algorithms, for instance their asymp-
totic properties, further analyzing outputs of the proposed
algorithms on real datasets, and exploring the specific
applications suitable for each algorithm in greater detail.
In addition, prior construction may be used to design
prior distributions for SPM to boost its performance
under small samples. Finally, while here we have studied
SPM’s ability to select all relevant features, it actually out-
puts blocks of features that appear highly correlated and
differentially expressed. In future work we will examine
SPM as a block detection algorithm, which has important
applications in gene network modeling.

Additional file

Additional file 1: Supplementary. Additional detail on the synthetic
simulations and a comparison of classification error of the selected features
of each algorithm is provided. The supplementary contains the top 100
selected genes and top 20 enriched pathways of each of the proposed
algorithms as well as limma. (PDF 507 kb)
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