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Abstract: Gene transcripts or mRNAs and long noncoding RNAs (lncRNAs) are differentially ex-
pressed during porcine skeletal muscle development. However, only a few studies have been
conducted on skeletal muscle transcriptome in pigs based on timepoints according to the growth
curve for porcine. Here, we investigated gene expression in Qingyu pigs at three different growth
stages: the inflection point with the maximum growth rate (MGI), the inflection point of the gradually
increasing stage to the rapidly increasing stage (GRI), and the inflection point of the rapidly increasing
stage to the slowly increasing stage (RSI). Subsequently, we explored gene expression profiles during
muscle development at the MGI, GRI and RSI stages by Ribo-Zero RNA sequencing. Qingyu pigs
reached the MGI, GRI and RSI stages at 156.40, 23.82 and 288.97 days of age with 51.73, 3.14 and
107.03 kg body weight, respectively. A total of 14,530 mRNAs and 11,970 lncRNAs were identified
at the three stages, and 645, 323 differentially expressed genes (DEGs) and 696, 760 differentially
expressed lncRNAs (DELs) were identified in the GRI vs. MGI, and RSI vs. MGI, comparisons. Func-
tional enrichment analysis revealed that genes involved in immune system development and energy
metabolism (mainly relate to amino acid, carbohydrate and lipid) were enriched at the GRI and MGI
stages, respectively, whereas genes involved in lipid metabolism were enriched at the RSI stage. We
further characterized G1430, an abundant lncRNA. The full-length sequence (316 nt) of lncRNA G1430
was determined by rapid amplification of cDNA ends (RACE). Subcellular distribution analysis by
quantitative real-time PCR (qRT-PCR) revealed that G1430 is a cytoplasmic lncRNA. Binding site
prediction and dual luciferase assay showed that lncRNA G1430 directly binds to microRNA 133a
(miR-133a). Our findings provide the basis for further investigation of the regulatory mechanisms
and molecular genetics of muscle development in pigs.

Keywords: porcine; growth curve; skeletal muscle; lncRNA; lncRNA G1430

1. Introduction

Pig (Sus scrofa) is one of the most economically important livestock worldwide and
a good source of red meat for human consumption. Since the living standards have
improved, people prefer a diet with low fat content and low calorific value, and lean meat
is an important component of such a diet [1]. Skeletal muscle is the major component of lean
meat and the most abundant tissue in the body, accounting for approximately 40% of the
total body weight. Moreover, skeletal muscle is one of the main tissues, which contributes to
the regulation of metabolism and homeostasis in the whole body. Studying the mechanism
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underlying skeletal muscle development will facilitate the genetic improvement of livestock
for meat quality and quantity. Additionally, because of its genomic, physiological and
anatomical similarities with humans, pig is considered as the most appropriate animal
model for studying human diseases [2,3].

Several studies have characterized the growth curve models for both plants and an-
imals [1,4,5]. The growth curve of pig could be divided into three stages: the gradually
increasing stage (GIS), the rapidly increasing stage (RIS) and the slowly increasing stage
(SIS). Additionally, the inflection point of the maximum growth rate (MGI) and two other
growth inflection points, the inflection point of GIS to RIS (GRI) and the inflection point of
RIS to SIS (RSI), were obtained by the calculation of three sigmoid growth functions, the
Logistic, Gompertz and Von Bertalanffy growth curves, respectively. However, these studies
focused only on the degree of fit of different growth models and the identification of MGI.

The pig transcriptome has been analyzed during muscle development at different
growth stages, including prenatal and postnatal growth [6–8]. For example, Qin and
colleagues performed a comprehensive porcine microRNAome during 10 skeletal muscle
developmental stages including 35, 49, 63, 77 and 91 days post coitus (dpc) and 2, 28, 90,
120 and 180 days postnatal (dpn), and identified 18 novel candidate myogenic miRNAs
in pig [9]. Increasing evidence shows that long noncoding RNAs (lncRNAs) play vital
roles in muscle development [10–12]. Zhao et al. identified 570 lncRNAs in pig skeletal
muscle at 50–75 dpc, and showed that the level of CUFF.15945 and CUFF.6127 was higher at
65 dpc period and considerably lower during muscle development, suggesting that these
lncRNAs may play a role in muscle development [13]. However, the pig transcriptome has
not yet been compared among the MGI, GRI and RSI stages.

Therefore, in this study, we performed a comprehensive analysis of the longissimus
dorsi muscle in Qingyu pigs, a mountain-type Chinese indigenous pig breed, at the MGI,
GRI and RSI stages. Furthermore, the Ribo-Zero RNA sequencing (RNA-seq) analysis of
these pigs revealed the enriched functional features at each stage. Together, these findings
facilitate the improvement of pork, especially that obtained from indigenous pig breeds,
and provide a reference for future studies on muscle dysfunction and disease.

2. Materials and Methods
2.1. Growth Curve Model

In animals, the classical growth development fitted the sigmoidal curve (S-shaped),
that is, the postnatal growth rate continually increases until it reaches the maximum at the
growth inflection point, and then decreases asymptotically [14]. Three inflection points
(GRI, MGI and RSI) and three stages (GIS, RIS and SIS) of the growth curve were found
by calculating the second derivative and the third derivative of these models, respectively.
The body weight (BW) data of 126 female Qingyu pigs were retrieved (in Bashan Animal
Husbandry Technology Co., LTD, Tongjiang, China) from birth to 400-days-old to fit the
growth curve. Three sigmoid growth functions (i.e., Logistic, Gompertz and Von Bertalanffy
growth curves) were involved and nineteen time points of body weight data were measured
to fit the growth curve according to the methods previously described [15–17]. Briefly, the
formulas of three growth curve models are listed as follows:

Logistic: y = 130.404/(1 + 24.613eˆ(−0.018t))

Gompertz: y = 153.244eˆ(−4.307eˆ(−0.009t))

Von Bertalanffy: y = 174.607(1 − 0.852eˆ(−0.006t))]ˆ3

y represents body weight; t represents the age of pigs.

2.2. Immunohistochemical Staining

Tissue cross sections (~10 µm) were cut from longissimus dorsi muscle of Qingyu pigs
on a cryostat at −20 ◦C and stored at −80 ◦C for further analysis. To quantitate myofiber
cross section areas, muscle sections were stained with hematoxylin and eosin (HE). HE
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staining was performed as described previously [18]. ImageJ software was used to analyze
and quantify the pictures for each cross-section area.

2.3. Sample Collection and RNA Sequencing

A total of nine female pigs at GRI, MGI and RSI were used to harvest skeletal mus-
cle (longissimus dorsi muscle) for the transcriptome analysis, three replicates for each
stage. All samples (50~100 mg) were rapidly separated and immediately frozen in liquid
nitrogen, and then stored at −80 ◦C for RNA extraction. A total of forty-seven pigs that
reached slaughter age were randomly selected, including males and females, DLY (Duroc
x Landrace x Yorkshire) pigs, Qingyu pigs and other indigenous pig breeds. Then their
longissimus dorsi muscles were used for qRT-PCR (quantitative real-time PCR). Total RNA
was extracted using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) following the manu-
facturer’s instruction. The integrity and concentration of RNA (5~20 µg) were assessed by
the Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA) and a NanoDrop
spectrophotometer (NanoDrop, Wilmington, NC, USA). A total of nine strand-specific
libraries were generated after depleting rRNA using the Ribo-ZeroTM Gold Kit (Illumina,
San Diego, CA, USA) and then sequenced with the Illumina NovaSeq platform (Illumina)
at Novogene Corporation (Beijing, China).

2.4. Identification of lncRNAs

In order to obtain high-quality lncRNAs, the low-quality reads, adaptor sequences,
empty reads, and ribosomal (r)RNA reads were removed from the raw data. The clean
reads were mapped against porcine reference genome using STAR v2.6.0c and merged with
Cuffmerge (Cufflinks v2.2.1). A series of filter conditions applied to these data, the coding
transcripts were filtered through the following steps: (1) using Assemblyline and TACO to filter
transcripts and merge all expressed transcripts, (2) and removing transcripts of the coding gene
while comparing them to the annotated genome using Cuffcompare; (3) then, prediction and
calculation of the coding potential of the remaining transcripts by CPC2; (4) comparing these
transcripts with the Pfam-31A database and filtering out transcripts with an E value < 10−4 by
Hmmscan. Transcripts without coding potential were retained for further analysis.

2.5. Differential Expression Analysis

The expression quantification of mRNA and lncRNA in each sample were calculated
by Kallisto (v2.1.1). From the raw counts, counts per million mapped reads (CPM) values
were calculated by R package edgeR. mRNA and lncRNA with >0.5 CPM in at least
one library were considered expressed and were used for further differential expression
analysis. mRNA or lncRNA differential expression were performed using the DESeq2
package in R, and genes or lncRNAs with log2 fold change (log2FC) > |1| and q value
(false discovery rate or FDR) < 0.1 were considered as differentially expressed genes (DEGs)
or differentially expressed lncRNAs (DELs).

2.6. Functional Enrichment Analysis

Gene Ontology (GO) terms and Pathway categories analysis to assign functional
annotation to DEGs were performed with Metascape with human (H. sapiens) species. To
predict the functions of the DELs, the mRNA that were within 100 kb of lncRNAs were
submitted to functional enrichment analysis. The GO terms and Pathways categories with
p value < 0.01 were considered significant.

2.7. 5′ and 3′ Rapid Amplification of cDNA Ends (RACE)

In order to determine the 5’ and 3’UTRs of lncRNA transcripts, we used the 5’ and
3’ rapid amplification of cDNA ends (RACE) system using total RNA from porcine skele-
tal muscle tissue. A SMARTer RACE cDNA Amplification Kit (Clontech, Osaka, Japan)
was used to obtain the full-length sequence of lncRNA G1430 according to the man-
ufacturer’s instructions. The specific primers used for the PCR of the RACE analysis
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were 5′-GATTACGCCAAGCTTGTGTCCGCACTAAGTTCGGCATCA-3′ (3′RACE) and
5′-GATTACGCCAAGCTTTTTTGACCTGCTCCGTTTCCGACC-3′ (5′RACE). The products
of the RACE PCR were cloned into the pRACE vector (including in SMARTer RACE cDNA
Amplification Kit) and sequenced by Tsingke Biotech Company (Chengdu, China).

2.8. Subcellular Localization

The porcine fibroblasts were used for subcellular localization of lncRNA. Preparation
of nuclear and cytoplasmic fraction was performed as previously described [19,20]. Briefly,
porcine fibroblasts were lysed in cold lysis buffer and placed on ice for 10 min. Then,
cells were centrifuged (12,000× g for 3 min, 4 ◦C) and the supernatant maintained as
the cytoplasmic fraction, then immediately frozen (−80 ◦C) for subsequent analysis. The
nuclear pellet was resuspended with nuclear extraction buffer and placed on ice for 30 min,
and then centrifuged (16,000× g for 5 min, 4 ◦C). The supernatant was removed and the
remainder (nuclear fraction) was frozen (−80 ◦C) for subsequent analysis.

2.9. Cell Culture, Vector Construction, and Dual Luciferase Reporter Assay

The PK15 cells (a porcine kidney epithelial cell line) cells were cultured at 37 ◦C in
a humidified 5% CO2 atmosphere, with Dulbecco’s modified Eagle’s medium (DMEM,
Gibco, Carlsbad, CA, USA), 10% FBS (Gibco) and 1% penicillin/streptomycin (Gibco).
The ssc_miR-133a mimics (double-stranded RNA oligonucleotides) and negative con-
trol duplexes were synthesized by GenePharma (Chengdu, China). The wild-type and
mutant Apol6 3′UTR were inserted into psiCHECK™-2 vector (Promega, Madison, WI,
USA) between XhoI and NotI restriction sites, respectively. The psiCHECK-3′UTR-WT,
psiCHECK-3′UTR-Mut and miRNA (mimic/negative control) were co-transfected into
PK15 cells. The co-transfection assays were performed in 12-well plates with Lipofectamine
3000 reagent (Invitrogen, Grand Island, NY, USA) according to the manufacturer’s instruc-
tions and harvested after 24 h. Finally, dual-luciferase reporter assay system (Promega,
Madison, WI, USA) was used to examine the activity of renilla and firefly luciferase.

2.10. Quantitative Real-Time PCR

cDNAs were synthesized from RNA using PrimeScript™RT reagent Kit with gDNA
Eraser (TaKaRa, Dalian, China). Quantitative real-time PCR analysis was performed with
SYBR Premix Ex Taq II kit (TaKaRa, Dalian, China) and analyzed using a CFX96 Real-
Time PCR detection system (Bio-Rad, Richmond, CA, USA). Relative expression level
was determined by 2−∆∆ct method [21], using the relative standard curve method and
normalized to the housekeeping gene β-actin. All primer sequences are shown in Table S8.

2.11. Statistical Analysis

Microsoft Excel, and Sigmaplot 12.0 were used to perform the statistical analyses.
Student’s t test or two-way ANOVA followed by multiple comparisons analysis with
the Tukey’s HSD (Honestly Significant Difference) was used to compare gene expression
for two or multiple groups, respectively. Pearson correlation analysis was performed
on RNA_seq data and qRT-PCR data for all pairwise comparison. All sample sizes and
p-values are listed in the figure legends. This section may be divided by subheadings.
It should provide a concise and precise description of the experimental results, their
interpretation as well as the experimental conclusions that can be drawn.

3. Results
3.1. Growth Curves and Histological Analyses of Qingyu Pigs

To better understand the growth and development of Qingyu pigs, the body weight
of 126 Qingyu pigs was fitted with three nonlinear growth models, i.e., the Logistic,
Von Bertalanffy and Gompertz curve models (Figure 1a, see Table S1). All three models
showed a good fit with a typical sigmoidal curve, although the Von Bertalanffy curve
showed the highest R2 value with the best goodness of fit (R2 = 0.9971) (see Table S2). The
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inflection point analysis of the growth curve indicated that Qingyu pigs reached the MGI
stage at 156.40 days of age, and the average body weight of these pigs at this time point
was 51.73 kg. Similarly, the GRI and RSI stages were reached at 23.82 days of age with
3.14 kg body weight and 288.97 days of age with 107.03 kg body weight, respectively (see
Table S1). Additionally, the maximum growth rate of Qingyu pigs was 465.61 g per day
(Figure 1b, see Table S3). During muscle development, the mean cross-section area (CSA)
of the longissimus dorsi muscle increased from 270 µm2 at GRI to 880 µm2 and 1500 µm2

at MGI and RSI, respectively (Figure 1c).
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Figure 1. Growth curves and immunohistochemical staining of Qingyu pigs. (A) Sigmoidal curve of
body weight fitted by Logistic, Von Bertalanffy and Gompertz curve models, respectively. (B) Daily
weight gain of Qingyu pigs fitted by Von Bertalanffy curve model. (C) Hematoxylin and eosin (HE)
staining of longissimus dorsi muscle myofiber cross section aera (CSA) (left, bar = 100 µm) at GRI,
MGI and RSI, respectively. Myofiber areas were measured and their distribution was calculated
as the frequency of the number of myofibers in a designated area divided by the total number of
myofibers assessed (right). Abbreviations: GIS, gradually increasing stage; RIS, rapidly increasing
stage; SIS, slowly increasing stage; MGI, the inflection point with the maximum growth rate; GRI, the
inflection of the gradually increasing stage to the rapidly increasing stage; RSI, the inflection point of
the rapidly increasing stage to the slowly increasing stage.
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3.2. Expression Pattern of mRNAs and lncRNAs

To comprehensively identify transcripts related to the physiological differences in
Qingyu pigs among the MGI, GRI and RSI stages, a total of 9 libraries were constructed
(three libraries at each stage). A total of 133.79 Gb data were generated (Table 1), with an
average of 99.11 million raw reads per sample sequenced at approximately 4× coverage.
To explore the differences between lncRNAs and mRNAs, the average lncRNA and mRNA
levels were transformed to log2 (CPM + 1). The results showed that the average level of
lncRNAs was lower than that of mRNAs (see Figure S1), consistent with the expression
pattern obtained in other tissues [22].

Table 1. Summary of RNA_seq in Qingyu pigs.

Samples Raw Yield
(G)

Raw
Reads (M)

Clean
Yield (G)

Clean
Reads (M)

Clean
Q20 (%)

Clean
GC (%)

GRI-1 13.708 91.38 13.347 89.96 98.04 50.19
GRI-2 14.745 98.3 14.271 95.79 97.79 49.62
GRI-3 14.26 95.06 13.814 92.58 97.85 50.46
MGI-1 17.549 117 17.103 114.87 98.01 50.67
MGI-2 16.739 111.59 16.341 109.99 98.06 50.46
MGI-3 14.605 97.37 14.237 95.48 97.84 50.16
RSI-1 14.72 98.13 14.28 96.15 97.97 50.13
RSI-2 12.683 84.56 12.332 82.72 97.9 50.63
RSI-3 14.789 98.6 14.4 96.74 97.9 51.29

Abbreviations: G, Giga base; M, Million; Q20, a quality score of 20 represents an error rate of 1 in 100, with a
corresponding call accuracy of 99%; GC, the proportion of guanine (G) and cytosine (C) bases out of an implied
four total bases, also including adenine and uracil in RNA; GRI, the inflection of the gradually increasing stage to
the rapidly increasing stage; MGI, the inflection point with the maximum growth rate; RSI, the inflection point of
the rapidly increasing stage to the slowly increasing stage.

The mRNAs and lncRNAs are differentially expressed during skeletal muscle develop-
ment; however, little research has been conducted on skeletal muscle transcriptome based
on timepoints according to growth curve for porcine. Therefore, we sought to explore the
expression profiles of mRNAs and lncRNAs during muscle development at the GRI, MGI
and RSI stages. A total of 14,530 mRNAs and 11,970 lncRNAs were expressed at the three
stages (see Figure S1). Among these, 14,475 mRNAs and 11,955 lncRNAs were detected at
the GRI stage, 14,446 mRNAs and 11,949 lncRNAs at the MGI stage, and 14,439 mRNAs
and 11,942 lncRNAs at the RSI stage.

Because all coding and noncoding transcripts were quantified in parallel, our ex-
pression profile also allowed the assessment and comparison of temporal changes in
lncRNAs and mRNAs during muscle development. Firstly, we performed hierarchical
clustering analyses on transcripts showing maximal expression in three different devel-
opmental stages. The mRNA expression profiles readily separated all samples into two
distinct groups, as expected, and samples clustered tightly within each stage repetition
(Figure 2). MGI and RSI were clustered together in one branch distinct from the GRI. Inter-
estingly, a nearly identical pattern of sample clustering was observed for regulated lncRNAs
(Figure 2a), indicating that expression profiles of lncRNAs could serve as a developmental
signature, similar to protein-coding mRNAs. Consistently, principal component analysis
(PCA) of all regulated transcripts, including mRNAs or lncRNAs, readily separated all sam-
ples into three distinct groups (Figure 2b). These patterns suggest that regulated lncRNA
and mRNA transcriptomes function coordinately in related physiological processes, and
our samples were highly reliable for subsequent analysis.
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3.3. Functional Enrichment Analysis of Differentially Expressed mRNAs (DEGs)

The results of growth curve analysis indicated that Qingyu pigs reached the maximum
growth rate at the MGI stage. We then investigated the DEGs and conducted functional
enrichment analysis of these DEGs between the GRI vs. MGI (GRI–MGI) group and
RSI vs. MGI (RSI–MGI) group to identify the physiological changes before and after
reaching the MGI stage. A total of 645 and 323 DEGs were identified in the GRI–MGI
and RSI–MGI groups, respectively. Among these DEGs, 318 were up-regulated and 327
were down-regulated in the GRI–MGI group (Figure 3), whereas 177 were up-regulated
and 146 were down-regulated in the RSI–MGI group (Figure 3). Consistently, a distinct
expression pattern was found between GRI and MGI because more DEGs were detected in
the GRI–MGI group than in the RSI–MGI group. These results also confirmed the results of
hierarchical clustering analysis and PCA, indicating that a massive physiological change
occurred at the early muscle development stage.
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Next, we separately performed Gene Ontology (GO) and KEGG pathway enrichment
of DEGs in the GRI–MGI and RSI–MGI groups. As expected, DEGs up-regulated in the
GRI–MGI group were enriched in skeletal system development (GO:0001501), myosin
light chain binding (GO:0032027) and hallmark myogenesis (M5909). Additionally, DEGs
up-regulated in the GRI–MGI group (i.e., genes showing higher expression at the GRI stage)
were mainly enriched in immune related terms, such as cell activation involved in immune
response (GO:0002263), activation of immune response (GO:0002253), immune response-
activating signal transduction (GO:0002757), immune response-regulating signaling path-
way (GO:0002764) and hallmark complement (M5921) (Figure 3a, Table S4). Similarly,
DEGs down-regulated in the GRI–MGI group (i.e., genes showing higher expression at
the MGI stage) were enriched in the muscle system process (GO:0003012), muscle contrac-
tion (GO:0006936), striated muscle contraction (GO:0006941) and myofibril (GO:0030016).
Additionally, these down-regulated DEGs were also enriched in amino acid metabolism
and glycogen metabolism, e.g., the cellular amino acid catabolic process (GO:0009063),
cellular amino acid metabolic process (GO:0006520), metabolism of amino acids and as
well as derivatives (R-HSA-71291), glycogen metabolic process (GO:0005977) and glycogen
metabolism (R-HSA-8982491) (Figure 3a, Table S4). On the other hand, DEGs up-regulated
in the RSI–MGI group (i.e., genes showing higher expression at the RSI stage) were mostly
enriched in the regulation of the lipid metabolic process (GO:0019216), regulation of the
lipid biosynthetic process (GO:0046890), fat cell differentiation (GO:0045444), metabolism
of lipids (R-HSA-556833) and hallmark adipogenesis (M5905) (Figure 3b, Additional file
6), whereas DEGs down-regulated in the RSI–MGI group (i.e., genes showing higher ex-
pression at the MGI stage) were enriched in the glucose metabolic process (GO:0006006),
glycolipid biosynthetic process (GO:0009247), hexose metabolic process (GO:0019318),
PPAR (peroxisome-proliferator-activated receptor) signaling pathway (hsa03320) and fatty
acid metabolism (hsa01212) (Figure 3b, Table S5).

3.4. Functional Enrichment Analysis of Differentially Expressed lncRNAs (DELs)

A total of 696 and 706 DELs were identified in the GRI–MGI and RSI–MGI groups,
respectively (Figure 4a). Among these DEGs, 292 were up-regulated and 404 were down-
regulated in the GRI–MGI group, whereas 379 were up-regulated and 327 were down-
regulated in the GRI–MGI group. Generally, lncRNAs act in cis, as diffusion or transport
to other cellular compartments renders these transcripts too dilute to perform any func-
tion [23]. Recent studies focused on potential protein-coding genes affected by lncRNAs
located within 100-kb upstream and downstream regions [24]. We thus performed func-
tional enrichment analysis of potential protein-coding genes located near the DELs to
explore their functions. A total of 587 and 583 GO terms and pathway categories were
significantly enriched, including biological process (BP), cellular component (CC) and
molecular function (MF) (see Table S6). Notably, target genes of up-regulated DELs in
the GRI–MGI group (i.e., lncRNAs showing higher expression at the GRI stage) were
found to be primarily involved in muscle system process (GO:0003012), muscle contrac-
tion (GO:0006936), myotube differentiation (GO:0014902), regulation of muscle system
process (GO:0090257), AMPK (Adenosine 5‘-monophosphate-activated protein kinase)
signaling pathway (hsa04152) and positive regulation of the immune effector process
(GO:0002699) (Figure 4b). By contrast, target genes of down-regulated DELs in the GRI–
MGI group (i.e., lncRNAs showing higher expression at the MGI stage) were enriched in
amino acid activation (GO:0043038), ATPase activity (GO:0016887), mitochondrion orga-
nization (GO:0007005), mitochondrial respiratory chain complex assembly (GO:0033108)
and hallmark glycolysis (M5937) (Figure 4b). In the RSI–MGI group, target genes of up-
regulated DELs (i.e., lncRNAs showing higher expression at the RSI stage) were mainly
enriched in the mitochondrial matrix (GO:0005759), mTOR signaling pathway (hsa04150),
muscle system process (GO:0003012), PI3K-Akt signaling pathway (hsa04151) and hall-
mark glycolysis (M5937) (Figure 4b), whereas target genes of down-regulated DELs (i.e.,
lncRNAs showing higher expression at the MGI stage) were enriched in skeletal muscle
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tissue development (GO:0007519), skeletal muscle organ development (GO:0060538), the
hexose catabolic process (GO:0019320) and the cGMP-PKG signaling pathway (hsa04022)
(Figure 4b).
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3.5. Dynamic Expression of Myogenesis Genes and lncRNAs

To investigate the changes in gene expression during muscle development, we ana-
lyzed the dynamic expression counts of myogenesis related genes at the GRI, MGI and RSI
stages. As shown in Figure 5a, there was more counts per million (CPM) at the MGI stage
than at the other two stages. Because of the lack of lncRNA annotation libraries, we could
not directly predict the function of lncRNAs. Gene expression correlation across samples
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can be used as an indicator of functional coregulation [25]. We therefore performed correla-
tion analysis of lncRNAs and myogenesis related genes downloaded from the Molecular
Signatures Database (MSigDB) [26]. Intriguingly, the expression pattern of lncRNA G1430
was similar to that of myogenesis related genes (Figure 5b).
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Figure 5. The expression and function of lncRNA G1430 in muscle development. (A) lncRNA G1430 expression was
up-regulated at the MGI stage compared with the other two stages. (B) lncRNA was found to have a similar expression
pattern with these myogenesis related genes. (C) lncRNA G1430 expression was confirmed by qRT-PCR. The data are shown
as the mean ± SD. (D) Scatter plot of lncRNA G1430 and myoD1 (up), myoG (bottom). The Pearson correlation and p value
were showed in the diagram. (E) The coding potential predication of lncRNA G1430. Analysis was obtained from the CNIT
(http://cnit.noncode.org/CNIT/). The porcine H19 represents a non-coding transcript (positive control) and the porcine
myoD1 represents a coding transcript (negative control). (F) Results of lncRNA G1430 3′RACE (left) and 5′RACE (right).
3′RACE product, 220 bp. 5′RACE product, 300 bp. DNA Marker: DL1000. (G) Prediction of subcellular localization by
lncLocator (http://www.csbio.sjtu.edu.cn/bioinf/lncLocator/) (left) and the nucleocytoplasmic fractionation of porcine
cells by qRT-PCR (right). U6 RNA served as a nuclear location control and GAPDH was used as a cytoplasmic location
control. (H) The sequence and binding sites between lncRNA G1430 and ssc_miR-133a-3p (up). The relative luciferase
activity is normalized to the value of control miRNA and empty vector (bottom). Data are shown as means ± SD. * p < 0.05,
Data are representative of at least three independent experiments. Abbreviations: MGI, the inflection point with the
maximum growth rate; GRI, the inflection of the gradually increasing stage to the rapidly increasing stage; RSI, the inflection
point of the rapidly increasing stage to the slowly increasing stage.

http://cnit.noncode.org/CNIT/
http://www.csbio.sjtu.edu.cn/bioinf/lncLocator/
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The lncRNA G1430 was up-regulated at the MGI stage, and its expression pattern was
confirmed by qRT-PCR (Figure 5c). Additionally, the expression of 10 myogenesis related
genes showed a significant correlation with that of lncRNA G1430, of which six genes
(APOD, TNNT2, MYBPH, MYL3, DAPK2, RIT1) showed a significant positive correlation,
while four genes (TEAD4, OCEL1, AKT2, APLNR) showed a significant negative correlation
(see Table S7). To verify the correlation between lncRNA G1430 and myogenesis related
genes, the expression of lncRNA G1430 and two myogenesis marker genes (myoD1 and
myoG) was analyzed by qRT-PCR in 47 pigs (Figure 5d), followed by Pearson correlation
analysis. The results showed that lncRNA G1430 was significantly positively correlated
with myoD1 (r = 0.55; p = 5.9 × 10−5) and myoG (r = 0.43; p = 2.9 × 10−3) (Figure 5d).
Based on these results, we further analyzed the sequence and function of lncRNA G1430
by bioinformatics analysis and in vitro experiments, respectively. Analysis of lncRNA
G1430 using CNIT (http://cnit.noncode.org/CNIT/) suggested a low coding potential
of the whole sequence (Figure 5e), which was consistent with a classic non-coding RNA
feature [27]. Subsequently, we performed the RACE assay to identify the full-length
sequence of lncRNA G1430 in skeletal muscle, according to the sequence archived in the
RNA-seq data. The results of RACE showed that the full-length sequence of lncRNA
G1430 is 316 nt (Figure 5f, Figure S2). Both prediction and qRT-PCR analysis suggested that
lncRNA G1430 is mainly located in the cytoplasm of skeletal muscle cells (Figure 5g). Given
that lncRNA acts as a miRNA sponge via its ceRNA activity, thereby regulating the target
gene expression of miRNAs [28–30], we next explored the binding of miRNAs of lncRNA
G1430. The putative binding sites were identified RNAhybird-based prediction of the
lncRNA sequence and miRNA seed region (Figure 5h) and verified by the dual luciferase
assay. The results showed that miR-133a significantly decreased the luciferase activity
when co-transfected with miR-133a mimic and pCK-G1430-3’UTR-WT, and recovered
the luciferase activity when co-transfected with miR-133a mimic and pCK-G1430-3’UTR-
Mut (Figure 5h). Thus, these results showed that lncRNA G1430 acted as a sponge for
ssc_mir-133a-3p, thereby reversing the luciferase activity.

3.6. Validation of lncRNAs

Four lncRNAs (G5755, G11155, G8431 and G19619) were selected for validation by
quantitative real-time PCR (qRT-PCR) in three replicates, and the relative expression of all
four lncRNAs determined by qRT-PCR was compared with their transformed log2(CPM+1)
values determined by RNA-seq (Figure 6a). The qRT-PCR and RNA-seq data of all four
lncRNAs were consistent during muscle development. We also investigated the relative
expression of lncRNAs G5755 and G8431 in eight other tissues (Figure 6b). The results
showed that both these lncRNAs, especially the lncRNA G8431, were highly expressed in
skeletal muscle tissues. Together, these results demonstrate the reliability of our RNA-seq
data, thus confirming the accuracy of lncRNAs identified in the present study.

http://cnit.noncode.org/CNIT/
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4. Discussion

Coding and noncoding RNAs have been extensively studied in skeletal muscles [6,17,31,32],
but studies exclusively focusing on lncRNAs during growth in pigs are rare. In this study,
a comprehensive analysis of lncRNAs was conducted, according to the results of growth
curve construction. We identified the functional features enriched at each stage of muscle
development at both mRNA and lncRNA levels. We also determined the full-length
sequence of lncRNA G1430 by RACE and reasonably speculated its function during muscle
development (Figure 7).
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We fitted three growth curves according to the body weight of 126 Qingyu pigs (up
to 400 days), and found that Von Bertalanffy is the best model, according to which the
Qingyu pigs reached the MGI stage at 156.40 days of growth with 51.73 kg body weight
(Figure 1, see Tables S1–S3). Although the time to reach the MGI stage by Qingyu pigs
was slightly less than that required by Liangshan pigs, an indigenous breed in Sichuan,
China (193.40 days of growth; 62.61 kg body weight; 455.43 g per day), this finding was
consistent with our previous study [17]. With similar results of Qingyu pigs and Liangshan
pigs in terms of body weight and time taken to reach the MGI stage, these two indigenous
breeds of China potentially represent the typical production ability of Chinese pig breeds.
By contrast, Duroc, a western pig breed, reached the maximum growth rate at 163.6 days
with 134.6 kg body weight on average [33]; both of these values are greater than those of
Qingyu pigs. On the other hand, Pietrain type pigs (“Pietrain” type progeny: 0.50 Pietrain,
0.25 Landrace, 0.25 Large White) showed a much higher growth rate (960 g per day; 68 kg



Int. J. Mol. Sci. 2021, 22, 503 15 of 21

live weight) [34] than Qingyu pigs (465.61 g per day). These results indicate that Qingyu
pigs, a typical mountain-type Chinese pig breed, exhibit much lower growth rate than
western breeds, probably because of the lack of intensive long-term artificial selection of
the growth rate.

According to the present study, lncRNAs and mRNAs are expressed in a stage-
dependent manner, consistent with previous studies [35–37]. The results of both hier-
archical clustering and PCA showed that the GRI and MGI stages were more distinct than
MGI and RSI stages at the mRNA or lncRNA level (Figure 2), implying that a massive phys-
iological change related to a shift in metabolism occurred during early muscle development.
Additionally, an identical pattern of sample clustering was observed between mRNAs
and lncRNAs, consistent with the expression patterns of mRNAs and lncRNAs in liver,
adipose tissue and brain [38], indicating that regulated lncRNA and mRNA transcriptomes
function coordinately in related physiological processes. Together, these results suggest
that our samples were reliable for further analysis.

Both mRNAs and lncRNAs are parallelly transcribed in eukaryotes and coordinately
related physiological processes, as shown by the results of the present study. GRI, MGI and
RSI are three different stages of muscle development. It was apparent from both the DEGs
and cis targets of DELs enrichment results that almost every stage enriched in the muscle
development-related terms, as expected (Figures 3a and 4b). Moreover, DEGs up-regulated
at the GRI stage (early developmental stage) were involved in immune system development.
This finding supports our previous work, where we showed that genes involved in immune
system development were enriched at the GRI stage in Liangshan pigs, and many genes
related to innate immunity and immune response showed the highest expression at the
GRI stage [17]. A possible explanation for this might be microbiota. Early postnatal life is
a curial time for immune system development [39]. During early postnatal period, host–
microbiota interactions influence the development of the host immune system, muscle and
other tissues [40–42]. It is well known that restricted muscle development during the early
postnatal period could permanently alter growth performance and metabolic maturation at
later stages of life [43,44]. Additionally, among the targets of DELs up-regulated at the GRI
stage, the positive regulation of immune effector process (GO:0002699) was also enriched at
the GRI stage. This result was in accordance with the previous report in zebrafish, in which
the immune system did not mature at the early stage of development until 4–6 weeks after
fertilization (the time of infection) [45,46]. Thus, immune system development at the early
stage promotes rapid growth at later stages.

Among the up-regulated DEGs at the RSI stage, the enriched GO and pathway terms
were mainly related to lipid metabolism (Figure 3b). Actually, the backfat thickness of
Qingyu pigs increased from the GRI stage to the RSI stage (GRI: 0 cm; MGI: 1.56 cm;
RSI: 3.36 cm). Both backfat thickness and intramuscular fat (IMF) content show high
heritability [47], and positive correlation in pigs [48]. IMF is a key meat quality trait
directly related to not only other meat quality traits, such as tenderness, juiciness, flavor
and taste, but also the nutritional value of meat (e.g., fatty acid composition) [49–51].
Nowadays, the IMF content of meat is the main determining factor affecting consumer
preference. Many lipid metabolism related genes, such as solute carrier family 25 member
1 (SLC25A1) and acyl-CoA thioesterase 11 (ACOT11), showed a significant increase in
expression with the increase in body weight during muscle development in Qingyu pigs.
SLC25A1 is one of the solute carrier proteins that translocate small metabolites across the
mitochondrial membrane [52,53]. These transporters are essential for mitochondria, which
house several metabolic pathways including the Krebs cycle and fatty acid oxidation [54].
Genetic variation in SLC25A1 mainly leads to inheritable diseases characterized by the
alteration of skeletal muscles (congenital myasthenic syndrome-23; OMIM ID: 618197) [55].
Although no evidence shows that SLC25A1 is a candidate gene controlling IMF content.
SLC13A5, another solute carrier gene, has been found to play an important role in IMF
content in pigs [56]. ACOT11, a long-chain acyl-CoA thioesterase, regulates mitochondrial
lipids and limits the oxidation of fatty acids by regulating the availability of substrates
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for β-oxidation and uncoupling [57–59]; this suggests that ACOT11 plays an important
role in the β-oxidation of muscle lipids. In addition to these genes, other DEGs have also
been proven as candidate genes for IMF deposition. For example, the fatty acid synthase
(FASN) gene was up-regulated by 2.00-fold at the MGI stage compared with GRI and by
4.19-fold at the RSI stage in comparison with MGI. Additionally, FASN was significantly
associated with IMF deposition in cattle, yaks and pigs [60–63]. Moreover, we found that
the mTOR signaling pathway, PI3K-Akt signaling pathway and glycolysis were enriched
in target genes of up-regulated DELs at the RSI stage. The role of these pathways in IMF
deposition is consistent with the results obtained in chicken [64], cattle [65] and pig [66].
All of these results indicate that certain genes and lncRNAs involved in lipid metabolism
during muscle development were associated with promoting lipid droplet accumulation
within the IMF in Qingyu pigs.

Down-regulated transcripts in the GRI–MGI and RSI–MGI groups (i.e., DGEs and
DELs showing higher expression at the MGI stage) can figure out the features of the
MGI stage. According to the results of enrichment analysis, DEGs were involved in
three metabolisms of amino acids (GO:0009063, cellular amino acid catabolic process;
GO:0006520, cellular amino acid metabolic process; hsa00280, valine, leucine and isoleucine
degradation), six carbohydrate metabolisms (GO:0044042, glucan metabolic process;
GO:0006073, cellular glucan metabolic process; GO:0009251, glucan catabolic process;
GO:0005976, polysaccharide metabolic process; GO:0005977, glycogen metabolic process;
GO:0005980, glycogen catabolic process), and five lipid metabolisms (GO:0046320, regu-
lation of fatty acid oxidation; hsa03320, PPAR signaling pathway; GO:0019395, fatty acid
oxidation; hsa01212, fatty acid metabolism; GO:0009247, glycolipid biosynthetic process)
(Figure 3a,b). Thus, these results represent the metabolism of three major nutrients includ-
ing amino acids, carbohydrates and lipids. Additionally, target genes of DELs involved in
energy metabolism were enriched (Figure 4b). At the MGI stage, Qingyu pigs reached the
maximum growth rate and daily weight gain at the inflection point of the growth curve,
implying that anabolic activity was higher than catabolic activity at this stage compared
with the other two stages. An imbalance between the anabolic process of protein biosyn-
thesis and catabolic activity of protein degradation is the primary cause of muscle loss
associated with cachexia or aging-related sarcopenia [67]. We found that genes involved in
the cellular amino acid biosynthetic process (GO:0008652) and cellular amino acid catabolic
process (GO:0009063) were enriched at the MGI stage, but further research is needed to
determine whether the biosynthetic rate is greater than the catabolic rate at the MGI stage.

Because of the lack of lncRNA annotation, we applied a gene expression correlation
to directly predict the function of lncRNAs (Figure 5). The lncRNA G1430 was found
to show similar expression patterns to the myogenesis genes in our RNA-seq data and
the highest expression at the MGI stage. Furthermore, we confirmed the relationship
between lncRNA G1430 and myogenesis genes by qPCR in 47 pigs. The lncRNA G1430
was significantly and positively correlated with myoD1 and myoG, indicating that lncRNA
G1430 plays an important role in muscle development. Subsequently, we found that G1430
is a 316-nt long cytosolic lncRNA with low coding potential, indicating that it may regulate
gene expression at the post-transcriptional level by acting as a ceRNA. Additionally, the
results of bioinformatics analysis and dual luciferase reporter showed that lncRNA G1430
acts as a sponge for ssc_mir-133a-3p, thereby regulating target gene expression. A few
lncRNAs have been reported to act as ceRNAs to compete with miR-133a. In cancer cells,
DLEU1 (lncRNA deleted in lymphocytic leukemia 1) could serve as an oncogenic lncRNA
that promotes hepatocellular carcinoma tumorigenesis by acting as a ceRNA to regulate
the expression of IGF-1R and its downstream PI3K/AKT signaling pathway genes by
directly sponging miR-133a [68]. X-inactive specific transcript (XIST), a lncRNA, promotes
pancreatic cancer proliferation by functioning as a ceRNA to relieve the inhibition of miR-
133a on EGFR [69]. In skeletal muscle cells, miR-133a is one of the most abundant and
well characterized miRNAs involved in myoblast proliferation and differentiation [70–73].
Muscle differentiation-associated lncRNA (MDNCR), an abundant and muscle-specific
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lncRNA, functions as a ceRNA for miR-133a and promotes myoblast differentiation, thus
promoting the expression of its target gene GosB [74]. Another muscle-specific lncRNA,
MD1, controls muscle differentiation in human and mouse myoblasts, by acting as a ceRNA
for miR-133 and miR-135 to control MEF2C, MAML1 and myoblast differentiation [28].
Thus, it can be speculated that lncRNA G1430 acts as a ceRNA to sponge ssc_miR-133a-3p,
which promotes myoblast differentiation and inhibits cell proliferation in pigs.

5. Conclusions

In the current study, we found Qingyu pigs reached the MGI, GRI and RSI stages at
156.40, 23.82 and 288.97 days of age with 51.73, 3.14 and 107.03 kg body weight, respectively.
Furthermore, our study provides a comprehensive analysis of lncRNAs in pig skeletal
muscle. Thousands of lncRNAs were annotated, several of which showed differential
abundance at the GRI, MGI and RSI stages. We revealed the functional features enriched
at each stage at both mRNA and lncRNA levels. Furthermore, we verified an abundant
lncRNA, G1430. Our findings suggest that lncRNA G1430 acts as a ceRNA by sponging
miR-133a. Together, these findings provide useful information for the improvement of
livestock meat and a reference for future studies on muscle dysfunction and disease.
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