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CoBRA: Containerized Bioinformatics Workflow for
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Abstract Chromatin immunoprecipitation sequencing (ChIP-seq) and the Assay for Transposase-Accessible Chromatin
with high-throughput sequencing (ATAC-seq) have become essential technologies to effectively measure protein-DNA
interactions and chromatin accessibility. However, there is a need for a scalable and reproducible pipeline that incorporates
proper normalization between samples, correction of copy number variations, and integration of new downstream analysis
tools. Here we present Containerized Bioinformatics workflow for Reproducible ChIP/ATAC-seq Analysis (CoBRA), a
modularized computational workflow which quantifies ChIP-seq and ATAC-seq peak regions and performs unsupervised
and supervised analyses. COBRA provides a comprehensive state-of-the-art ChIP-seq and ATAC-seq analysis pipeline that
can be used by scientists with limited computational experience. This enables researchers to gain rapid insight into protein—
DNA interactions and chromatin accessibility through sample clustering, differential peak calling, motif enrichment,
comparison of sites to a reference database, and pathway analysis. CoOBRA is publicly available online at https://bitbucket.
org/cfce/cobra.
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Introduction with high-throughput sequencing (ATAC-seq) have be-

come essential components of epigenetic analysis, which
Chromatin immunoprecipitation sequencing (ChIP-seq) are employed extensively in the study of protein—-DNA
and the Assay for Transposase-Accessible Chromatin interactions and chromatin accessibility, respectively.

ChIP-seq is a high-throughput technology that provides
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wide binding sites of DNA-associated proteins.
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ATAC-seq is a high-throughput technology that is im-
perative in the assessment of genome-wide chromatin
accessibility. While numerous pipelines for analyzing
ChIP-seq and ATAC-seq data have been reported in the
literature [1-8], there remains a strong need for pipelines
that can be run by users who have limited experience in
utilizing computational biology tools. Comparisons be-
tween ChIP-seq and ATAC-seq experiments can provide
insight into differences in protein occupancy, histone
marks, and chromatin accessibility (Figure 1A).
However, analysis pipelines currently available lack
useful components necessary for such analyses. For
example, there is a need for better normalization between
samples, adjusting copy number variations (CNVs),
applying newly developed downstream annotation tools
such as Cistrome DB Toolkit [9], and integrating epige-
netic data with RNA-seq data.

In this work, we developed a modularized computational
workflow, Containerized Bioinformatics workflow for Re-
producible ChIP/ATAC-seq Analysis (CoBRA). CoBRA
can quantify ChIP-seq and ATAC-seq peak regions, and
perform unsupervised and supervised analyses. It provides
sample clustering, differential peak calling, motif enrich-
ment and clustering, annotation of differential sites by a
reference database, and pathway analysis. In addition, it
also provides clear, high-quality visualizations for all re-
sults.

CoBRA uses Snakemake [10], a workflow manage-
ment system to create the computational pipeline. Using
the Snakemake system enables the reproducibility and
scalability of CoBRA. This framework also allows for the
addition or replacement of analysis tools, as well as for
the parallelization of computationally intensive pro-
cesses. To make CoBRA portable, the workflow and its
software dependencies are available as a Docker con-
tainer, which can be used on any machine with Docker
installed. This includes local servers, high-performance
clusters, and cloud-based machines. Docker automatically
downloads all required software dependencies because
the container encapsulates all of the supporting software
and libraries, eliminating the possibility of conflicting
dependencies.

CoBRA therefore provides solutions to challenges in-
herent to many bioinformatics workflows: it is portable,
reproducible, scalable, and easy to use. It is open source
(https://bitbucket.org/cfce/cobra), well documented online.
Detailed step-by-step tutorials are included, which go
through all three case studies presented in this paper
(https://cfce-cobra.readthedocs.io). The combination of
features enables researchers to gain rapid insight into
protein-DNA interactions and chromatin accessibility with
comprehensive state-of-the-art ChIP-seq and ATAC-seq
analysis.

Method

Overall design

The CoBRA pipeline is implemented using the Snakemake
workflow management system [10] and is described via a
human-readable, Python-based language. This allows
CoBRA to scale to server, cluster, grid, and cloud environ-
ments, without the need to modify the workflow. For ChIP-
seq and ATAC-seq experiments, COBRA provides both un-
supervised and supervised analyses (Figure 1B). It does not
include ChIP-seq and ATAC-seq quality control steps, as this
is best handled within other specialized pipelines [11].

Furthermore, CoBRA is distributed as a Docker con-
tainer, which can be used on any machine as long as Docker
is installed. The container encapsulates all of the supporting
software and libraries, eliminating the possibility of con-
flicting dependencies, and facilitating the installation of
required software. With the built-in Snakemake reference
rule, CoBRA automatically downloads all needed reference
files, if they have not been downloaded before. Users spe-
cify analysis parameters in a simple human-readable con-
figuration file (Figure SIA-C). A separate file contains
metadata about the samples being analyzed (cell line,
treatment, time point, efc.), as well as a specification of the
differential comparisons to be performed by the pipeline.
This metadata file is in CSV format and can be easily
modified in any standard text editor or Excel. Example of
input and output file structure is in Figure S2.

Unsupervised analysis

The pipeline calculates the reads per kilobase per million
mapped reads (RPKM) using bed files and bam files pro-
vided by the user to normalize based on sequencing depth
and peak size. The RPKM table is filtered through the re-
moval of sites that have low RPKM values across multiple
samples. Quantile normalization (default), z-score, and log
transformation are available options to normalize the count
matrix. To visualize the similarities between samples in the
experiment, sample—sample correlation, principal compo-
nent analysis (PCA), and sample—feature plot are auto-
matically generated by the pipeline.

The sample—sample correlation plot illustrates the simi-
larity between all of the samples on a pairwise basis. It also
provides the clustering result based on the Pearson corre-
lation coefficient (r), where distance is defined as 1—r. The
user can opt for using Spearman correlation, as well as
selecting other distance methods (Euclidean, Manhattan,
Canberra, binary, maximum, or Makowski) by simply
changing the configuration file. The resulting correlation
plot helps to determine whether the different sample types
can be separated, i.e., samples of different conditions are
expected to be more dissimilar to each other than replicates
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Figure 1 Overview of CoOBRA

A. Biological motivation of CoBRA. Comparisons between ChIP-seq and ATAC-seq peaks in well-designed experiments can provide insight into
differences in protein occupancy, histone marks, and chromatin accessibility. Bottom diagrams show different types of peak comparisons, the light blue
bars represent significant peaks called by MACS2. B. Overview of the workflow performed by CoBRA. Read counts are quantified and normalized for
sequencing depth and CNV before clustering and differential peak calling analyses. The result of differential peak calling is used for downstream analyses,
including motif enrichment analysis, GSEA pathway analysis, Cistrome DB Toolkit analysis, and BETA. CoBRA, Containerized Bioinformatics workflow
for Reproducible ChIP/ATAC-seq Analysis; ChIP-seq, chromatin immunoprecipitation sequencing; ATAC-seq, Assay for Transposase-Accessible
Chromatin with high-throughput sequencing; CNV, copy number variation; GSEA, Gene Set Enrichment Analysis; BETA, Binding and Expression Target
Analysis; HOMER, Hypergeometric Optimization of Motif EnRichment; PCA, principal component analysis; Cistrome DB, Cistrome Data Browser.

within the same condition. User-provided metadata are used
to automatically annotate samples in all unsupervised plots.

Subsequently, CoOBRA produces a PCA plot depicting
how samples are separated in the first two PCs (those with
the largest variance) and samples are automatically color-
coded by all user-provided annotations. The PCA plot helps
the user to determine whether any patterns exist between the
samples and whether outliers are present. Finally, CoOBRA
generates a sample—feature heatmap. The heatmap illus-
trates the clustering of samples based on correlation on the

horizontal axis and clustering of peaks on the vertical axis.
Peaks on the vertical axis can be clustered by hierarchical or
k-means clustering. The sample—feature heatmap elucidates
patterns of peaks across samples and identifies the clusters
that are enriched in a subset of samples.

Supervised analysis

A common question asked in epigenetic experiments is
what are the differential sites (transcription factor binding,
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histone modification, and chromatin accessibility) between
sample groups. Several tools currently available can be
applied to analyze differential sites, most of which are de-
rived from RNA-seq count analysis (DESeq2, edgeR, and
Limma). However, there are differences between the RNA-
seq and ChIP-seq count analyses. In RNA-seq experiments,
most reads are in the exome, where read count can be
normalized by the total number of reads mapped to all
genes. In contrast, most ChIP-seq reads are outside of
peaks. The fraction of reads in peaks (FRiP) score typically
ranges from 1%—40% [11]. Reads in peaks are only a por-
tion of total reads that have been sequenced. Therefore, all
reads need to be normalized by the total number of uniquely
mapped reads to account for sequence depth. CoBRA uses
the bam file to calculate sequencing depth. It utilizes se-
quencing depth as a scale factor in differential peak calling
by DESeq?2 (although the user can specify reads in peaks for
scaling if specifically required). This is an essential step in
differential peak calling. The default scale factor utilized by
DESeq2 to normalize the data is the total number of reads
mapped to peaks, which can result in the calling of false
positive differential peaks. Instead, using sequencing depth
as the scale factor ensures that reads are normalized for
experimental variation and not biological variation between
samples.

Multiple comparisons can be done within a single run.
For each comparison, the number of differential peaks for
two adjusted P value cutoffs and two fold change (FC)
cutoffs is displayed in a summary chart. Furthermore, the
bigwig files are used to plot the peak intensity of the dif-
ferential peaks in a heatmap using deepTools2 [12].

The differentially enriched regions from DESeq2 for
each comparison are subsequently run through
HOMER [13] for motif enrichment analysis. Motif enrich-
ment analysis is a fundamental approach to look for tran-
scription factor motifs that might be enriched in regions of
interest. We use HOMER in the pipeline to look for known
and de novo motifs that are enriched in the differential peak
regions compared to GC matched, randomly-selected
genome background. In addition, we utilize a motif clus-
tering algorithm to organize various motifs by similarity,
making the output easier to evaluate for distinct results. By
mapping the peaks to the nearest genes, CoOBRA uses Gene
Set Enrichment Analysis (GSEA) pre-ranked analysis to
investigate the pathways that are enriched and depleted for
both upregulated and downregulated peaks.

The upregulated and downregulated sites are also auto-
matically compared to a comprehensive database of ChIP/
ATAC-seq and DNase | hypersensitive sites sequencing
(DNase-seq) data [9,14]. The Cistrome DB Toolkit analysis
determines the most similar samples in terms of genomic
intervals overlapping with the differential sites. The toolkit
is particularly useful to identify the major transcription

factors related to the differential perturbations. In addition,
it can be useful in the identification of potential biological
sources (cell line, cell type, and tissue type) of similarity to
the regions of interest.

Results

In order to illustrate the utility of CoBRA, we applied it to
three case studies with components to showcase the dif-
ferent capabilities of our workflow. These include a glu-
cocorticoid receptor (GR) ChIP-seq dataset from the
ENCODE project, an H3K27ac ChIP-seq data from colon
cancer cell lines, and an ATAC-seq experiment on HL-60
promyelocytes differentiating into macrophages. Each
example demonstrates some key functions of the CoBRA
pipeline.

Case studies

Example 1: normalizing GR ChlP-seq data in a dose—
response experiment

We downloaded publicly available GR ChIP-seq data
(GEO: GSE32465) from a lung adenocarcinoma cell line
(A549) at 3 different concentrations of dexamethasone, a
potent GR agonist. In an analysis of this dataset [15], it has
been found that the number of GR binding sites increases
with increasing dexamethasone concentration. In the ex-
periment, samples were treated with 0.5 nM, 5 nM, or
50 nM dexamethasone. Using the unsupervised analysis in
CoBRA, it is shown that the sample replicates cluster tightly
together. Similarities and differences between samples are
illustrated by the correlation between treatments vs. within
treatment in the dendrogram at the top of sample—sample
heatmap (Figure 2A), as well as the PCA plot (Figure S3A).

While unsupervised analyses are useful, the advantage of
the CoBRA pipeline is its ability to accurately call
differential peaks accounting for a variety of factors. We
applied DESeq2 to assess the differences in peak binding
for samples treated with 50 nM dexamethasone vs. samples
treated with 0.5 nM dexamethasone. Utilizing the default
scale factor method in DESeq2, which normalizes the data
using the total number of reads in peaks, differential peaks
are called (Figure 2B) where they are clearly not present
(Figure 2C, left). A group of peaks (Figure 2C, bottom left)
exhibit similar binding intensity. However, in the DESeq2
result, these peaks are considered downregulated in samples
treated with 50 nM dexamethasone.

DESeq2 by default normalizes all samples by total reads
in the read count table. In RNA-seq experiments, most reads
are in the exome, where reads can be normalized by the total
number of reads mapped to all genes. In contrast, in the GR
ChIP-seq experiment, samples treated with 50 nM
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Figure 2 Example of unsupervised and supervised analyses of differential GR binding in A549 cells

A. Sample-sample heatmap depicting clustering and correlation between A549 cells treated with varying concentrations (0.5 nM, 5 nM, and 50 nM) of
Dex in duplicates. B. Visualization of the differences in GR binding between the samples treated with 0.5 nM and 50 nM Dex, plotted using mean of the
ChIP-seq peak intensities against Log, FC of GR binding at the concentrations of 0.5 nM and 50 nM. This illustrates the change in the inferred differential
GR binding profile following normalization using scaling factor determined by total reads in peaks (top) and sequencing depth (bottom). C. DeepTools
heatmap illustrating differential peaks called by DESeq2 using default scaling factor by total reads in peaks (left) or using scaling factor determined by
sequencing depth (right). A group of peaks at the bottom of the left panel exhibit similar binding intensity, however, they are considered downregulated in
samples treated with 50 nM Dex, in the peak calling result with default DESeq2 setting. D. Cistrome DB Toolkit analysis result illustrating publicly
available ChIP-seq datasets from Cistrome DB ranked by binding profile similarity to gained GR binding sites with Dex treatment. Dex, dexamethasone;

GR, glucocorticoid receptor; FC, fold change.

dexamethasone exhibit much more GR binding peaks
(29,921 vs. 3397)and higher FRiP score (9.3 vs. 0.9) than
samples treated with 0.5 nM dexamethasone. Therefore, the
normalization method used in DESeq2 decreases the peak
intensity in the samples treated with 0.5 nM dexamethasone
because the FRiP scores are higher in the samples treated
with 50 nM dexamethasone, resulting in the calling of false
positive differential peaks (Figure 2C, right). In CoBRA, we
use a scaling factor dependent on the sequencing depth of

each sample. This eliminates the calling of false positive
downregulated peaks that are called by DESeq2 using the
default scaling factor (Figure 2B and C, right). Furthermore,
more true differential gained peaks have been successfully
identified with the scaling method in CoBRA.

An additional feature of CoBRA is that it automatically
analyzes the differential peaks to provide additional insight
into their origins and identify similar systems in the litera-
ture. In one analysis it determines the most similar ChIP-seq
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data that is available in Cistrome Data Browser (Cistrome
DB; cistrome.org), a large, curated database of ChIP-seq
and ATAC-seq data [14]. For the gained GR binding sites in
the dexamethasone treatment, the result from the Cistrome
DB Toolkit [9] clearly shows that the NR3CI ChIP-seq
peaks in lung tissue is the most similar to gained GR
binding sites in the Cistrome DB (Figure 2D). CoBRA
provides a list of Gene Expression Omnibus (GEO) acces-
sion numbers corresponding to all ChIP-seq data with
similarity to the differential peak set. Using these identi-
fiers, ChIP-seq data of interest can be downloaded for fur-
ther investigation from Cistrome DB [14]. While obviously
correct in this simple case, this tool can provide unique
insight into gained or lost sites, such as suggesting which
transcription factor potentially binds to a differential peak
set after a perturbation and identifying potentially similar
cellular systems. In addition, CoOBRA performs a de novo
motif analysis on differential sites (Figure S3B), which can
help to identify potential transcriptional regulators enriched
in the differentially accessible chromatin elements. In this
example, the top cluster has all hormone receptor motifs
enriched in the upregulated peaks.

Example 2: correcting CNVs in H3K27ac ChlIP-seq data

We further illustrate the advantages of CoBRA pipeline
utilizing data from colorectal cancer cell lines. Micro-
satellite instable (MSI) and microsatellite stable (MSS) tu-
mors are two classes used to characterize colorectal cancers.
To analyze these cell lines, we selected six publicly
available datasets from several experiments: three MSI
samples and three MSS samples [16-20] (GEO:
GSM 1866974, GSM2265670, GSM 1224664,
GSM 1890746, GSM2058027, and GSM1890746).

MSS tumors are one of the most highly mutated tumor
types [21] and typically exhibit a high number of copy
number alterations. Without correction, a differential peak
caller will rank peak loci with high copy number gain in
MSS as being the most differential compared to MSI. These
genetic differences, while important, can obscure important
epigenetic differences between MSI and MSS tumors. In
order to observe differential peaks other than those called as
a result of the presence of CNVs, CNV correction was
conducted on all samples. For this example, the copy
number was called using the ChIP-seq data itself with
CopywriteR [22] but can also be done with QDNAseq [23]
using the input control if available. Any other sources of
CNV data can also be used when put in a standard igv
format. This CNV correction alters the differential peaks
called by DESeq?2. In the case of the MSS vs. MSI com-
parison, many peaks at the q arm of chromosome 8 are
called significantly differential (Figure 3A) but, following
CNV correction, the number of differential peaks in this
region significantly decreases (Figure 3B).

GSEA is performed on the ranked list of genes produced
by CoBRA. Without CNV correction, GSEA can indicate
greatest enrichment in gene sets solely related to amplifi-
cation. As a result, it is challenging to assess the true epi-
genetic differences between these two colorectal cancer
types. For instance, the gene set ‘NIKOLSKY
BREAST CANCER 8Q12 Q22 AMPLICON’ includes
genes with up-regulated expression in non-metastatic breast
cancer tumors with amplification in the 8q22 region.
Without correction for CNVs, this gene set is significantly
enriched (Figure 3C). It is the 3th ranked gene set, with a
normalized enrichment score of —2.84 and an adjusted P
value < 0.0001. With CNV correction, this gene set is far
less enriched (Figure 3C). It is the 468th ranked gene set and
has a normalized enrichment score of —1.32 and an adjusted
P value of 1, indicating that the enrichment is not statisti-
cally significant.

After CNV correction, GSEA of the hallmark gene sets
shows that the MSI cell line exhibits enrichment in the
following pathways: TNF signaling via NF-B, TGFp sig-
naling, and inflammatory response (Figure 3D). This is
consistent with the literature [24,25] in reference to colon
cancer with MSS tumors exhibiting more inflammatory
signaling.

Example 3: unsupervised analysis of time series ATAC-seq
data

In this example, we illustrate the efficacy of CoBRA ana-
lysis of ATAC-seq experiments by following the chromatin
accessibility profile of differentiating cells [26]. In this
experiment, researchers utilized a 5-day time course (0 h,
3 h,24 h, 96 h, and 120 h) to profile accessible chromatin of
HL-60 promyelocytes differentiating into macrophages
(GEO: GSE79019). The CoBRA output includes a PCA
plot (Figure 4A) that demonstrates the temporal
differentiation of the macrophages, with the early time point
on the left side and the late time point on the right. Fur-
thermore, the output includes a sample—feature heatmap
utilizing k-means (k = 3) clustering (Figure 4B) that further
illustrates the dramatic differences in open chromatin pro-
files. The three clusters show clear differences in open
chromatin between the early (Cluster 1), intermediate
(Cluster 2), and late stage (Cluster 3) time points.

CoBRA automatically performs a de novo motif analysis
on each of the three clusters of accessible sites to identify
motifs of potential transcriptional regulators enriched in
differentially accessible chromatin elements. This analysis
identified many transcription factor binding motifs enriched
in each cluster (Figure 4C). Motifs for PU.1, RUNX, and
MYB are enriched in Cluster 1, which exhibits a decrease in
accessibility during myeloid differentiation. It is likely that
a depletion of PU.1, RUNX, and MYB occupancy occurs at
these elements during cellular commitment. In addition, we
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Figure 3 Identification of differential sites with CNV correction

NES

A. Copy number distribution for an MSS sample on Chr8 (top). Distribution of differentially called peaks without (middle) and with (bottom) CNV
correction between MSS and MSI cell lines. The chromosomal plot for Chr8 with genomic coordinate is provided at the very bottom and the red block in
the middle indicates the centromere of Chr8. B. Differential peaks in Chr8q called with or without CNV correction. The x axis indicates the Log, FC of
H3K27ac signal difference between MSS and MSI cell lines and y axis indicates —log;, FDR-adjusted P value. Plot on the left shows the peak distribution

without CNV correction, and plot on the right shows the peak distributio

n with CNV correction. Significantly differential (FDR-adjusted P < 0.0001)

peaks in Chr8q prior to CNV correction are highlighted in red. Dashed lines indicate the cutoff FDR adjusted P values for significance. C. Enrichment plot
for NIKOLSKY BREAST CANCER 8Q12_ Q22 AMPLICON gene set without (on the left) and with (on the right) CNV correction. D. Enrichment of
the GSEA hallmark gene sets after CNV correction based on the differential peak ranking comparing MSS with MSI tumors. MSS, microsatellite stable;
MSI, microsatellite instable; CNV, copy number variation; NES, normalized enrichment score; FDR, false discovery rate.

observe the EGR and MAF motifs in Cluster 3, suggesting
that a gain of EGR and MAF occurs at these elements
during macrophage differentiation. The motif analysis for
Cluster 2 also identified chromatin element NF-kB and
NF-E2 as being active during differentiation and depleted in
the latter stage. All of these findings are consistent with the
results from published papers [26].

Finally, ChIP-seq and ATAC-seq data are often generated
in parallel with RNA-seq data on the same samples. An ex-
tension to CoBRA can take the differential expression gene
list from RNA-seq data analysis tools such as VIPER [27]
and highlight differentially expressed genes that also exhibit
differential chromatin accessibility. The volcano plot in
Figure 4D is a visualization of the genes differentially
expressed during macrophage differentiation and highlights
the genes that also have nearby opening chromatin during

differentiation. Expression of genes near open chromatin
during differentiation is more likely to be upregulated. This
profile that combines chromatin accessibility with gene
expression can provide insight to potentially identify major
transcriptomic elements driving differentiation.

Discussion

The case studies that we have presented highlight typical
use cases for CoBRA. The first example is accurate iden-
tification of differential peaks by appropriate normalization
of ChIP-seq data. Some methods fail to normalize ChIP-seq
data appropriately in calling differential peaks when the
FRiP score is impacted by perturbations. CoBRA reduces
false positives and identifies more true differential peaks by
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Figure 4 Analysis of ATAC-seq data from HL-60 promyelocytes differentiating into macrophages with CoBRA

A. PCA plot depicting how samples cluster along the first two principal axes. B. Sample—feature heatmap created by CoBRA. Sample clustering is shown
on the horizontal axis and chromatin accessibility clustering is shown on the vertical axis. Clusters 1, 2, and 3 represent sites open at early, middle, and late
differentiation stages, respectively. C. Transcription factor binding motifs enriched in early, middle, and late differentiation stages identified by CoBRA. D.
Distribution of DEGs during macrophage differentiation (120 h over 0 h). DEGs that have nearby differential chromatin changes during differentiation are
indicated with dots in red (open ATAC sites) or blue (closed ATAC sites), while DEGs near the unchanged ATAC sites are indicated with gray dots. DEG,

differentially expressed gene.

appropriately normalizing ChIP-seq data according to se-
quencing depth.

The second example demonstrates how CoBRA can be
used to account for amplification due to CNVs present in
experimental samples. This is an important feature, as
CNVs can drive the greatest differences between some tu-
mor samples and obscure other biological changes in the
data available in Cistrome DB that occur as a result of
treatment or other experimental conditions. After correction
of CNVs, differential peaks called by DESeq2 will not be
affected by amplification between samples, allowing
biologists to better understand whether differences are
caused by changes in the genetic or epigenetic landscapes.

The third example illustrates how CoBRA can be applied
to ATAC-seq experiments. Unsupervised analyses can
identify changes in the chromatin accessibility over time
with treatment, and clustering provides insight into simila-
rities and differences between samples, and aids the in-
vestigation of the transcription factor motif enrichment in
each cluster.

The application of CoBRA to these experiments de-
monstrates the broad capabilities of the workflow in ana-
lyzing ChIP-seq or ATAC-seq experiments. While other
workflows used to analyze ChIP-seq or ATAC-seq experi-
ments are available, they lack some of the features present
in CoBRA (Table 1). Additionally, the highly modular
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Snakemake framework allows for rapid integration of new
approaches or replacement of existing tools. Modules can
be added simply by adding a new Snakemake “rule” and
adding a flag in the config file (Figure SIA—C) to turn the
analysis on. Moreover, “rules” in CoBRA can be composed
of tools written in R, Python, or shell script. The framework
allows for great flexibility because each module can be
evaluated in its own environment using different tools (e.g.,
software based on Python 2.7 and Python 3).

The methods for installing, deploying, and using CoOBRA
along with a detailed tutorial are provided in the
documentation available online (https://cfce-cobra.read-
thedocs.io/). The workflow was designed to work with
Docker, which allows the user to automatically download
all required software dependencies, eliminating the possi-
bility of conflicting dependencies. This makes CoBRA easy
for the user with limited computational training to install
and run the workflow. Furthermore, the user does not need
to prepare any reference files, as CoBRA automatically
downloads all needed reference files. As a result, CoBRA is
portable, reproducible, and easy to deploy. In summary, we
have developed a new pipeline, CoBRA, that is fast, effi-
cient, portable, customizable, and reproducible. The work-
flow is built upon the ongoing effort to make computational
studies reproducible using defined workflows run inside
Docker containers. CoBRA allows users with varying levels
of computational skills to quickly process and analyze new
data from ChIP-seq and ATAC-seq experiments. It is our
hope that CoOBRA can be a starting point for others to build
upon and improve CoBRA as a tool and extend its ability to
analyze the data in Cistrome.

Code availability

CoBRA ia publicly available online at https://bitbucket.org/
cfce/cobra and https://cfce-cobra.readthedocs.io.
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Table 1 A comparison of the features of CoOBRA with other available pipelines

Feature CoBRA DiffBind HMCan-diff ChIPComp deepTools esATAC OPENANNO

Sample-sample correlation \/ \/ \/ \/

Sample—feature clustering \/ \/ \/

PCA v Vv

Normalization based on \/ \/

sequencing depth

CNV correction for differential \/ \/

peak calling

Motif analysis \/ \/

Pathway analysis \/ \/

Package easy update \/ \/ \/ \/ \/

Easy support for new species \/

Docker containerized \/

Peak region annotation with \/ \/

public ChIP-seq databases

Step-by-step tutorial with

multiple case studies \/ \/ \/ \/

Weblink https://cfce-co- https://biocon- https://www.  https://biocon- https://deep-  https://www.bio- http://health.
bra.readthedocs. ductor.org/ cbre.kaust.edu. ductor.org/ tools.readthe-  conductor.org/  tsinghua.edu.cn/
io/ packages/re-  sa/hmcan/ packages/re-  docs.io/ packages/release/ openannotate/

lease/bioc/html/ hmcan-diff -  lease/bioc/html/ bioc/html/esA-
DiffBind.html  desc.php ChIPComp.html TAC.html

Note: CoBRA, Containerized Bioinformatics workflow for Reproducible ChIP/ATAC-seq Analysis; CNV, copy number variation; PCA, principal component analysis.
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