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Abstract
Embryonic stem cells exhibit pluripotency: they can differentiate into all types of somatic

cells. Pluripotent genes such asOct4 and Nanog are activated in the pluripotent state, and

their expression decreases during cell differentiation. Inversely, expression of differentiation

genes such as Gata6 andGata4 is promoted during differentiation. The gene regulatory net-

work controlling the expression of these genes has been described, and slower-scale epi-

genetic modifications have been uncovered. Although the differentiation of pluripotent stem

cells is normally irreversible, reprogramming of cells can be experimentally manipulated to

regain pluripotency via overexpression of certain genes. Despite these experimental

advances, the dynamics and mechanisms of differentiation and reprogramming are not yet

fully understood. Based on recent experimental findings, we constructed a simple gene reg-

ulatory network including pluripotent and differentiation genes, and we demonstrated the

existence of pluripotent and differentiated states from the resultant dynamical-systems

model. Two differentiation mechanisms, interaction-induced switching from an expression

oscillatory state and noise-assisted transition between bistable stationary states, were

tested in the model. The former was found to be relevant to the differentiation process. We

also introduced variables representing epigenetic modifications, which controlled the

threshold for gene expression. By assuming positive feedback between expression levels

and the epigenetic variables, we observed differentiation in expression dynamics. Addition-

ally, with numerical reprogramming experiments for differentiated cells, we showed that

pluripotency was recovered in cells by imposing overexpression of two pluripotent genes

and external factors to control expression of differentiation genes. Interestingly, these fac-

tors were consistent with the four Yamanaka factors, Oct4, Sox2, Klf4, andMyc, which
were necessary for the establishment of induced pluripotent stem cells. These results,

based on a gene regulatory network and expression dynamics, contribute to our wider

understanding of pluripotency, differentiation, and reprogramming of cells, and they provide

a fresh viewpoint on robustness and control during development.
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Author Summary

Characterization of pluripotent states, in which cells can both self-renew and differentiate,
and the irreversible loss of pluripotency are important research areas in developmental
biology. In particular, an understanding of these processes is essential to the reprogram-
ming of cells for biomedical applications, i.e., the experimental recovery of pluripotency in
differentiated cells. Based on recent advances in dynamical-systems theory for gene
expression, we propose a gene-regulatory-network model consisting of several pluripotent
and differentiation genes. Our results show that cellular-state transition to differentiated
cell types occurs as the number of cells increases, beginning with the pluripotent state and
oscillatory expression of pluripotent genes. Cell-cell signaling mediates the differentiation
process with robustness to noise, while epigenetic modifications affecting gene expression
dynamics fix the cellular state. These modifications ensure the cellular state to be protected
against external perturbation, but they also work as an epigenetic barrier to recovery of
pluripotency. We show that overexpression of several genes leads to the reprogramming of
cells, consistent with the methods for establishing induced pluripotent stem cells. Our
model, which involves the inter-relationship between gene expression dynamics and epi-
genetic modifications, improves our basic understanding of cell differentiation and
reprogramming.

Introduction
In multicellular organisms, cells that exhibit stemness during development can both self-renew
and differentiate into other cell types. In contrast, differentiated cells lose the ability to further
differentiate into other cell types and terminally differentiated cells can only self-renew. Cur-
rently, how stemness and the irreversible loss of differentiation potential are characterized by
gene expression patterns and dynamics are key questions in developmental biology.

Cells with stemness include embryonic stem cells (ESCs), which are derived from the inner
cell mass of a mammalian blastocyst and are pluripotent, i.e., they can differentiate into all the
types of somatic cells [1, 2]. To maintain pluripotency, pluripotent genes such as Pou5f1 (also
known as Oct4) [3, 4] and Nanog [5, 6] are activated in ESCs. Expression of these genes gradu-
ally decreases during cell differentiation, whereas expression of differentiation marker genes
increases. Understanding these changes in gene expression patterns over the course of cell dif-
ferentiation is important for characterizing the loss of pluripotency.

During normal development, the loss of pluripotency is irreversible. However, the recovery
of pluripotency in differentiated cells was first achieved by experimental manipulation in
plants, and then in Xenopus laevis via cloning by Gurdon [7]. More recently, the overexpres-
sion of four genes that are highly expressed in ECSs, Oct4, Sox2, Klf4, andMyc (now termed
Yamanaka factors), has been used to reprogram differentiated cells. Overexpression of these
genes leads to cellular-state transition and changes in gene expression patterns, and the transi-
tion generates cells known as induced pluripotent stem cells (iPSCs) [8]. Previous studies have
also uncovered the gene regulatory network (GRN) related to the differentiation and repro-
gramming of cells [9, 10].

To understand the differentiation process theoretically, Waddington proposed a landscape
scenario in which each stable cell-type is represented as a valley and the differentiation process
is represented as a ball rolling from the top of a hill down into the valley [11]. In this scenario,
the reprogramming process works inversely to push the ball to the top of the hill [12–14].
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As a theoretical representation of Waddington’s landscape, the dynamical-systems
approach has been developed over several decades, pioneered by Kauffman [15] and Goodwin
[16]. In this approach, the cellular state is represented by a set of protein expression levels with
temporal changes that are given by GRNs. According to gene expression dynamics, the cellular
state is attracted to one of the stable states, which is termed an attractor. Each attractor is
assumed to correspond to each cell type.

Indeed, this attractor view has become important for understanding the diversification of
cellular states and their robustness. Both theoretical and experimental approaches have been
developed to assign each cell-type to one of the multi-stable states [17–19]. In these
approaches, a pluripotent state is regarded as a stationary attractor with relatively weak stabil-
ity, and the loss of pluripotency is the transition by noise to attractors with stronger stability.

An alternative approach investigated how the interplay between intra-cellular dynamics and
interaction leads to differentiation and the loss of pluripotency [20–23]. Specifically, the plurip-
otent state is represented by oscillatory states following the expression dynamics of more
genes, whereas the loss of pluripotency is represented by the decrease in the degree of expressed
genes necessary for oscillatory dynamics. Here, differentiation is triggered by cell-cell interac-
tions, which lead to robustness in developmental paths and the final distribution of cell types
[20, 24, 25]. By using several GRNs, cells with oscillatory intracellular gene expression dynam-
ics are found to differentiate into other cell types by cell-cell interactions [21, 26–28]. Indeed,
the recovery of pluripotency by gene overexpression is a process predicted to facilitate recovery
of lost degrees of freedom and oscillation [20]. However, of the question of whether this theory
applies to realistic GRNs has yet to be explored. Despite these earlier studies, pluripotency has
not yet been confirmed in a realistic GRN observed in experiments, and the mechanism of
reprogramming remains elusive.

Epigenetic modifications such as DNA methylation and histone modification are now also
recognized as important in cell differentiation. Epigenetic change solidifies differentiated-cellu-
lar states by altering chromatin structure to generate transcriptionally active and inactive
regions [29, 30]. With epigenetic change, the activity of gene expression is preserved in a pro-
cess known as epigenetic memory [31]. Indeed, epigenetic modification is suggested as a barrier
to reprogramming [32]. However, the theoretical inter-relationship between expression
dynamics and epigenetic modification has yet to be fully explored.

The aim of the present study was three-fold. First, by using GRNs obtained from a previous
experimental study, we examined the validity of two differentiation scenarios: 1) oscillation
+ cell-cell interaction and 2) multistability + noise. Second, to demonstrate that differentiation
by gene expression dynamics is solidified by epigenetic modification, we introduced a mathe-
matical model for epigenetic feedback regulation. Third, we investigated how overexpression of
some genes leads to reprogramming, i.e., regaining pluripotency from differentiated states (sce-
nario 1) by initializing epigenetic changes.

Below, we have first introduced a simple model extracted from an experimentally observed
GRN. This model consists of several genes, including pluripotent and differentiation genes,
with mutual activation and inhibition. We then examined the oscillatory dynamics and multi-
stable states scenarios to show that differentiation with the loss of pluripotency progresses
from a stem cell state with oscillatory expression through cell-cell interactions. Additionally,
the two scenarios were compared with regard to their robustness to noise and the regulation of
the ratio of differentiated cells.

We also investigated the epigenetic process by introducing variables that give the threshold
for the expression of genes to demonstrate that the cellular state derived from gene expression
dynamics is fixed by epigenetic feedback regulation. Differentiation by gene expression is fixed
according to these threshold variables; thus, the pluripotent and differentiated states are fixed.
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Finally, we investigated reprogramming by temporally imposing overexpression of genes
and examining whether the differentiated state is reversed to the pluripotent state. Via overex-
pression of several genes, epigenetic fixation was relaxed and the expression levels and dynam-
ics of the pluripotent state were recovered. This reprogramming was shown to require the
overexpression of several genes, including pluripotent genes, over a sufficient period beyond
the time scale of epigenetic fixation. Indeed, by using a model with five relevant genes, we
found that four genes corresponding to the Yamanaka factors must be overexpressed for repro-
gramming to occur. It was also demonstrated that insufficient overexpression of genes, i.e.,
overexpression of pluripotent genes only, results in partially reprogrammed cells (which,
experimentally, are known as pre-iPSCs).

Construction of GRNmodel
In the pluripotent state, cells can proliferate and retain their potentiality for differentiation.
The expression of pluripotent genes is necessary for pluripotency, but it is not always sufficient.
In the differentiation process, expression of pluripotent genes gradually decreases, while
expression of differentiation marker genes increases. These temporal changes are a result of
gene-gene regulation, which can be integrated as a GRN consisting of pluripotent and differen-
tiation genes.

Here, we adopted the GRN reported by Dunn et al. [33] (Fig 1) and produced simplified
models by compressing some paths and genes while maintaining the structure of the GRN (see
Models).

Results

Single cell dynamics
Using the four-gene model (Fig 1C), we first present the behavior of single-cell dynamics.
Depending on the parameter Kij, which gives the strength of activation or inhibition from gene
j to gene i, there are three possible behaviors: (i) fixed-point attractor with high expression of
pluripotent genes (FP), given by a fixed-point x1 * 1; (ii) fixed-point attractor with high
expression of differentiation genes (FD), given by a fixed-point x1 * 0; and (iii) the oscillatory
state (O), in which all expression levels show temporal cycles (Fig 2). These three states appear
as attractors depending on the parameter values Kij.

Because the expression level of pluripotent gene x1 is most important for determining the
three states, the regulation of gene x1, which is controlled by the parameter K1j, is crucial for
determining cellular behavior. In particular, threshold K11 and K13 were found to be critical
parameters. Where the value of K11 was low, expression of gene x1 was promoted; where the
value of K13 was low, gene x1 was suppressed. First of all, we set all parameters Kij randomly,
and examined the dynamics. If the parameter value of K11 (K13) was set to a much lower
(larger) value (say 0.1 (1.0), respectively), the expression of x1 is fixed to a high value, and the
differentiation process would be more difficult. On the other hand, if this parameter value was
high (low), x1 was not easily expressed or always expressed, respectively, so that the stem cell
state is difficult to be obtained unless other parameter values are finely tuned. With the neigh-
borhood of the above parameters values, the expression level of x1 changes flexibly to other
parameters. We then observed that the expression dynamics changed between fixed-point and
oscillation easily by changing other parameter values. Indeed, as will be shown, differentiation
behavior was observed for a broader range of other parameters. As the parameter space is so
huge, we here fixed K11 and K13 at these values and drew the phase diagram against other
parameters. For the parameters K11 and K13, for example K11 = 0.35, K13 = 0.78, gene expres-
sion levels showed oscillation.
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To study FP, FD, and O, i.e., the three states described above, we fixed the parameters K11

and K1j (for specific values, see Models), and assessed dependence on the other three parame-
ters K34, K42, and K43 (Fig 3). In most parameter regions, two attractors (stable states) existed,
either FP+FD or FD+O depending on the initial conditions. Where the initial condition
involved high expression of pluripotent genes, FP or O was reached depending on the parame-
ters; where the initial condition involved high expression of differentiation genes, FD was
reached.

For higher values of K34 and K43, gene-expression oscillation, i.e., the oscillatory state, did
not appear, and FP and FD coexisted. Conversely, for lower values of K34 and K43, the oscil-
latory state appeared for 0.1< K42< 0.5 if pluripotent genes were initially highly expressed.
However, where differentiation genes were initially highly expressed, cells fell into FD; thus,
FD and O coexisted. As an example of the oscillatory pluripotent state, we fixed the parameters
at K34 = 0.45, K42 = 0.30, and K43 = 0.45 for most of the simulations described below.

Fig 1. Gene regulatory network. A: The GRN is inferred as a core pluripotency network by Dunn et al. [33].
It includes pluripotent transcription factors such asOct4 andNanog. In this paper, we first picked up only the
eleven genes depicted by cyan nodes, which are considered to be relevant to pluripotency and
reprogramming, and include those concerned with Yamanaka four factors, while experimentally confirmed
interactions among them as depicted by blue edges are adopted [9]. We then reduced them to four or five
nodes, by compressing a linear chain part A! B! C to A!C, or A! B a C to A a C, where! represents
activation and a inhibition. B: The five-gene simplified model. The regulator fromOct4 to Klf2 is compressed
into that from x2 to x4, while the regulator from Rex1 to Klf2 is compressed into that from x3 to x4, where x1, x2,
x3, x4, and x5 correspond to Nanog, Oct4, Gata6, Gata4, and Klf4, respectively. C: The four-gene model,
consisting of two pluripotent (red; x1, x2) and differentiation (green; x3, x4) marker genes, in which the positive
feedback from x5 to x1 is replaced by auto-regulation. In all diagrams, arrow-headed and T-headed lines
represent positive and negative regulation, respectively.

doi:10.1371/journal.pcbi.1004476.g001
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For oscillatory gene expression, negative feedback is generally required. In our model, nega-
tive feedback of gene x1 exists through genes x2, x3, and x4. For the parameter values that gener-
ated oscillatory expression, O, auto-promotion and negative feedback of gene x1 (as the key
factor in pluripotency) were balanced. Where either of the two regulations was dominant, oscil-
lation ceased and the cellular state fell into either of FP or FD.

Fig 2. Time series of single-cell dynamics. Time series of gene expression for x1, x2, x3, and x4. Each colored line represents expression levels of a single
gene. Three different behaviors appeared in single-cell dynamics depending on the parameter Kij. We set the parameter K13 at (A) 0.98, (B) 0.58, and (C)
0.78. The other parameters were fixed at K34 = 0.45, K31 = 0.94, K11 = 0.35, K21 = 0.80, K42 = 0.30, and K43 = 0.45. A: The pluripotent genes x1 and x2 were
highly expressed, and the differentiation genes x3 and x4 were suppressed. This state corresponds to FP. B: Pluripotent genes were suppressed, and
differentiation genes were expressed. This state corresponds to FD. C: Oscillation of gene expression occurred, and this state corresponds to O.

doi:10.1371/journal.pcbi.1004476.g002

Fig 3. The parameter set and emerging attractors. The horizontal and vertical axes represent the values of parameters K34, K42, and K43 (A: K42 and K34,
B: K43 and K34, C: K42 and K43). Other parameters were set as in Fig 2C. Each color represents the type of attractors reached from the initial conditions at
pluripotent (x1, x2 = 0.8, x3, x4 = 0) and differentiated (x1, x2 = 0, x3, x4 = 0.8) states. Brown, green, and blue represent coexistence of FP and FD, coexistence
of O and FD, and existence of FD alone, respectively. For the coexistent cases, the cellular state fell into FP or O by starting from the pluripotent condition,
and fell into FD by starting from the differentiated condition.

doi:10.1371/journal.pcbi.1004476.g003
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Differentiation with cell-cell interaction and noise
To understand developmental processes, we must investigate the switch from pluripotent to
differentiated states. This differentiation event can be mediated either by cell-cell interactions
(i.e., by chemicals from other cells) or by noise. Here we explored these two possibilities.

Cell-cell interactions. Cell-cell interactions play an important role in cellular differentia-
tion. In the simplified GRN we adopted, gene x4 corresponds to Gata4. According to Gene
ontology database, only Gata4 among the four genes in the present model concerns with the
cell-cell signaling. Hence, we assumed the cell-cell interaction via x4. Indeed, even if other fac-
tors xi (i 6¼ 4) were assumed to diffuse, differentiation by cell-cell interaction to be presented
did not appear.

With an increase in the number of cells, differentiation began to occur with specific timing.
Following earlier studies [21, 26], we used a model including the cell division process and cell-
cell interactions among divided cells. Here, cells divided according to a certain division interval,
t = 25, with the two resultant cells having the same gene expression pattern xi with the addition
of some noise. Starting from a single cell initially in the pluripotent state, i.e., x1, x2 = 0.8 and x3,
x4 = 0.2, we investigated whether the composition of cells changes. We studied two cases: (A)
differentiation from either of FP or FD, and (B) differentiation from the oscillatory state, O.

In (A), where the single-cell state was a fixed point with either expression of pluripotent or
differentiated genes, differentiation did not occur by cell-cell interaction, irrespective of the dif-
fusion coefficient D. The cellular state remained at the original fixed point.

In (B), where differentiation began from the oscillatory gene expression state, with an
increase in cell numbers the oscillations of each cell were desynchronized given sufficient
strength of cell-cell interactions (D> 2.0) (Fig 4). With a further increase in the number of
cells, some cells lost the oscillation of pluripotent genes, which suppressed the expression of
pluripotent genes x1 and x2 and activated expression of differentiation genes x3 and x4. Hence,
differentiation and a loss of pluripotency occurred. This process of interaction-induced

Fig 4. Time series of gene expression with the occurrence of cell-cell interactions. Time series of gene
expression levels for x1, x2, x3, and x4 for all cells, where cells divided per period = 25 until time = 125 to
generate 32 cells. Expression levels of cells are plotted according to color, but most colors are overlaid and,
therefore, difficult to discern. The diffusion coefficient D was set at D = 2, and the other parameter values are
the same as those given in Fig 2C. The oscillatory state has pluripotency to allow for both self-renewal and
differentiation. The oscillation of gene expression was initially desynchronized, and then a few cells switched
to the differentiated state.

doi:10.1371/journal.pcbi.1004476.g004
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differentiation from the oscillatory state was first reported by Furusawa and Kaneko [20], and
then by Suzuki et al. in simpler gene expression network models with fewer genes [26]. The
mechanism of the process can be understood through bifurcation theory [21]. After the num-
ber of cells reached a given value (e.g., 32), the differentiated and pluripotent cells with oscil-
latory gene expression coexisted. The ratio of differentiated cells to the total number of cells
was almost independent in each run beginning from the oscillatory state, even where noise was
included in the division process; thus, proportional regulation of differentiated cell types was
achieved. The ratio of differentiated cells increased with the diffusion coefficient of cell-cell
interactions D, and the time required for differentiation increased with this ratio (S1 Fig).

Stationary cellular states were stable given the inclusion of noise, as long as the noise level
was not too high. We also studied the influence of stochastic gene expression by including a
Gaussian white noise term η with the amplitude σ in our model by using Langevin equations
(see Models). Here, as long as the strength of noise was not too large (σ = 0.1), the oscillatory
expression dynamics and differentiation ratio were not altered. Even though gene expression
dynamics were strongly perturbed and oscillation was not clearly visible, the differentiation
process still functioned (Fig 5); hence, differentiation from the pluripotent state (with the oscil-
latory state) was robust to noise.

Transition by noise. As an alternative scenario, we considered differentiation as state
transition by noise. Here, however, as long as the noise level was not too high (σ< 0.1), the plu-
ripotent state was stable, and the transition to differentiated state did not occur. For a much
higher noise level (σ* 0.3), the pluripotent state was not stable. In this case, the transition to
the differentiated state occurred by noise, and this occurred even without cell-cell interactions.
However, all cells finally fell into the differentiated state. Thus, pluripotent cells did not remain,
and the ratio of pluripotent to differentiated cells was not regulated. In addition, this level of
noise might be too high to be considered realistic as a model of gene expression dynamics.

By changing some parameter values in the model, a bifurcation occurred from a fixed point
with expression of pluripotent genes to the differentiated state. Therefore, by changing the
external condition it is possible to transition from the pluripotent to the differentiated state.
However, changing the external condition caused all cells to simultaneously switch to the dif-
ferentiated state, so that no cells with pluripotency remained. In contrast, given oscillatory
gene expression and cell-cell interactions, only some of the cells differentiated from the oscil-
latory state, while others remained in the pluripotent state. Hence, the coexistence of pluripo-
tent and differentiated cells, with irreversible loss of pluripotency, is possible by starting from
the oscillatory state.

Fig 5. Cellular state transition under noise. Time series of gene expression levels for x1. Similar conditions
to those described in Fig 4 were adopted, except that a Gaussian noise term with the amplitude σ = 0.1 was
included. Expression levels of cells are plotted according to color. Gene expression oscillation was irregular
because of the noise. Irreversible transition from the oscillatory pluripotent to the differentiated state (x1 * 0)
occurred for σ = 0.1.

doi:10.1371/journal.pcbi.1004476.g005
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Compatibility of oscillatory and stochastic dynamics. Even if the strength of noise is set
at a large value (say, σ = 1.0), the differentiation by cell-cell interaction in our model works
well. Besides the noise during the expression dynamics, we have also added noise in the divi-
sion process. Indeed, even though the strength of noise in cell division is large (say σd = 1.0),
the differentiation mechanism in our model still works well (S2 Fig).

Differentiation from the pluripotent state with epigenetic modification
Cellular differentiation in multi-cellular organisms also involves epigenetic changes, such as
histone modification and DNAmethylation, which stabilize differentiated states: once differen-
tiated, cells do not regain pluripotency even if the expression level is perturbed. Hence, we
introduced epigenetic modification into our model to strengthen the stability of the differenti-
ated state.

Currently, there is no definitive method for introducing the epigenetic process because the
precise molecular process of histone modification is difficult to implement in a model with
gene expression dynamics. However, it is possible to model the influence of the epigenetic pro-
cess on expression dynamics phenomenologically [34–38]. The epigenetic process tends to fix
the expression state; for example, when a given gene is expressed for a given period, its expres-
sion tends to become fixed, and when it is not expressed for a given period, it remains silenced.
In other words, the threshold for expression decreases or increases when the gene is expressed
or suppressed over a given time span, respectively.

Thus, we introduced epigenetic feedback regulation as a change in the threshold for expres-
sion, which was previously given by the expression threshold parameter Kij in our GRNmodel.
Here, we replaced the parameter Kij with an epigenetic variable θij(t), which changes over time
depending on expression levels. Consequently, the expression level of the regulator xj affects
that of the regulatee xi through this epigenetic variable. This is given as dynamics as

_y ijðtÞ ¼
1

tepi
ðYij � yijðtÞ � axjðtÞÞ: ð1Þ

The threshold θij(t) is elevated to Θij, when the gene xj is not expressed (i.e., xj(t)* 0),
whereas the threshold decreases to Θij − αxj(t) when the gene is fully expressed, i.e., xj(t)* 1.
Hence, the term −αxj(t) represents epigenetic feedback, i.e., if gene xj is expressed, it is more
likely to be expressed; if it is not expressed, it is less likely to be expressed. The term Θij thus
represents the epigenetic barrier for genes that are not expressed.

The strength of epigenetic fixation given by Θij generally depends on each regulation. Since
the expression of pluripotent genes in our model is highly variable, a higher value of Θij is
required to fix their expression. Hence, we chose higher Θij values for regulations associated
with pluripotent genes. Specifically, epigenetic fixation threshold values were set to 1.0 for the
pluripotent genes Θ31,Θ21, and Θ42, while they were lowered to 0.78 for the differentiation reg-
ulators Θ13,Θ34,Θ43.

For auto-regulationΘ11, the threshold value was set lower, e.g., at 0.50, since self-activation
tightly fixes the expression with small Θij. This is because the genes to regulate and to be regu-
lated are identical. This was due to the simplification, which included the self-activation (we
examine the five-gene model without self-activation below, in which all Θij for pluripotent
genes are set to 1.0).

Given these parameters, we simulated our model with epigenetic feedback regulation and
studied dependence on the epigenetic variables τepi and α. Initially, we focused on the epige-
netic variable θij(0) = Kij, which was set with values for cases with (A) fixed-point states and
(B) the oscillatory state.
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(A) Starting from a state with fixed-points. In this case, the epigenetic process fixed its
state, and no more changes were induced. Thus, in the case of bistable fixed-points, the behav-
ior was almost the same as in the non-epigenetic model. However, by starting from a fixed
point with expression of pluripotent genes, the expression began to oscillate via the epigenetic
feedback when the time scale τepi was small. This did not cause cell differentiation, however,
and the oscillation soon ceased before the cell differentiated. Hence, the effect of epigenetic var-
iables is minor in the bistable fixed-point case.

(B) Starting from the oscillatory state. If the time scale of τepi was not too high (the range
is discussed below), the differentiation process initially progressed in the same manner as
observed without the epigenetic process. Later, however, the cellular state was fixed at an undif-
ferentiated or differentiated state by the change in the epigenetic variable θij(t). After sufficient
time, the oscillation of pluripotent genes was lost, and the ability to differentiate was lost after
division (Fig 6). Whether or not differentiation and fixation progressed depended on the time
scale τepi and the coupling constant α (Fig 7, S3 Fig).

Even with weak cell-cell interactions (e.g., D = 1.5), where differentiation did not occur
without epigenetic feedback regulation, differentiation was sometimes mediated by epigenetic
regulation. For example, for D = 1.5, oscillation occurred over a period sufficient to produce
differentiated cells for 103 < τepi < 104, but oscillation disappeared, and the capacity for differ-
entiation was lost (Fig 7). If the time scale of the epigenetic variable τepi decreased (τepi < 103)
or increased (τepi > 104), differentiation did not occur.

As the interaction strength (D) increased, the range of τepi that allowed for differentiation
also increased (Fig 7). For D> 2.0, if the epigenetic fixation process was slow (τepi> 103), cellu-
lar differentiation was fixed to both gene expression xi and to epigenetic change θij (Fig 7).

Fig 6. Cell differentiation with the epigenetic variable. Time series of gene expression levels for x1, x2, x3, x4, and the epigenetic threshold variables θ11(t)
and θ13(t). Expression levels of cells are plotted according to color, but most colors are overlaid and, therefore, difficult to discern. We set the parameters of
the epigenetic variable as follows: τepi = 2.0 × 103, α = 0.1,Θij = 1.0. The initial value of the epigenetic variable θij(0) was set as Kij in the non-epigenetic
model. The other parameters are the same as those used in Fig 4. First, gene expression oscillated, and then the epigenetic variables in each cell changed
gradually. θ11(t) differentiated into two groups, and in one of these x1 approached 0.

doi:10.1371/journal.pcbi.1004476.g006
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However, if the time scale of the epigenetic variable decreased (τepi < 103), the cellular state
was quickly fixed by epigenetic change, and differentiation never occurred.

Furthermore, even without cell-cell interactions (D = 0), cells switched from pluripotent to
differentiated states via the epigenetic process. However, in this case, oscillation was later lost
for all cells. Thus, all cells fell into the FD state together (with a differentiation ratio of 1.0), and
coexistence of pluripotent and differentiated states was not possible.

The addition of noise did not substantially change epigenetic modification. The time scale
of the epigenetic variable τepi was typically much larger than that of the noise variable τnoise.
Thus, the stochastic variation was averaged out through the epigenetic fixation process, and
once the epigenetic change had occurred, expression levels stabilized to reduce the effect of
noise. Therefore, the epigenetic process was robust to noise (or further increased the robustness
of the model to noise).

In summary, we added the epigenetic variable θij(t), to replace the expression threshold Kij.
The cellular state was fixed by these variables, and its stabilization was enforced. Even if a large
amount of noise was added, the cellular state was not destabilized. Upon external perturbation
of gene expression patterns, the cell quickly returned to its original state after the change in the
epigenetic threshold. Thus, the epigenetic variable produced stabilization of the cellular state
and irreversibility of cell differentiation.

Reprogramming to the pluripotent state
Mature cells can be dedifferentiated into iPSCs by inducing Yamanaka factors [8]. Indeed, in
dynamical-systems theory, such recovery of pluripotency was predicted as cellular-state transi-
tion from a differentiated fixed-point to the pluripotent oscillatory attractor induced by forced-
expression of several genes [20]. Here we discuss the conditions for reprogramming, i.e.,
switching cellular states by experimental manipulation to regain pluripotency, in our model,
also by taking the reversal of epigenetic fixation into account.

First, we investigated reprogramming in the model without the epigenetic process. In this
case, differentiated cells were reprogrammed by externally increasing the expression of the plu-
ripotent genes instantaneously, i.e., increasing the value of x1. Instantaneous increase in the

Fig 7. Effect of the time scale of the epigenetic variable τepi. Here, the differentiation ratio is plotted against τepi. We conducted a differentiation simulation
by running the epigenetic model 1000 times for each time scale, and then counted the number of differentiated cells (x1 * 0). The average differentiation ratio
(i.e., the vertical axis) represents the percentage of differentiated cells per simulation. To run the simulations, we used identical values to those used in Fig 6.
A: Given strong cell-cell interaction (D = 2.0), our model showed differentiation without the epigenetic variable. Thus, a large time scale did not negatively
affect differentiation. However, given a smaller time scale, cellular differentiation did not occur because the cellular state was quickly fixed. B: Given weak
cell-cell interaction (D = 1.5), there was a peak around the time scale of the epigenetic variable τepi * 5.0 × 103. If the time scale of τepi was small (τepi < 103),
the cellular state was quickly fixed and differentiation did not occur. Conversely, if the time scale τepi was large (τepi > 104), oscillation remained in place.

doi:10.1371/journal.pcbi.1004476.g007
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expression was sufficient here, since the cellular state is represented only by the expression lev-
els of xi. In order to stabilize the differentiated states against perturbations and sustain irrevers-
ibility of cell differentiation, the classic model including only gene expression dynamics is
insufficient (see also [39]). By introducing epigenetic feedback regulation with a different time
scale, we succeeded in obtaining the result consistent with reprogramming experiments.

In the model with the epigenetic process, however, differentiated cells were not repro-
grammed by an instantaneous increase in xi. Following overexpression, cells quickly returned
to the differentiated fixed-point. This is because the epigenetic variable, which cannot be
altered over a short period, was already increased so that expression of pluripotent genes could
not be recovered by instantaneous, or short-term, overexpression. Indeed, we examined the
instantaneous overexpression of each gene, as well as a combination of several genes, but repro-
gramming never occurred.

We then introduced the overexpression of pluripotent genes into a differentiated cell over a
sufficiently long time span Te. For example, pluripotent genes were overexpressed from t = 1 to
Te = 100 to the level of xi = 15. Additionally, we added external activation of gene x4 to inhibit
the expression of gene x3 (Fig 8). In this case, cells were reprogrammed, and gene expression
levels regained oscillation and recovered pluripotency. The expression threshold was also
reduced (Fig 9), so that epigenetic fixation was relaxed. By starting with this reprogrammed
cell, some of the divided cells differentiated given a sufficient level of cell-cell interaction.

After overexpression of xi to the value x
e for time span Te, the epigenetic variable θij(t) was

estimated to decrease to axe � Te

tepi
. Hence, epigenetic fixation is relaxed if this value reaches

θij(0), where θij(0) is the value after epigenetic fixation. Where τepi = 5.0 × 10−4 and α = 0.1, for
example, xeTe must be larger than 3.0 × 105 for θ11(t) to return to the initial value 0.35. For
example, if the overexpression value is changed from 15 to 3, overexpression time required
about 5 times. The product of overexpression value and time determines the reprogramming.
The reprogramming ratio increases (in a threshold-like manner) as the product increases
beyond a critical value 103 (Fig 10). Indeed, this is natural, as the relaxation process of epige-
netic fixation is determined by the product.

Fig 8. The gene regulatory network in the reprogramming simulation.We overexpressed the pluripotent
genes x1 and x2, and added an external stimulus ex1 to activate gene x4 in the four-gene network model (see
Fig 1C). This induction triggered reprogramming, and cells started to oscillate once again. These
reprogramming factors correspond with, for example, x1 =Oct4, x2 = Sox2, and ex1 =Myc.

doi:10.1371/journal.pcbi.1004476.g008

Pluripotency, Differentiation, and Reprogramming

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004476 August 26, 2015 12 / 25



The epigenetic fixation is introduced so that the genes that are not expressed are harder to
be expressed, following observations in cell-biology. Accordingly, the strength of epigenetic fix-
ation Θij has to be larger than the value of θij chosen initially. Therefore, epigenetic fixation
threshold values Θij for pluripotent genes were set to 1.0 because the maximum value of initial
threshold values θij(0) was 0.94. If it is set to a lower value, the gene is not remained silenced
due to the epigenetic change, even when it is not expressed. On the other hand, if the epigenetic
fixation threshold values Θij for differentiation regulators were also set to 1.0, the reprogram-
ming by overexpressing the corresponding genes as well as external factors was not possible. In
fact, we carried out both differentiation and reprogramming simulations by choosing a variety
of values of Θij, and confirmed that epigenetic fixation threshold values for pluripotent genes
have to be larger than that for differentiation regulators, to be consistent with experimental
observations.

In addition to overexpression levels and time span, the number of overexpressed genes is
important. Reprogramming did not occur by overexpression of a single gene, even though its
level and time span were sufficient to decrease the epigenetic variable: two or more appropriate
genes had to be overexpressed. If a single gene x1 was overexpressed over a sufficient period,
the transition to a different fixed-point state occurred, but gene expression did not regain oscil-
lation. By starting from this cell with this new fixed-point state, differentiation did not occur
again even when the number of cells was increased. These cells showed increased expression of
pluripotent genes up to the level of the original pluripotent cell, but they did not regain the
capacity for differentiation. Thus, decreasing the epigenetic threshold variable of pluripotent
genes was not sufficient for reprogramming.

Fig 9. Time series of gene expression in the reprogramming simulation, with induction of pluripotent genes and external activation. Plotted here
are the time series of gene expression levels for x1, x2, x3, x4, and the epigenetic threshold variables θ11(t) and θ13(t). Initially, all cells (e.g., 32 cells) were set
at the differentiated state (x1,2 = 0, x3,4 = 0.8), with the epigenetic fixation threshold values set at 1.0 for the pluripotent genesΘ31,Θ21, andΘ42, and at 0.78
for the differentiation regulatorsΘ13,Θ34,Θ43. The auto-regulatorΘ11 was set at 0.50. We overexpressed genes x1 and x2 for a long period (Te* 100). The
epigenetic variables in each cell changed gradually because of the overexpression of these genes. In addition, the gene x4 was promoted by an external
stimulus. After overexpression, gene expression began to oscillate again and a few cells showed differentiation. Thus, cells were reprogrammed.

doi:10.1371/journal.pcbi.1004476.g009
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We then conducted a reprogramming simulation by changing the initial values for the epi-
genetic variable θij(0), that is,Θij. In general, as Θij became smaller, epigenetic fixation became
weaker, and the number of genes that had to be overexpressed decreased. For example, if Θ34 =
0.5 and Θ43 = 0.3, the overexpression of just two factors, x1 and x2, without the external overex-
pression of any other genes could lead to reprogramming (S4 Fig).

According to our results, pluripotent stem cells had an oscillatory gene expression compo-
nent; thus, the recovery of oscillation was necessary for recovery of pluripotency. However,
oscillation alone was not always sufficient for pluripotency. If the decrease in the epigenetic
threshold value was insufficient, the oscillation was weak and the bifurcation to a differentia-
tion fixed point could not occur by cell-cell interactions. In this case, pluripotent genes were
expressed. A cellular state such as this, with expression of pluripotent genes but without differ-
entiation potential, corresponds to the pre-iPS state previously reported in reprogramming
experiments [32, 40].

The five-gene model
To promote expression of pluripotent genes, there is an auto-expression loop. This auto-
expression is mediated via positive feedback by mutual regulation of genes. In the four-gene
model, which has been described and studied thus far, this positive feedback loop was intro-
duced as the self-expression of x1. Auto-expression such as this may be over-simplified, espe-
cially considering epigenetic modification as already mentioned. In reality, the auto-expression
feedback loop consists of a number of genes. Hence, we replaced auto-regulation of x1 in the
four-gene model with a loop structure via a new gene x5 (as shown in Fig 1B), and attempted to

Fig 10. Reprogramming efficiency against overexpression condition. Plotted here are Reprogramming efficiency against the product of overexpression
value xe1 for the gene x1 and its duration time Te semi-log plot. We counted the number of reprogrammed cells (that are differentiated after oscillation). The
average reprogramming ratio represents the percentage of reprogrammed cells per simulation. There was a peak around the product xe

1T
e � 103:1. If the

product xe1T
e was small (xe

1T
e < 103), cells quickly returned to the differentiated fixed-point. Inversely, if it was large (xe1T

e > 103:3), cells fell into the pluripotent
fixed-point, and did not show differentiation.

doi:10.1371/journal.pcbi.1004476.g010
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validate our previous results and examine the conditions necessary for reprogramming in com-
parison with experiments.

First, we confirmed that the two fixed-points, FP and FD, and the oscillatory state, O,
existed in the five-gene model (see SI, S1 Text). Once confirmed, we also included epigenetic
threshold variables, as in the four-gene model. For example, we used two epigenetic fixation
parameters depending on the regulator type, i.e., the epigenetic fixation value for the pluripo-
tent regulators (Θ15, Θ31, Θ21, Θ51, Θ42) was 1.0, and for the differentiation regulators (Θ13,
Θ34, Θ43) it was 0.65. Additionally, we confirmed that the switching from oscillatory state to
FD progressed via cell-cell interactions (S6 Fig).

To regain pluripotency from the differentiated state, in our reprogramming experiment
with the five-gene model, overexpression of the genes x1, x2, and x5, as well as one external fac-
tor (to inhibit gene x4), was necessary. These four genes correspond to the Yamanaka factors
(Oct4, Sox2, Klf4, andMyc) used for reprogramming (Fig 11, S7 Fig). As long as we started the
reprogramming simulation after the threshold value θij(t) for differentiated cells reached the
pre-set level Θij, these four genes were necessary for reprogramming.

The number of genes that had to be overexpressed depended on the level of epigenetic fixa-
tion. In general, overexpression of the four aforementioned genes over a sufficient period was
required for reprogramming to reset the value of epigenetic variables for the differentiated cells
(epigenetic fixation was complete to have θij(t)* Θij). In contrast, reprogramming was easier
if epigenetic fixation was insufficient, and fewer genes, including x5, were sufficient for
reprogramming.

Fig 11. Time series of gene expression in reprogramming via overexpression of three genes and one external factor. Plotted here are time series of
gene expression for x1, x2, x3, x4, x5, and the epigenetic threshold variables θ15. In this case, we used the following parameter set: θ13(0) = θ34(0) = θ43(0) =
0.65, θ15(0) = θ31(0) = θ21(0) = θ51(0) = θ42(0) = 1.0. In the differentiated state, we overexpressed genes x1, x2, and x5 over a long period and added one
external regulator. Induction of these factors changed the epigenetic threshold variables; gene expression then began to oscillate again and, later,
differentiation occurred in a few cells.

doi:10.1371/journal.pcbi.1004476.g011
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Discussion
In this study, we assessed a simplified model that was a part of an inferred GRN previously
reported by Dunn et al. [33]. Some regulations were simplified by deleting mediator genes, but
the core network that is believed to be important for pluripotency, in particular the network
motif for a toggle switch, was included. In accordance with the reported GRN, the genes in the
model corresponded to Nanog, Oct4, Gata6, and Gata4, while the additional gene in our five-
gene model corresponded to Klf4.

We showed that oscillation and switching between high and low levels of gene expression
causes some cells to fall into differentiated states via cell-cell interactions. This interaction-
induced differentiation from the oscillatory state was robust to noise. Indeed, expression levels
of the pluripotency-related gene Hes1 are reported to oscillate in stem cells, but oscillation is
apparently lost after differentiation [41]. This observation is consistent with our oscillation-
based mechanism.

Alternative proposals for the differentiation mechanism are based solely on multistability
and stochasticity. According to these views, both the differentiated and pluripotent states are
given by one of the multi-stable fixed-points, and cellular-state transition is caused by noise.
For example, a GRN with auto-promotion and mutual inhibition between two genes [17] can
produce such bistability. The noise level is critical to this differentiation process. Unless noise
level is optimally tuned, the transition between the pluripotent and differentiated states contin-
ued to occur via noise, and irreversible differentiation did not occur. Additionally, because
switching is stochastic, this model could not control the ratio of pluripotent to differentiated
cells, and once a cell was in one of the bistable states, the epigenetic process fixed this state.

In contrast, differentiation from oscillatory dynamics and cell-cell interactions is robust to
noise. This provides an explanation for pluripotency as oscillatory dynamics, and characterizes
the irreversible differentiation as a transition from oscillatory to fixed-point dynamics, which,
later, is consolidated by epigenetic feedback.

In contrast to our findings, however, a recent study suggested that gene expression in stem
cells shows stochastic switching between high and low levels, rather than oscillation dynamics
[42]. We note that our mechanism works even with strong stochasticity. Even though the
strength of noise is set at a large value (say, σ = 1.0), the differentiation by cell-cell interaction
in our model works well. Besides the noise during the expression dynamics, we have also stud-
ied the noise in the division process. Indeed, even though the strength of noise in cell division
is large (say σd = 1.0), the differentiation mechanism in our model still works well. Where this
is the case, the oscillatory component underlies gene expression that shows noisy dynamics.
Hence, the experimental observation did not contradict our oscillation scenario. Under such
noise level, the differentiation ratio from sibling is not necessarily correlated as in the experi-
mental results. Under these high noise levels for σ and σd, and by setting the parameter values
say at τdiv = 12.5 and D = 1.5, about 4 switching occurred per 100 cell division, as is consistent
with the experimental data, while preserving the stochastic oscillatory dynamics.

To check the possibility of stochastic oscillation experimentally, one would need to examine
whether an oscillatory component exists among noisy dynamics. This would be possible by
measuring the transition probability among three states (A, B, C) and examining if the proba-
bility P(A! B) has a circulation component, as characterized by the deviation between P(A!
B)P(B! C)P(C! A) and P(B! A)P(A! C)P(C! B). We also suggest that by measuring
expression of pluripotent genes for a number of iPS cells by single-cell-PCR, one could uncover
the loci of oscillatory attractor, as the phase of oscillation is expected to be scattered by cells.

Second, in the experiment of [42] switching between Nanog-high to Nanog-low is less fre-
quent than the result presented here. However, this switching frequency can be easily changed
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in our model by changing the parameter values τdiv, the strength of cell-cell interaction D and
noise σ.

Here, we also introduced epigenetic threshold variables to fix differentiated cellular states
via epigenetic changes. The epigenetic variables in our study promoted gene expression if the
regulator gene was highly expressed. Conversely, they inhibited gene expression if the expres-
sion of the regulator was low. Indeed, epigenetic modification represented by histone modifica-
tion is known to reinforce gene function by reconstruction of chromatin [43]. For example, the
maintenance of pluripotency is promoted and suppressed by open and closed chromatin states
in cell differentiation, respectively. The epigenetic feedback process in our model was a mathe-
matical representation of such reinforcement.

In our model, the time scale of epigenetic change τepi was much slower than the time scale
of gene expression dynamics, by a factor of 102 − 103. Therefore, because the time scale for
transcription is seconds to minutes, epigenetic modification appears to occur over days. If the
time scale for cell division is hours, the time scales for gene regulation τgene, cell division τdiv,
and epigenetic variable τepi satisfy τgene < τdiv < τepi. Indeed, in our model, epigenetic fixation
of cell differentiation works effectively given these conditions.

If differentiation occurs, and the differentiation ratio depends on the time scale of epigenetic
modification, the rate of epigenetic change can control the distribution of cell types. Hence,
epigenetic fixation controls cell distribution and is, therefore, essential to the stabilization of
cellular states.

However, epigenetic fixation also provides a barrier in reprogramming. In contrast to the
scenario without epigenetic fixation, simply resetting gene expression patterns is not sufficient
to reprogram differentiated cells. Even if the gene expression pattern of a differentiated cell is
reset to the pluripotent state, the cellular state quickly returns to a differentiated state because
of the change in the epigenetic threshold variables.

Reprogramming also requires overexpression of pluripotent genes over a time span of τepi.
Even with overexpression of the correct genes, an insufficient amount of time cannot relax the
epigenetic threshold, and cells quickly return to the differentiated state. Indeed, in reprogram-
ming experiments, Yamanaka factors are overexpressed for days by using retroviruses, during
which time, it is suggested that chromatin is reconstructed.

In our model, the overexpression of multiple transcription factors, including pluripotent
genes, was generally necessary for reprogramming to occur. Indeed, in the five-gene model, the
four factors required for reprogramming were the Yamanaka factors, Oct4, Sox2, Klf4, and
Myc, which are adopted in iPS construction. Even though the GRN in our model contained
only five genes, reprogramming required these four factors. In particular, Klf4 was a prerequi-
site for reprogramming. In iPS cell construction, Klf4 also plays an important role in promo-
tion of reprogramming by interacting with Oct4 and Sox2 [44].

Note that the reprogramming efficiency in experiments is rather low. This might be related
with a limited range in the overexpression level in Fig 10. However, at the moment, it is uncer-
tain if this low efficiency is due to difficulty in adjusting such range of overexpression levels, or
due to underlying noisy dynamics, or due to some other experimental constraint.

Experimentally, reprogramming is reportedly easier if the epigenetic fixation of some genes
is weaker. Indeed, epigenetic fixation levels depend on the derived cell type or chromatin struc-
ture [29, 30]. Furthermore, highly efficient reprogramming, such as deterministic (or non-
stochastic) reprogramming from the privileged somatic cell state [45, 46], includes a chromatin
remodeling factor or specific types of derived cell. This scheme is expected to relax the level of
epigenetic fixation for some genes. Thus, it is consistent with the ease of reprogramming caused
by reducing epigenetic fixation parameters Θij for some genes (j) in our model.
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Our study also demonstrates that cells fall into a fixed state with the expression of pluripo-
tent genes when there is insufficient overexpression to suppress differentiation genes. Gene
expression levels in such cells do not show oscillation, nor do cells show differentiation again.
Even though pluripotent genes are expressed, the potential for differentiation is not regained.
These cells are regarded as being in a pre-iPS state, which was previously reported in repro-
gramming experiments [32, 40]. In these experiments, following overexpression of the Yama-
naka factors, the cell did not regain pluripotency even though ES cells-markers (SSEA-1 and
Oct4) were expressed.

The GRNs we studied here are based on several experimental reports. In reality, the GRNs
responsible for pluripotency and differentiation involve many more components, and other
candidate GRNs have also been proposed for pluripotency [9]. Our conclusions with regard to
oscillation-based differentiation, epigenetic fixation, and reprogramming, however, remain
valid as long as the present core network is preserved. Additionally, in a differentiation process
including the core network structure consisting of Nanog, Oct4, Gata6, and Gata4, as discussed
here, the four factors are required for reprogramming, independently of the parameter values,
as is consistent with experimental observations.

In summary, in our study, oscillatory gene expression produced the pluripotency of cells,
and differentiation occurred via a state transition to a fixed-point with the suppression of plu-
ripotent genes. These expression patterns were then fixed epigenetically. In our model, differ-
entiation and reprogramming were interpreted as creation (deletion) of gene expression
oscillation and the enhancement or relaxation of epigenetic fixation, respectively. Pluripotent
states involved the oscillation of expression of several (here, four to five) genes, while differenti-
ated states suppressed the expression of these genes to reduce oscillation. Thus, our results
showed that reprogramming to recover pluripotency involves recovery of gene expression,
achieved by overexpression of several genes, and relaxation of epigenetic fixation.

Models

Construction of GRNmodel
The simplified models consisted of either four or five genes with seven or eight regulations,
respectively. In simplification of GRN, we decreased nodes and edges as long as the differentia-
tion is possible. As a result, we extracted a four-factor model, as a minimal structure showing
differentiation. Furthermore, the reprogramming simulation from this network, as presented
in the present paper, is also consisted with experiments. The existence of these regulations in
the constructed GRN is supported by earlier studies [9, 47–50]. In the four-gene model, the
self-activating gene (promotion-loop structure) and its cofactor were regarded as pluripotent
genes, and the genes inhibited by these pluripotent genes were regarded as differentiation
genes. For example, genes x1, x2, x3, and x4 corresponded with Nanog, Oct4, Gata6, and Gata4,
respectively. In the five-gene model, the additional gene was Klf4. Among these genes, only
Gata4 functions in cell-cell signaling (interaction) according to Gene Ontology. Hence, we con-
sidered cell-cell interactions through diffusive coupling by the gene product of x4.

We introduced epigenetic feedback regulation into the model as a change in the threshold
for gene expression. This depends on the expression levels of a regulator gene. If the regulator
gene is highly expressed, expression of the regulated gene is promoted; however, where expres-
sion of the regulator gene is low, expression of the regulated gene is inhibited. Epigenetic
change occurs via the change in threshold for expression dynamics and, with feedback, the cel-
lular state is fixed.
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Four-gene model
Here, we describe our gene expression dynamics model. Cellular states are represented by the
gene expression pattern of four genes, x1, x2, x3, and x4. These genes regulate the expression lev-
els of themselves and other genes. Additionally, we consider the expression dynamics of gene i
of the kth cell at time t, denoted as xki ðtÞ. Only gene x4 is involved in a cell-cell interaction,
which is the diffusion of the gene expression level of x4. Hence, our differential equation model
is as follows:
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where D is the diffusion coefficient, Zk
i is an uncorrelated Gaussian white noise term with the

mean square deviation σ when the stochastic experiment is considered, and N(t) is the total
number of cells at time t. Depending on the parameter Kij, which gives the strength of activa-
tion or inhibition from gene j to i, the behavior of our model changes.

In cell division, two new cells are produced that have the same gene expression pattern as
the original cell. Additionally, gene expression is slightly perturbed by adding a Gaussian white
noise (σd = 1.0 × 10−3, unless otherwise mentioned) after cell division, as ηi xi or (1 − ηi)xi (with
η as a random number in [0, σd] after each cell division.

Five-gene model
In the four-gene model, the positive feedback loop of the pluripotent gene x1 is introduced for
self-activation. Auto-regulation such as this may be over-simplified; in reality, this should be
replaced by a feedback regulation loop including a number of genes. Therefore, we change the
auto-expression of gene x1 in the four-gene model to a loop structure via the gene x5, and the
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five-gene model is described as follows:
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Epigenetic feedback regulation

In the equation for xki ðtÞ, each parameter Kij is replaced by the epigenetic variable θij(t), which
changes over time depending on gene expression levels by introducing epigenetic feedback reg-
ulation as a change in the threshold for gene expression as follows:

_y ijðtÞ ¼
1

tepi
ðYij � yijðtÞ � axjðtÞÞ;

where Θij is the threshold value after epigenetic fixation and τepi is the time scale of the epige-
netic variable. The value of the epigenetic variable θij(t) changes depending on the expression
levels of the regulator gene xj; if the regulator gene xj is highly expressed, expression of the reg-
ulatee gene xi is promoted, but if expression of the regulator xj is low, the regulatee xi is
inhibited.

Model parameters
To numerically investigate our model, we set the Hill coefficient as n = 6 and n = 4 in the in
four-gene and five-gene models, respectively. The time of cell division tdiv was chosen to be 25.
The results of the model do not depend on these parameters, as long as the former is suffi-
ciently large (e.g., n� 6) and latter not too large (e.g., tdiv< 1000). The maximum number of
cell divisions is 5; hence, the maximum number of cells is 32.

For most simulations, we used the parameters Kij as follows: K13 = 0.78, K34 = 0.45, K31 =
0.94, K11 = 0.35, K21 = 0.80, K42 = 0.30, and K43 = 0.45. In the five-gene model, the additional
regulations were K15 = 0.14 and K51 = 0.80. The parameters for epigenetic feedback regulation
τ and α were set to 2.0 × 103 and 0.1, respectively.
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Model simulation
By using the code written by C/Python simulations were carried out by using standard Runge-
Kutta algorithm.

Supporting Information
S1 Text. Supplementary information about the five-gene model.
(PDF)

S1 Fig. Effects of the value of the diffusion coefficient D. The differentiation ratio and time is
plotted against the diffusion coefficient D. The simulation in the four-gene model was con-
ducted with cell-cell interactions, and with an increase in cell numbers. From 1000 samples, we
counted the number of differentiated cells (x1 * 0) for each diffusion coefficient D. A: The
average of the differentiation ratio (vertical axis) was computed as the percentage of differenti-
ated cells per simulation. Starting from a pluripotent state, the number of cells that went to a
fixed point x1 * 0 increased with the diffusion coefficient D. B: The average time needed for
cells to differentiate was computed and plotted as a function of D. The time to differentiation
increased with the diffusion coefficient D.
(TIF)

S2 Fig. Cellular state transition under highly noise. Time series of gene expression levels for
x1 (as in Fig 5). Similar conditions to those described in Fig 4 were adopted, except that a
Gaussian noise term with the amplitude σ = 1.0 was included. Expression levels of cells are plot-
ted according to color. Gene expression oscillation was irregular because of the noise. Irrevers-
ible transition from the oscillatory pluripotent to the differentiated state (x1 * 0) occurred for
σ = 0.1.
(TIF)

S3 Fig. Phase diagram of differentiation behavior plotted against time scale τepi (vertical
axis) and α (horizontal axis). Parameters were set as in Fig 6. Brown, orange, green, and blue
indicate fixed points at x1 = 0 without differentiation, differentiation and loss of oscillation,
preservation of oscillation, and the fixed-point of the differentiated state (x1 * 0) (FD), respec-
tively. For low values of τepi, the epigenetic fixation progressed quickly, and then cells reached
the fixed-point with expressed pluripotent genes (FP). Differentiation from the oscillatory state
appeared at a high value of τepi.
(TIF)

S4 Fig. Time series of gene expression in the reprogramming simulation by inducing two
factors. Specifically, time series of gene expression for x1, x2, x3, x4, and the epigenetic variables
θ11 and θ13 are shown. The initial condition was as follows: all cells were in the differentiated
state, where the epigenetic threshold values were set at 1.0 for the pluripotent genes Θ31,Θ21,
and Θ42, and lowered for the differentiation regulators toΘ13 = 0.78, Θ34 = 0.5, Θ43 = 0.3. The
value of the auto-regulatorΘ11 was set at 0.50. In differentiated cells, genes x1 and x2 were over-
expressed for a long period. The epigenetic threshold θij decreased with the overexpression of
these genes, and the gene expression restarted oscillation. Later, a few cells differentiated again;
thus, cells were reprogrammed.
(TIF)

S5 Fig. Time series of gene expression in the five-gene model. Time series of gene expression
levels for x1, x2, x3, x4, and x5. Expression levels of cells are plotted according to color, but most
colors are overlaid and, therefore, difficult to discern. Here, the following parameter set was
used: K13 = 0.80, K34 = 0.45, K43 = 0.45, K15 = 0.14K31 = 0.94, K21 = 0.81, K51 = 0.81, and K42 =
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0.30. Gene expression levels initially showed oscillation, and then they were desynchronized.
Ultimately, this model showed differentiation, as observed in the four-gene model.
(TIF)

S6 Fig. Time series of gene expression in the five-gene model with the epigenetic parameter.
Time series of gene expression levels for x1, x2, x3, x4, x5, and the epigenetic threshold variables
θ15(t). Here, we used parameters ofΘij as follows: Θ13 = Θ34 = Θ43 = 0.65, Θ15 = Θ31 = Θ21 =
Θ51 = Θ42 = 1.0. Initially, gene expression oscillated and gradually desynchronized with cell
division. Ultimately, cells fell into a fixed point x1 * 1 or x1 * 0 because of epigenetic fixation.
(TIF)

S7 Fig. The gene regulatory network in the reprogramming simulation with the five-gene
model. The GRN for reprogramming in the five-gene model and an external factor for repro-
gramming. Arrow headed and T-headed lines represent positive and negative regulation,
respectively. The pluripotent genes x1, x2, and x5 were overexpressed, and the external stimulus
ex1 was added to inhibit x3. Cells were reprogrammed by the induction of these factors, by
which cells restarted oscillation. These inducing factors corresponded to the Yamanaka factors
(Oct4, Sox2, Klf4, andMyc).
(TIF)
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