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Abstract

Polyploidy is observed across the tree of life, yet its influence on evolution remains incompletely 

understood1–4. Polyploidy, usually whole genome duplication (WGD), is proposed to alter the rate 

of evolutionary adaptation. This could occur through complex effects on the frequency or fitness 

of beneficial mutations 2,5–7. For example, in diverse cell types and organisms, immediately after a 

WGD, newly formed polyploids missegregate chromosomes and undergo genetic instability8–13. 

The instability following WGDs is thought to provide adaptive mutations in microorganisms13,14 

and can promote tumorigenesis in mammalian cells11,15. Polyploidy may also affect adaptation 
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independent of beneficial mutations through ploidy-specific changes in cell physiology16. Here, 

we performed in vitro evolution experiments to directly test whether polyploidy can accelerate 

evolutionary adaptation. Compared to haploids and diploids, tetraploids underwent significantly 

faster adaptation. Mathematical modeling suggested that rapid adaptation of tetraploids was driven 

by higher rates of beneficial mutations with stronger fitness effects, which was supported by 

whole-genome sequencing and phenotypic analyses of evolved clones. Chromosome aneuploidy, 

concerted chromosome loss, and point mutations all provided large fitness gains. We identified 

several mutations whose beneficial effects were manifest specifically in the tetraploid strains. 

Together, these results provide direct quantitative evidence that in some environments polyploidy 

can accelerate evolutionary adaptation.

To determine how polyploidy affects the rate of adaptation, we performed hundreds of 

independent passaging experiments in a poor carbon source medium (raffinose, Fig. 1a), 

comparing isogenic haploid (1N), diploid (2N), and tetraploid (4N) strains (Extended Data 

Fig. 1, Extended Data Table 1). The evolution experiments were performed as competitions 

between equal numbers of CFP and YFP cells of the same ploidy16,17, where the acquisition 

and spread of beneficial mutations is visualized by divergence from a 50:50 ratio of CFP and 

YFP-expressing cells (Fig. 1b). The rate of adaptation was determined by measuring the 

change in fitness relative to the diploid ancestor over time (Methods). Over 250 generations, 

the tetraploids adapted at a rate that was significantly faster than haploids or diploids (Fig. 

1c, t-test, p<1e-10, Methods). This faster rate of adaptation in tetraploids may be due to a 

higher rate of beneficial mutations, higher fitness effects of the acquired mutations, or both.

To gain insight into the rapid adaptation of tetraploids, we applied two complementary 

mathematical modeling approaches (see Methods). First, we use a model based on a 

branching evolutionary process17, designed to closely mimic the divergence experiments. At 

each time-step, a cell is chosen at random to die or to divide, with a probability 

corresponding to its fitness. Mutations arise with rate μ. If a mutation occurs, the fitness of 

the daughter cell may change and the fitness increase is then chosen from a fitness 

distribution. Second, we use the “Equivalence Principle” model18, which focuses on 

beneficial mutations that establish in the population, and estimates that these mutations 

confer a single effective fitness advantage. Proliferation of clonal subpopulations under this 

model is deterministic. These simplifications are relevant to examples of high clonal 

interference, and are therefore only appropriate when the population size is large or when 

the beneficial mutation rate is high19. In both models, we assume no epistasis; the fitness 

change is independent of whether the cell already had one or more mutations. Furthermore, 

there is no restriction on the number of cells that acquire beneficial mutations, thus allowing 

clonal interference to occur20,21.

Both modeling approaches led to the same general conclusion -- the rapid adaptation of 

tetraploids results from both more frequent beneficial mutations and stronger fitness effects 

(Extended Data Fig. 2, Methods). For the branching evolution model, these conclusions are 

independent of the assumed distribution of beneficial mutations, although there are 

differences in the magnitude of the best-fit values that are expected from the shape of the 

chosen distribution (Fig. 1d, and Extended Data Fig. 2). Moreover, the conclusions are 

Selmecki et al. Page 2

Nature. Author manuscript; available in PMC 2015 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



insensitive to the inclusion of deleterious mutations in the model (Extended Data Fig. 3, 

Methods).

To evaluate these conclusions experimentally, we performed whole genome sequencing 

(WGS) to compare the frequency of mutations in 1N and 4N ancestors with 74 evolved 

clones. In total, we identified 240 de novo sequence variants (SNPs and small insertions/

deletions): 45 from the 1N, 69 from the 2N, and 126 from the 4N-evolved clones, an average 

of 2.05, 2.87, and 4.5 variants respectively per cell type (Supplementary Table 1). We 

observed significantly more variants per 4N clone than per 1N and 2N-evolved clones (Fig. 

2a, t-test, p<1e-04 and p=0.0040, respectively). Note that these results are not a direct 

measurement of the mutation rate or beneficial mutation rate (μ), but rather the total number 

of mutations acquired during the experiment (see Supplementary discussion).

Sequence variants frequently occurred in genes encoding proteins in the Snf3/Rgt2 glucose-

signaling pathway (SNF3, RGT2, MTH1, RGT1), as expected from previous yeast evolution 

experiments under carbon-source limitation22–24. Several independent mutations in these 

genes resulted in either identical base-pair changes or altered the same amino acid 

(Supplementary Table 1). Nonsynonymous SNF3 mutations were identified in all ploidy 

types, whereas loss-of-function mutations in MTH1 were observed most frequently in the 

1N-evolved clones.

In addition to WGS, we used a combination of flow cytometry, microarray comparative 

genome hybridization (aCGH), and qPCR to measure the frequency of DNA copy number 

variations (CNV) in the evolved clones. The only CNV that arose in all 3 ploidy types was 

amplification of two adjacent genes encoding the high-affinity hexose transporters, HXT6 

and HXT7, a frequently identified beneficial mutation in low glucose environments20,22,23. 

The HXT6/7 amplification was significantly more common in 2N and 4N-evolved clones 

than in 1N clones (t-test, p=0.005 and p=1e-04), respectively, Methods), which may be due 

to negative epistasis between HXT6/7 amplification and mutations in 1N cells, such as those 

in MTH124.

Additional CNVs, including recurrent chromosome aneuploidy, were detected only in the 

4N-evolved clones. With the exception of a small segmental amplification in one 2N-

evolved clone, there were no CNVs or aneuploidy in the ancestral strains or the 1N- and 2N-

evolved clones (Fig. 2b, c, Extended Data Figs. 4, 5Fig. 2b) and all but two of the 4N-

evolved clones were aneuploid at generation 250 (n = 30, Figs. 2c, Extended Data Fig. 6 and 

Supplementary Table 2). These alterations included large segmental aneuploidies with 

breakpoints at loci of transposable elements (Extended Data Fig. 7a). Pairwise patterns of 

chromosome copy number alterations were observed, indicating that there is a strong copy 

number relationship between certain pairs of chromosomes (Extended Data Fig. 7b, c). 

Notably, increased copy number of ChrXIII was significantly more common than all other 

aneuploidies (Extended Data Fig. 7d, Cochran Armitage test, p<1e-07). These chromosome-

level alterations were present early, at the time of CFP/YFP marker divergence in the 4N 

populations (~generation 45, Extended Data Fig. 8). Therefore, 4N-evolved clones had a 

higher frequency and greater diversity of mutations, supporting the inference from our 
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mathematical model that 4N-evolved clones have a relatively higher beneficial mutation 

rate.

Next, we determined the effects of specific mutations on the fitness of the ancestral cells of 

differing ploidy. We first determined whether ChrXIII gain contributed directly to the rapid 

adaptation of 4N cells. Isogenic 2N and 4N strains, with and without an extra copy of 

ChrXIII, were generated (Methods, Extended Data Fig. 9). The increased copy number of 

ChrXIII provided a significant fitness increase to 4N strains specifically in raffinose medium 

relative to the 2N ancestor (Fig. 3a, t-test, p<1e-04), not in glucose (Fig. 3b). This was not a 

general effect of aneuploidy because the gain of a different chromosome, ChrXII, had the 

opposite effect on fitness (Fig. 3a). In striking contrast to 4N cells, ChrXIII trisomy was not 

beneficial to 2N strains in raffinose medium and decreased fitness of 2N cells in glucose. 

Although increased fitness due to whole and segmental chromosome gain is known to occur 

during adaptation13,14,23, to our knowledge, this is the first observation of a ploidy-specific 

fitness advantage for an aneuploid chromosome. Thus, aneuploidy, acquired through high 

rates of mitotic errors, is one way that 4N cells can acquire more beneficial mutations with 

higher fitness effects.

We also characterized how ploidy impacts the fitness effect of recurrently isolated mutations 

in SNF3, a gene encoding a plasma membrane glucose sensor25. We identified SNPs that 

changed the codon for the same amino acid in the 9th transmembrane domain of Snf3p 

(G439E, G439V, G439R, Supplementary Table 1), and increased HXT expression in 

raffinose (Methods)25. By analyzing the fitness of isogenic SNF3-G439E strains differing 

only by ploidy, we found that SNF3-G439E had a dominant, raffinose-specific, beneficial 

effect that was relatively stronger in the 4N strain (Fig. 3c, d, t-test, p<1e-04).

Ploidy-specific effect size of mutations could be an intrinsic property of polyploidy, as was 

recently suggested in plants16, or it could be related to the fitness of the 4N ancestor relative 

to the 1N and 2N ancestors26,27. To address the impact of initial fitness generally, we 

isolated 48 clones from the 4N evolution experiments at generation 250 (4N250) with fitness 

values equal to the 2N ancestor (competitive fitness difference < 0.05), and determined the 

speed of their next adaptive step. We compared the fitness acquired by the selected 4N250 

clones after an additional 250 generations to that of 2N clones evolved for 250 generations 

(2N250, n=192). Despite comparable starting fitness, the 4N-derived clones still underwent 

more rapid adaptation and achieved significantly higher fitness. This occurred irrespective 

of large-scale shifts in ploidy: 29% of the 4N500 clones maintained a ploidy of 3N-4N and 

acquired higher fitness than the 2N250 clones (Fig. 4, KS-test, p<1e-06); 71% of the 4N500 

clones underwent chromosome loss to become near-diploid and acquired even higher fitness 

relative to 2N250 clones (Fig. 4, KS-test, p<1e-08). Thus, the rapid adaptation of tetraploid 

cells was at least partially independent of their initial fitness.

Here, we measured the acquisition and spread of beneficial mutations in isogenic yeast 

populations that differed only by ploidy. Mathematical modeling enabled us to infer 

parameters driving the evolutionary dynamics of these strains and indicated that in a poor 

carbon-source environment, polyploidy increases the rate and fitness effects of the acquired 

mutations. Polyploidy increased the genetic diversity of the population. We identified 

Selmecki et al. Page 4

Nature. Author manuscript; available in PMC 2015 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



examples of mutations that are selectively beneficial in polyploid strains, including whole 

chromosome aneuploidy. Because aneuploidy itself is mutagenic28, the high rates of 

aneuploidy induced by whole genome duplication may further increase the rate at which 

beneficial mutations are acquired. If these mutations are beneficial at lower ploidy states, 

then the long-term benefit of polyploidy will be preserved, even if polyploidy is transient 

during adaptation. Indeed, 4N-evolved clones that became near-diploid had higher fitness 

than the 2N-evolved clones. Moreover, although we only studied one environmental 

condition, polyploidy buffers the effects of partially recessive deleterious mutations12,29, 

which in principle can then accumulate2, providing a reservoir of mutations that might be 

adaptive in a new environment. Interestingly, the evolved tetraploid karyotypes closely 

resemble the polyploid and aneuploid karyotypes of fermentation, industrial, baking, natural 

desert isolates30, and antifungal drug-resistant yeasts14, consistent with a role for 

polyploidization events during adaptation to these stressful environments. Thus, the genetic 

plasticity of polyploid cells, together with ploidy-specific beneficial effects, can facilitate 

rapid adaptation.

Supplementary Methods

Batch culture evolution experiment

All S. cerevisiae strains used in this study were in the S288c background (detailed 

information on strain construction is provided below under the heading Yeast Strain 

Construction). Briefly, the isogenic ploidy series was generated in a matΔ ste4Δ background 

to eliminate mating and meiosis during the course of the experiment. Either a pGAL-CFP or 

a pGAL-YFP construct was integrated at the TRP1 locus near the ChrIV centromere in a 

haploid strain (PY5998 and PY5999, respectively). These haploid strains were used to 

generate isogenic diploids, from which isogenic tetraploids were then derived (Extended 

Data Fig. 1). This procedure ensured that all copies of ChrIV had the capacity to express the 

inducible fluorescent marker even if the strains became aneuploid. Mating-competent 

haploids were generated from the matΔ ste4Δ ancestor, PY5998, by transformation with 

either plasmid PB2647 (CEN-LEU2-STE4) or PB2648 (CEN-URA3-STE4-Matα). Zygotes 

from mating-competent haploids were isolated by micromanipulation to obtain diploid CFP 

ancestors (PY6008 and PY6022). Similarly, zygotes from mating-competent diploids were 

isolated by micro-manipulation to obtain tetraploid CFP ancestors (PY6031 and PY6032). 

The same mating scheme was performed for the YFP lineage starting with PY5999 to 

generate diploid YFP (PY6006 and PY6014) and tetraploid YFP (PY6040 and PY6045) 

ancestors.

The ancestor strains were grown to saturation from the −80°C stock, in Synthetic Complete 

(SC) + 2% glucose. The cell density of each ancestor was determined using a 

hemocytometer and an automated cell counter (Vi-Cell-XR from Beckman Coulter). An 

equal number of YFP and CFP cells of the same ploidy were diluted into fresh SC + 2% 

raffinose medium, and combined into a single tube for an initial concentration of 1×105 cells 

per ml. The 50:50 YFP:CFP culture was distributed equally into the wells of a 96 deep-well 

plate (1 ml per well, U-bottom block plate from Qiagen). Seven or eight wells were not 

inoculated, to detect cross-well contamination during the experiment. The plates were 
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covered with “breathe-EASIER™” tape (Electron Microscopy Science) and incubated at 

30°C on a 96-well plate shaker (Union Scientific). Two plates of haploid and three plates of 

diploid and tetraploid cells were analyzed, representing 173 parallel haploid evolutions, 264 

parallel diploid evolutions, and 265 parallel tetraploid evolutions.

At 24 hour intervals, the cells were resuspended (by pipetting) and diluted into fresh SC + 

2% raffinose medium. The dilution factor was determined for each ploidy type based on the 

initial strain fitness in order to maintain an equivalent population size, as reported 

previously18. The number of cells transferred each day was calculated by counting the 

number of cells in 10 replicate wells of each ploidy before and after dilution with an 

automated cell counter (Vi-Cell-XR from Beckman Coulter), and averaged across 3 

consecutive days. The dilution factor for the haploid, diploid, and tetraploid experiments 

was 1/100, 1/50, and 1/33, respectively. This corresponds to 6.64, 5.64, and 5.04 generations 

per day18. The tetraploid evolution experiment from generation 250 to 500 (Fig. 4) was 

performed with the same dilution factor as the diploid experiments (1/50).

The number of CFP and YFP cells in each population was measured at the same time each 

day. First, expression of the fluorescent proteins was induced by transferring 10 μL of the 

overnight culture into 200 μL SC + 2% galactose medium for 4 hours at 30°C. The number 

of CFP- or YFP-expressing cells was determined using the BD LSRII flow cytometer high-

throughput plate reader (10,000 cells were analyzed from each well). Pacific Blue and FITC 

filters were used to detect CFP and YFP, respectively. All experiments were passaged for 

250 generations, but daily acquisition of CFP:YFP ratios was not always continued to the 

250th generation.

To ensure that the flow cytometer measurement and the galactose induction of CFP and YFP 

was an accurate reflection of the size of these populations, the ratio of CFP:YFP cells was 

determined by both flow cytometry and microscopy, and the ratio was determined both 

before and after galactose induction. To do this, we combined overnight cultures of the 1N, 

2N, and 4N ancestor CFP and YFP strains at 3 different ratios (9 populations total) and 

analyzed the ratios in two ways. First, for an aliquot of the mixture, we induced the 

expression of the fluorescent proteins with 2% galactose for 4 hours and analyzed 10,000 

cells using flow cytometry. In parallel, we also added 2% galactose for 4 hours and then 

counted ~300 cells by fluorescence microscopy. Finally, to ensure that the induction with 

2% galactose did not alter the CFP:YFP ratio, a portion of the population was used to 

determine the number of CFP and YFP cells in the population before adding galactose to the 

medium. To do this, cells from each population were struck for single colonies on YPD 

plates for two days. 96 colonies were chosen randomly from each plate and added to a single 

well of a 96-well plate containing SC + 2% Galactose. The fluorescence of each colony was 

determined by flow cytometry, and the %YFP of the initial population was determined. 

There was a strong correlation between the %YFP-expressing cells obtained from all three 

measurements (Extended Data Fig. 3a): including the flow cytometer and fluorescence 

microscopy (Pearson correlation coefficient = 0.979), and both before and after galactose 

induction (Pearson correlation coefficient = 0.985).
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Finally, frozen stocks of the evolution experiments were made at 3–4 day intervals 

throughout the experiment. At the end of each experiment, single colony clones were 

isolated and used for competitive fitness assays, flow cytometry analysis of ploidy, and 

preparation of DNA for aCGH.

We isolated 48 clones from the 4N evolution experiments at generation 250 (4N250) with 

fitness values equal to the 2N ancestor (competitive fitness difference < 0.05), and 

determined the rate of adaptation after an additional 250 generations (Fig. 4). Each 4N250 

clone was grown to saturation from the −80°C stock in SC + 2% raffinose medium. Cell 

counts were performed as above, and each population was diluted to an initial concentration 

of 1×105 cells per ml. At 24 hour intervals, the cells were resuspended (by pipetting) and 

diluted 1/50 into fresh SC + 2% raffinose medium (the same dilution factor as the diploid 

experiments). These evolution experiments were not performed as CFP:YFP competitions, 

so daily flow cytometry was not necessary. After 250 generations, single colony clones 

(4N500) were isolated on SC + 2% raffinose plates. Each 4N500 clone was cultured overnight 

in 1ml SC + 2% raffinose medium and aliquots of this culture were immediately used for 

competitive fitness assays, flow cytometry analysis of ploidy, preparation of DNA for 

aCGH, and frozen stocks.

Measuring the variation in the flow cytometer measurements

We determined the amount of noise in our flow cytometer measurements by calculating the 

mean and standard deviation of the %YFP obtained from 48 independent populations at 6 

different ratios of CFP:YFP, for each ploidy type. The 1N, 2N, and 4N ancestor strains were 

cultured separately overnight in 2% raffinose medium and transferred to 2% galactose for 4 

hours to induce expression of CFP and YFP. Next, CFP and YFP cells of the same ploidy 

were combined at ratios of 100:0, 85:15, 75:25, 50:50, 25:75, and 0:100 to reach the same 

final volume (200 ul). 10,000 cells from each population were analyzed by the LSRII (BD) 

flow cytometer using the same parameters (ex. gating and flow rate) that we used for the 

evolution experiments, the total number of CFP and YFP cells were obtained, and the 

percent YFP was calculated ((#YFP cells)/(#CFP+#YFP cells))*100. The standard 

deviations are presented in Extended Data Fig. 3b, and indicated that there is little well-to-

well variability for the same CFP:YFP ratio (across 48 wells), and that this variability 

changes only slightly across different CFP:YFP ratios of all three ploidy types. Importantly, 

it is never greater than 0.66% of the measurement. This small variability has a minimal 

effect on our analysis because the fitting procedure we used to measure the deviation from 

an equal percentage of CFP and YFP cells used bins of 5% deviation to combine the number 

of wells that had deviations between 0%–5%, 5%–10%, and so on, for each experiment.

Statistical analysis of the experimental data

Adaptation rate—The CFP vs. YFP evolution experiments were designed to analyze the 

dynamics of the adaptation process at the population level within and across wells. The 

adaptation rate was determined with additional competition experiments that were designed 

to measure the change in fitness from generation zero to generation 250 for cells of each 

ploidy. To this end, we isolated single colony clones from each evolved well of different 

ploidy types at generation 250 and measured their competitive fitness relative to the 2N 
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ancestor (see detailed methods below). Fitness was defined as the slope of the log of the 

ratio of the evolved clone to the reference strain (2N ancestor) over time; more precisely, we 

performed a linear least squares fit of log(Nt1/Nt0) over multiple dilution cycles (where Nt1 

is the number of cells from the evolved clone, and Nt0 is the number of ancestor cells). The 

fitness relative to the ancestor is defined as s = d/dt [log2(Nt1/Nt0)], where t is measured in 

days18. The rate of adaptation was the relative fitness at generation 250 minus the relative 

fitness of generation zero, divided by 250 generations. The rate of adaptation for each ploidy 

is shown in Fig. 1c. We found that the tetraploid populations had a significantly larger rate 

of adaptation (0.009 [0.0062, 0.011]) than haploids (0.0031 [0.0022, 0.0052]) or diploids 

(0.0031 [0.0018, 0.0041]) during the 250 generations in raffinose medium (values indicate 

the median rate followed by the 95% confidence interval in brackets, Fig. 1c, t-test, 

p<1e-10).

Mathematical modeling of population dynamics

Branching Evolution Model—We formulated a mathematical model of the population 

dynamics of cells that was then used to infer evolutionary parameters using the experimental 

data. This branching evolution model was designed to closely mimic the divergence 

experiments containing two equally fit populations (CFP or YFP), each initially consisting 

of 50,000 cells. The model is based on a stochastic birth and death process called a 

branching process32. In this process, at each time-step, a cell is chosen to die at random, or 

to divide with a probability corresponding to its fitness. During each cell division, a 

mutation arises with mutation rate μ. If no mutation occurs, the fitness of the daughter cell is 

equal to the fitness of the mother cell. If a mutation does occur, the fitness may change; the 

additive fitness of the daughter cell is then chosen from a fitness distribution. The fitness 

change is independent of whether the ancestors of this clone had already obtained one or 

more mutations. Furthermore, there is no restriction on the number of cells that acquire 

beneficial mutations, thus allowing clonal interference to occur20,21.

We compared results assuming either a uniform, exponential or delta distribution of fitness 

values (Extended Data Fig. 2a–d). For the initial formulation of the model, we considered 

half of the newly arising mutations to be beneficial and half deleterious, and their fitness 

effects were considered to be additive to the fitness value of the mother cell. Because 

complete simulations of the branching process would be prohibitively slow, we 

approximated this branching process with a Wright-Fisher process17 with non-overlapping 

generations. This process was implemented as a Monte Carlo simulation in C++ and the 

code is provided as a Supplementary Software file.

In the simulation, each competition experiment was initiated with 1×105 cells (5×104 of 

each CFP and YFP cell type). At every generation, each cell reproduces and gives birth to a 

random number of surviving offspring distributed according to a Poisson distribution. The 

initial population of each ploidy had a different growth rate per day: the haploid population 

increased ~ 100-fold, the diploids ~ 50-fold, and the tetraploids ~ 30-fold in a 24 hour time 

interval (described above in the section Batch culture evolution experiment). Assuming a 

population doubling every generation, the average number of generations per day was 6.64, 

5.65, and 5.04 for haploids, diploids and tetraploids, respectively. In the Wright-Fisher 
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model, the number of generations is discrete; thus we rounded these numbers to the closest 

integers (7,6, and 5, respectively). The initial fitness (f) of each ploidy was chosen to satisfy 

the growth rate of that ploidy with this number of generations, i.e. (f1N)7 = 100, (f2N)6 = 50, 

(f4N)5 = 30. The fitness of a cell is the average number of its surviving offspring in the next 

generation.

During each cell division, a new mutation might arise. In haploid cells, the impact of 

amutation is given by its additive fitness value s d awn from the fitness distribution. In 

diploid and tetraploid cells, however, a mutation might have a degree of dominance, be 

recessive or have a different fitness effect than it would have in a haploid cell. Following 

Otto and Whitton (2000), we assumed that the effect of a given mutation in a diploid or 

tetraploid cell as compared to that in a haploid cell is scaled by a certain factor h. Therefore, 

the fitness effect of a given mutation in one allele will be s̃ = h · s.

In our model, we considered a beneficial mutation to arise independently at rate μ (per 

whole genome). Because our populations proliferate asexually, we cannot differentiate 

between the two components of s̃, namely the haploid fitness effect s and the dominance 

coefficient h, and therefore we can only infer the combined value of s̃. Our simulations were 

done in exactly the same way for all ploidy types, and the selection coefficient of a new 

mutation was taken from a given distribution. However, the meaning of the added fitness is 

different for the haploids, where it is s, than for the diploids and tetraploids, where it is s̃. 

The assumption of independence of mutations is justified by the low point mutation rate, 

which is of the order of magnitude of 2×10−10 per base per generation in yeast33. The low 

per-base mutation rate means that the probability of independently obtaining a second 

identical mutation is vanishingly small (probability of μ2, or 4×10−20), and therefore we did 

not consider such events in the model. Similarly, the probability of obtaining a given 

mutation that is then copied by a recombination-based mechanism such as gene 

conversion34 is low (2×10−10 × 4×10−5), and was not included. These assumptions are 

validated by our whole genome sequencing data demonstrating single copies of all point 

mutations.

Our identification of specific mutations that have a larger fitness effect in the tetraploid 

strains than in the haploid or diploid strains (Fig. 3) is consistent with the overall larger 

fitness effect of the tetraploids in our experiment. Note, however, that our parameters 

describe the entire distribution of mutations, rather than any specific mutation. Thus, it is 

also possible that some mutations could have a larger fitness effect in the haploids or 

diploids relative to the tetraploids. Note also that in our model, clonal interference can occur, 

as there is no limitation on the number of independent mutations that can arise within a 

population. Thus multiple clones can emerge and compete with each other. As shown 

previously, clonal interference is an important aspect of microbial population dynamics and 

thus cannot be ignored18,20,21. Additionally, multiple mutations can exist in the same cell.

As a sensitivity analysis, we also varied the ratio between advantageous and deleterious 

mutations, and found that even when the fraction of the deleterious mutation is very large, 

their inclusion has only a negligible effect on the rate and dynamics of adaptation. This is 

consistent with a large body of prior literature18,35–37. To accomplish this, we fixed the rate 
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of the advantageous mutations and generated datasets with different ratios of beneficial to 

deleterious mutations: 100:0, 90:10, 50:50, 10:90 and 1:99. For each ratio we generated 100 

datasets (each dataset with 264 single deviation experiments) using a beneficial mutation 

rate of 1.2×10−6 and a fitness effect of s=0.16 (the best-fit values of the delta function for 

the diploid experiments, as a typical example, we used the same distribution as in Hegreness 

et al. 2006), and fitted them against the simulations that we used to fit the empirical 

experiments (see below for the fitting procedure). The mean of the fitted values are 

presented in Extended Data Fig. 3c. We found no significant difference between the 

different ratios of beneficial to deleterious mutations (t-test, p-value >0.2 between all ratios 

tested). Therefore, in our model, we assumed that half of all non-neutral mutations are 

deleterious and half are beneficial, and that the deleterious and beneficial mutations have the 

same fitness effect distribution with the same parameters. Note that we also obtained similar 

results using the Equivalence Principle model18 that does not include deleterious mutations 

(see below).

The upper bound of cellular fitness—For biological plausibility, it was necessary to 

set an upper bound for acquired fitness. Based on the well-described growth rates achievable 

for S. cerevisiae in optimal conditions, we set this boundary at a doubling time of 1 hour 

(224 per day). Given that g is the number of generations a strain experiences in a day, the 

upper bound of the fitness f of any ploidy type was therefore set to satisfy the equation fg 

=224.

The initial growth rate of the tetraploid cells was lower than the growth rate of the haploids 

and diploids (see section “Batch Culture Evolution Experiment” above). In the simulations 

we rounded the number of generations to satisfy the assumption of non-overlapping 

generations in the Wright-Fisher model: the tetraploid cells underwent ~5 generations per 

day, whereas the haploid cells underwent around ~7 and diploid cells ~6 generations per 

day. In the simulations, as in the experiments, we diluted the populations every day by 

choosing at random 1% of the haploid, 2% of diploid cells and 3.3% of the tetraploid cells. 

This dilution was done by using a hypergeometric random generator for populations smaller 

than 100 million (http://www.agner.org/random/); for populations larger than 100 million 

this method is not applicable and we used a direct Bernoulli sampling of cells38 forcing the 

total sampled cells to be 1%, 2% or 3.3% for haploid, diploid and tetraploid populations, 

respectively. The concentration of each of the cell types was recorded in the simulation 

output at the end of every day, after dilution.

In the experiments with the diploid and tetraploid cells, we observed an initial small bias 

against the YFP-labeled population: in the diploid cells there was a decline in the YFP-

labeled population of 0.5% per day, and in the tetraploid cells there was a 1% decline per 

day (Fig. 1b). We included these biases in the simulations by including this initial small 

difference in the fitness (i.e. a reduced average number of offspring) of CFP- vs. YFP-

labeled cells18,26.

Note that drift cannot feasibly play a role in our experiment, as the time scale (in 

generations) for fixation of an allele due to drift is approximately equal to the effective 

population size39. This time is of the order of 106 generations in our experiments18, much 
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larger than the time frame of our experiment (250 generations). Thus the simulations 

continued until one of the cell types overtook the whole population or until the end of the 

time that the CFP:YFP data was collected on the 30th day; the first of either event terminated 

a simulation. In order to increase the efficiency of the simulations, extinction of a certain 

color (and thus fixation of the other) was defined not by a value of zero frequency, but as a 

frequency of less than or equal to 1%, as the probability is negligible that a sub-clone 

present at a frequency of 1% will overtake another sub-clone present at a frequency of 99% 

in the timeframe of our experiment21. Furthermore, while the variability between flow 

cytometer measurements was never greater than 1% of the measurement (See above, and 

Barrick et al. 2010), our ability to detect changes in CFP or YFP populations below a 

frequency of 1% was a limitation of the flow cytometer.

Fitting procedure—The empirical data for each ploidy type were combined to represent 

the average deviation from an equal percentage of YFP and CFP cells. We then utilized the 

combined ploidy data to estimate the best-fit values of mutation rate (μ) and selection 

coefficient (s), using least squares fitting.

In order to compare data from the experiment and the simulations, we investigated several 

different summary statistics and used the one that performed best. The summary statistics 

evaluated were:

i. Mean deviation from an equal percentage of CFP and YFP cells: For every 

experiment corresponding to an individual well in a 96-well plate, we calculated 

the deviation from equal percentage every day. Then, for every dataset generated 

(experiment and simulation) we calculated the average deviation per day. This 

procedure created a vector of the mean deviations per day for every dataset.

ii. Mean and standard deviation of the deviation from an equal percentage of CFP and 

YFP: As in i, except that we also calculated the standard deviation of the deviation 

from equal percentage for every day. This procedure generated two vectors for 

every dataset.

iii. A distribution of the deviation from an equal percentage of CFP and YFP with 10 

bins: we calculated the absolute value of the deviation from equal percentage for 

each deviation experiment for each day. Then for every day, we binned the 

deviation values into 10 bins, each with a size of 5%. i.e. we counted the number of 

wells that had a deviation between 0%–5%, 5%–10%,..,45%–50%. This procedure 

generated a matrix of 10 bins*30 days for each dataset.

iv. A distribution of the deviation from equal percentage CFP and YFP with 3 bins: 

Similar to iii, except we used only three bins, one for the non-deviated wells 

(defined as 0–0.1), one for fixated wells (defined as 0.4–0.5) and one for those in 

the middle (0.1–0.4).

The comparison between the experiments and the simulations was done by calculating the 

sum of squares (SOS) between the summary statistic of the experiment and the summary 

statistic of the simulations.

Selmecki et al. Page 11

Nature. Author manuscript; available in PMC 2015 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Where Ω spans the day and the number of values that each summary statistic has each day. 

The best-fit pair was the set of μ and s values with the smallest SOS. To determine the 

performance of the different summary statistic, we generated 1000 datasets with the same 

parameters (1N, Uniform distribution with s = 0.05, and μ=8*10−5), each containing 264 

single deviation experiments, and inferred their values by scanning the parameter space for 

each of the 1000 artificial datasets. The expected values from the simulations were then 

generated by 1000 single deviation experiments for each set of parameters.

The distribution of inferred μ values is shown in Extended Data Fig. 3d. Whereas all of the 

summary statistics had the mutation rate used in the simulations as their mode, the observed 

means varied modestly. The 10-bin summary statistic had the narrowest range, and therefore 

this SS was used for further analysis. A similar summary statistic was also used 

previously40.

The scanned range of mutation rates and fitness effects—The best-fit value was 

found by scanning a range of mutation rates and fitness effects26; to this end, we scanned the 

parameter space of the fitness effect in linear steps from 0.005 to 0.35, with increments of 

0.005. The mutation rates were scanned in logarithmic steps from log10(μ)=−8 to log10(μ)=

−4, with increments of 0.1. Thus, per ploidy per fitness distribution, we scanned 2460 

parameter regimes, analyzed 1000 divergence simulations per μ and s combination, and 

scanned 3 ploidy types and 3 different fitness distributions in total.

For the exponential fitness distribution, larger mutation rates and smaller selection 

coefficients needed to be investigated in order to find the best-fiting pair: we scanned 

mutation rates from log10(μ)=−8 to log10(μ)=−3, and selection coefficients from 0.002 to 

0.1, with increments of 0.002. Additionally, in the exponential distribution, the majority of 

mutations have a fitness value which is too small to contribute to the competition between 

the two cell populations (YFC and CFP). However, increasing the mutation rate will 

increase the probability that mutations with larger fitness value are obtained. We found that 

for mutation rates higher than 10−4 per genome per cell division the computational time 

constraints were substantial, and thus we excluded all mutations that had an s value smaller 

than 10% of the average fitness effect s. Support for this choice was provided by the finding 

that for large mutation rates (i.e. N*μ>1), the mutations chosen from an exponential 

distribution that eventually reach fixation within the population have a larger fitness effect 

than the distribution average (Barrett et al. 2006, Figure 3)19. The above criteria for large 

mutation rates are within our experimental regime (N*μ=106*10−4>1). Furthermore, in 

Extended Data Fig. 3e we present simulation results of the average deviation from equal 

percentages of CFP and YFP for a given mutation rate and fitness effect drawn from an 

exponential distribution. We found that the results are robust to including or excluding those 

mutations with fitness effects smaller than the distribution average. Thus, for high mutation 

rates (μ*N>1), we can exclude weak mutations, as was shown by Barrett et al. (2006)19.
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The fitting of the empirical experiments and the simulations was done as described above. 

The results of the best-fit values are presented in Extended Data Fig. 2a–d.

The Equivalence Principle model—As a complementary approach we evaluated the 

Equivalence Principle model developed by Hegreness et al. (2006) to analyze a similar 

competition experiment in E. coli. This study concluded that the mutations that eventually 

reach fixation in large microbial populations have a very narrow range of fitness values. 

Very weak mutations are unlikely to lead to a takeover of one population (CFP or YFP) by 

the other, whereas very strong mutations are very infrequent. Based on this prediction, the 

competition experiments were described by assuming that all beneficial mutations have 

exactly the same fitness value, i.e. assuming that the distribution of fitness effects is a delta 

function. Based on this assumption, the authors developed a method for inferring the two 

key parameters of the dynamics of the adaptation process: the mutation rate of a beneficial 

mutation and the single fitness effect value. Note that the assumption of a single fitness 

value for beneficial mutations was shown to be true only if the mutation rate is very high19, 

which cannot be known a priori. This is the reason that the branching evolution model was 

implemented first and then compared to the Equivalence Principle model. Note also that the 

Equivalence Principle model analyzes only the initial CFP:YFP divergence phase, rather 

than using the entire data set as in the branching evolution model. Although this excludes 

some data, it has the advantage of not necessitating the assumption that the distribution of 

fitness effects is constant41.

We followed the procedure outlined by Hegreness et al. (2006), including the following 

assumptions and modeling steps (see the Supplementary Information of Hegreness et al. for 

a more complete description18):

1. Rather than the computationally intensive simulation of growth and dilution we 

used the effective population size42. The effective population size is: 

Ne=N0*log(r)*T, where N0 is the initial population size, r is the growth rate of the 

population, and T is the number of generations between dilutions. In addition to 

reducing computation time, the use of the effective population size allows for an 

analytical approximation of certain quantities, such as the probability of escaping 

drift.

2. Even large mutations may be eliminated by drift, and only those that escape drift 

can contribute to the competition between the two labeled cell populations. The 

probability of emergence of a new mutation that will escape drift can be calculated 

analytically for a fixed population, making it possible to generate in simulations 

only those mutations that escaped drift, and contribute to the competitiveness of the 

population. Under the above simplifying approximations of (1) a fixed population 

size and (2) a delta distribution of fitness effects, the probability that a mutation 

will emerge and escape drift (Pescape) was calculated analytically, as a function of 

the mutation rate, μ, (the rate for a new mutation to appear in a single cell division), 

the selection coefficient, s, and the effective population size, Ne.
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3. Given that Pescape can be calculated, simulations can be performed rapidly by 

generating the time in the experiment when such mutations occur, rather than 

randomly assigning mutations at each cell division.

We applied the Equivalence Principle model as follows. In order to compare the 

experiments to the simulations, as in Hegreness et al., we used time and initial slope of 

CFP:YFP ratio divergence as summary statistics for the divergence curves18. Each CFP:YFP 

divergence experiment (one single well from a 96-well plate) was fit to an exponential 

growth model, with slope α that starts at a given time τ, using the following expression 

−log10(1 + 0.5 · exp(α(t − τ))). An exponential model is a good description of the initial 

divergence phase. The end of the exponential growth phase was defined by the time that has 

the maximum likelihood to be described by exponential growth (see Hegreness et al. 

Supplementary Information for more details). The initial CFP:YFP bias that we detected in 

some 2N and 4N populations was included in cases where it occurred.

Each divergence experiment is thus described by its values τ and α, whether it is a real 

experiment or a simulated one. Because a single divergence experiment is subject to 

significant stochasticity, we compared the empirical experiments and the simulations by 

combining all the wells of each ploidy type. This was done by collecting all of the α values 

of a given experiment or a given set of simulations (i.e. those simulations that we generated 

by the same pair of μ and s values) into a distribution of α values. The experimental 

distribution was compared to the simulations’ distribution by calculating the KS-test 

between the two. The same was done for the τ values. For each pair of s and μ values we 

calculated the sum of the KS-test of its α distribution and the KS-test of its τ distribution. 

The pair of values (μ, s) that had the smallest sum was declared the best fit (Extended Data 

Fig. 2a). This was done independently for each ploidy type (Extended Data Fig. 2e).

Modeling Results—The fitting of the empirical experiments and the simulations was 

done as described above. The results of the best-fit values from the branching evolution 

model and the Equivalence Principle model are presented in Extended Data Fig. 2a. In order 

to generate the error range for each distribution and ploidy type, we used the parametric 

bootstrapping method43. For each estimated set of values, we generated 1,000 simulated 

datasets and compared those to the empirical datasets (dataset sizes are 172, 264, 265 

independent deviation experiments for the haploids, diploids and tetraploids, respectively). 

We then inferred the best-fit values of those datasets. The 95% confidence intervals of μ and 

s from those 1,000 datasets were defined as the error ranges (Extended Data Fig. 2a–e).

We infer from these results that the tetraploids have a higher mutation rate and these 

mutations have, on average, a stronger fitness effect as compared to haploids or diploids. 

The trend for tetraploids to have higher μ and s values occurs independently of the different 

assumed distributions of fitness effects. However, the different distributions lead to 

significantly different absolute values. This is expected from the characteristic shape of 

these distributions. To illustrate why this result is expected, we show a schematic diagram of 

the three distributions of fitness effects (Extended Data Fig. 2f).
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The mutations that mainly govern the adaptation process are hypothesized to come from a 

relatively narrow range of fitness effect values that are sufficiently strong, but not extremely 

rare (Extended Data Fig. 2f, double arrow region from the idealized narrow Gaussian curve). 

The three assumed distributions that we used in our modeling approximate the true 

distribution but with the following differences. The delta distribution is located in the center 

of the double arrow region. Thus, by definition, every mutation from the delta distribution 

will have a fitness effect that is strong enough to have a significant probability of promoting 

adaptation. If every mutation has the possibility of contributing, then a lower mutation rate 

suffices for adaptation. By contrast, the exponential distribution is dominated by small-effect 

or near neutral mutations, with a relatively low fraction of mutations near the value for the 

delta distribution. Thus, the assumption of an exponential distribution is accompanied by a 

requirement for a compensatory higher mutation rate to achieve numbers of equivalently 

beneficial mutations. By the same line of reasoning, the uniform distribution necessitates a 

rate of beneficial mutations that is intermediate between the exponential and delta 

distributions. Indeed, our results match all of these expectations (Extended Data Fig. 2a–d). 

A similar difference in the estimation of μ was also observed in another recent study that 

modeled this value based on these three assumptions about the distribution of beneficial 

mutations44.

In terms of the fitness effect values of the different distributions, the uniform distribution is 

governed by its upper limit, which, by definition, is the strongest mutation allowed. 

Therefore, it is expected that the uniform distribution mean, which is half of the upper limit, 

will be half of the fitness effect value of the delta function. Again, this is what we observed 

(Extended Data Fig. 2a–d). The exponential distribution mean, is much smaller than the 

strongest mutation that can be generated by the exponential distribution, and the best-fit 

parameters are expected to be much smaller than the other two distributions, which is also 

observed (Extended Data Fig. 2a–d). Furthermore, because the exponential distribution has 

no upper bound on the fitness effects, a larger mutation rate can lead to the emergence of 

mutations with much larger fitness effects. In this way, under the exponential distribution 

assumption, the mutation rate affects the range of possible fitness effects, which results in a 

larger error range for the exponential distribution as compared to the other distributions 

(Extended Data Fig. 2a, brackets).

In summary, despite expected differences in absolute values, we reach the same overall 

conclusions with either the branching evolution model with varied assumptions about the 

distribution of beneficial mutations or Equivalence Principle model18.

Computer code availability

The computer code is available as a Supplementary Software file. The code was complied 

by g++ (version 4.2.1) and was tested on Unix (CentOS5 operating system) and Mac (OS X 

Version 10.9.2 operating system) machines.

Plasmid construction

All plasmids used in this study are listed in Extended Data Table 1. To construct plasmids 

for the inducible expression of either CFP or YFP, the galactose-inducible GAL1 promoter 
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was subcloned into the YFP plasmid PB1500 and the CFP plasmid PB2452. These plasmids 

were derived from the GFP protein tagging plasmid generated by Longtine et al.45. Both 

plasmids contain the ADH gene terminator (tADH) after the YFP or CFP gene and the 

sequence of the SpHIS5 gene of Schizosaccharomyes pombe as a selectable marker. 

Plasmids PB1500 and PB2452 were digested with BamHI and PacI to introduce the pGAL 

promoter, 461 bp upstream of the start codon of GAL1 46, which was amplified using the 

primers pGAL1 BamHI 5′ (5′-

ACGGATCCCCGGGTTGAAGTACGGATTAGAAGCCGCCGAG-3′) and pGAL1 PacI 3′ 

(5′-CGTTAATTAATATAGTTTTTTCTCCTTGACGTTAAAG-3′). Site directed 

mutagenesis (Quick Change Mutagenesis Kit, Stratagene) was used to introduce an ATG 

translation start codon to the YFP and CFP genes (using the GAPATGpFA6 primer, 5′-

CAATCAATCAATCAATCATCACATAAATTAATTAAATGAGTAAAGGAGAAGAA

CTTTTCACTGGAGTTGTC-3′). The resulting plasmids PB2694 and PB2697 contain the 

cassette pGAL1-CFP-tADH-SpHIS5 and pGAL1-YFP-tADH-SpHIS5, respectively.

PB2314 was used to delete the MAT locus as previously described 12. PB1308 was used to 

perform a URA3 to TRP1 marker swap, as previously described 47. PB1640 (hphMX4) was 

used for PCR-mediated deletion of STE4. PB2647 (STE4-LEU2) was used to restore mating 

competency and was constructed by amplifying the STE4 gene with primers STE4 P BamHI 

5′ (5′-CCGGATTCTTGTAGCCCTGTTAGGTTTACC-3′) and STE4 T BamHI 3′ (5′-

CCGGATTCCAATACATAAGGACGAGCCAGTG-3′), and cloning it into pRS315. 

PB2649 (STE4 URA3 CEN MATα) was also used to restore mating competency, and was 

constructed by subcloning the STE4 fragment from PB2647 (digested with SmaI and NotI) 

into PB2577 (MATα URA3 CEN, digested with SmaI and NotI).

Yeast strain construction

All Saccharomyces cerevisiae strains used in this study are isogenic to PY3295 (BY4741, 

S288c genetic background MATa his3Δ leu2Δ met15Δ ura3Δ) and listed in Extended Data 

Table 1. The strategy used to generate the isogenic ploidy series is illustrated in Extended 

Data Fig. 1 and genotypes of key intermediates are indicated. The CFP and YFP ancestors 

were derived from the haploid strain PY5997 (matΔ::pSTE5-ura3::TRP1, ste4Δ::HygroR, 

trp1::NatR, strain construction details available upon request). Isogenic strains with either 

the CFP or YFP cassettes at the TRP1 locus (ChrIV) were generated (PY5998 and PY5999) 

as follows: the pGAL1-CFP-tADH-SpHIS5 or pGAL1-YFP-tADH-SpHIS5 cassette was PCR 

amplified from plasmid pB2694 (CFP) or pB2697 (YFP), respectively, with primers 

delTRPGFP5′ (5′-

TATTGAGCACGTGAGTATACGTGATTAAGCACACAAAGGCAGCTTGGAGTGCAG

GTCGACGGATCCCCGGG-3′) and delTRPGFP3′ (5′-

GAACGTGCACTGAGTAGTATGTTGCAGTCTTTTGGAAATACGAGTCGAATTCGA

GCTCGTTTAAAC-3′) and transformed into PY5997 at the TRP1 locus. The haploid 

ancestor strains expressing CFP (PY5998) or YFP (PY5999) were confirmed by PCR and 

fluorescence microscopy. The haploid ancestors were modified to become mating competent 

by transformation with plasmids PB2647 (LEU2-STE4) and PB2649 (URA3-STE4-MATα). 

Diploid zygotes were selected on –Ura –Leu plates, and then colony purified on YPD plates 

to allow plasmid loss. Diploid chromosome content was confirmed by flow cytometry and 
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aCGH, and strains PY6006, PY6008, PY6014, and PY6022 were selected. The diploid 

ancestors were made mating competent by transformation with plasmids PB2647 and 

PB2649. Tetraploid zygotes were pulled onto YPD plates using a micromanipulator and 

after 2 days growth at 30°C, the ploidy of each zygote was determined by flow cytometry 

and aCGH.

The snf3-G439E mutation was constructed in the haploid YFP strain background (PY5999) 

using the pCORE counter-selectable reporter system48, a gift from Dr. Michael Resnick 

(NIEHS). Primers SNF3_pCORE_KAN (5′-

TGTTGGGGGTGTTATCATGACTATAGCCAACTTTATTGTGGCCATTGTTGGGAGC

TCGTTTTCGACACTGG-3′) and SNF3_pCORE_URA (5′-

TATAAATGCTATCATAACTTTTGCGGCCGCTACAGTCTTTAAGGAACACTCCTTA

CCATTAAGTTGATC-3′) were designed to integrate the CORE sequence at the SNF3 

locus; PCR amplification and transformation procedures were followed as detailed 

previously49. Sanger sequencing was used to identify clones with the desired mutation 

(chrIV: 112,896 G>A). Diploid snf3-G439E mutants (heterozygous snf3-G439E/SNF3 and 

homozygous snf3-G439E/snf3-G439E clones) were constructed by mating after introduction 

of plasmids to confer mating competence (PB2649 or PB2647), as was described above for 

the construction of the CFP- and YFP- marked strains. An analogous strategy was used to 

generate tetraploid snf3-G439E strains (heterozygous snf3-G439E/SNF3/SNF3/SNF3).

The ChrXIII aneuploid strain series was constructed in the S288c background from the 

diploid strain PY7245 (RL4737) and the diploid PY7246 (RL4888), which is trisomic for 

ChrXIII 50. PY7246 was isolated from a triploid meiosis and a minimal number of cell 

divisions50. We confirmed the ChrXIII trisomy by aCGH (Extended Data Fig. 9). We 

generated tetraploid clones by mating PY7245 to PY7246, with changes in mating-type 

accomplished as described previously12. Tetraploid clones were isolated on selective media 

and analyzed by flow cytometry and aCGH (representative clones Extended Data Fig. 9). 

Additional details for all yeast strain constructions are available upon request.

Relative Fitness assays

Competitive fitness assays were performed using single colony isolates from the evolved 

populations and a common ancestor. One single colony was isolated from frozen stocks of 

each well of the evolution experiments (1N(A), 1N(B), 2N(A), 2N(B), 4N(A), 4N(B), 

4N(C)) at generation 250. The evolved clones were cultured for 24 hours in 500 μl of SC + 

2% raffinose, diluted into fresh medium, and competed with the ancestor expressing the 

complementary fluorescent protein. Competitions were initially performed using 

approximately the same number of cells from the ancestor and the evolved clone, but 

because the evolved clones grew significantly faster than the ancestor strains, the 

competitions were repeated using approximately 5 times more ancestor cells than evolved 

clone cells, with an initial population size of 1×105. Serial dilutions were performed each 

day and the YFP/CFP ratio was determined by flow cytometry, yielding an estimate of the 

number of evolved (Nt1) cells relative to the ancestors (Nt0) as a function of time. The data 

were analyzed in Matlab using a custom script that performed a linear least squares fit of 
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log(Nt1/Nt0) over multiple dilution cycles. The fitness relative to the ancestor is defined as 

s=d/dt [log2(Nt1/Nt0)], where t is measured in days18.

Flow cytometry analysis of DNA content

Cells were prepared for propidium iodide staining as described but with modifications to 

optimize preparation of samples in 96 well plates. 30,000 cells were analyzed using the BD 

LSRII HTS. Flow-Jo Cell Cycle analysis was performed using the Dean-Jett-Fox model to 

estimate the mean G1 and G2 fluorescence peaks of each strain. Control parental 1N, 2N, 

3N, and 4N strains were analyzed in triplicate with the evolved strains.

Microarray Comparative Genome Hybridization (aCGH)

Fluorescently labeled DNA was prepared for comparative genome hybridization as 

described previously51. Genomic DNA from all experimental strains was compared to the 

same pool of genomic DNA from the ancestral strain background PY3295 (BY4741, 

Research Genetics). Agilent yeast DNA 4×44K microarrays (ChIP-on-chip Kit) were used 

for the hybridization according to the manufacturer’s instructions (Agilent Technologies) 

with several modifications (M. Dunham online protocols, http://dunham.gs.washington.edu/

protocols.shtml). Briefly, 2.0 μg of HaeIII-digested (New England Biolabs) genomic DNA 

was labeled with 2.1 μl of Cy3 or Cy5 (CyDyeTm-Cy3-dUTP or CyDyeTm-Cy5-dUTP, 

Amersham GE Healthcare). 300 ng of Cy3-labeled DNA (experimental strains) was mixed 

with 300 ng of Cy5-labeled DNA (control DNA) and the volume was brought to 44 μl with 

nuclease free water. Blocking Buffer and Hybridization Buffer 2x HiRPM (Agilent 

Technologies) were added, and 100 μl was applied to each sub-array; the microarray was 

hybridized at 65°C for 17 hours and then washed, scanned, and analyzed according to the 

manufacturer’s instructions. Agilent Feature Extraction data were converted from Log10 

ratios to Log2 ratios and plotted using Treeview31 and a custom Matlab script. A Log2 ratio 

of zero (baseline) indicates no difference in DNA copy number between reference and 

experimental samples14,51.

Quantitative PCR

All quantitative PCR were performed on an Applied Biosystems ViiA-7 real-time PCR 

machine in 96-well format with Power SYBR Green PCR Master Mix (Applied Biosystems) 

and 3 technical replicates. HXT6/7 gene copy number was determined relative to the 

ancestor as previously described52. Genomic DNA was isolated and RNase treated from 30 

clones with the highest fitness from each haploid, diploid, and tetraploid experiment. 

HXT6/7 on ChrIVR was amplified using forward primer 5′-

GATTATTGCTGGTCCGATCC-3′ and reverse primer 5′-

GAGTAATCGCCAATGGGTCT -3′ and the control loci UBP1 on ChrIVL was amplified 

using forward primer 5′-GCGCTCTGTCATTGTTCACT-3′ and reverse primer 5′-

GACTTTCAGCTTCGTCCACAA-3′. Raw HXT6/7 values were normalized to UBP1 for 

each clone and then normalized to the ancestor (ΔΔCt). We found the amplification in 3% of 

the 1N, 30% of the 2N, and 43% of the 4N-evolved clones (n=30). This significant bias for 

HXT6/7 amplification in the 2N and 4N populations (t-test, p=0.005 and p=1e-04, 
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respectively) may be due to mutations in 1N cells that prevent the acquisition of the HXT6/7 

amplification because of negative epistasis24.

SNF3 gain-of-function mutations were previously shown to increase expression of HXT4 25. 

Therefore we analyzed HXT4 gene expression levels in diploid evolved clone 2N_233 

(carrying the snf3-G439E mutation), relative to the diploid ancestor (PY6006). Strains were 

grown up from −80C stocks overnight in 5 mL SC + 2% raffinose and then diluted into fresh 

25 ml SC + 2% raffinose. Cells were cultured at early log phase and RNA was extracted 

using the RNeasy Mini Kit (Qiagen). cDNA was prepared using SuperScript III First-Strand 

synthesis system (Life Technologies). HXT4 was amplified using primers 5′-

TAAGGTCAGCGCAGACGATCCA-3′ and 5′-TTCACCCCAGGAGGCATTACCA-3′ and 

ACT1 was amplified using primers 5′-ACGTCGCCTTGGACTTCGAACA-3′ and 5′-

TGGAACAAAGCTTCTGGGGCTC-3′. Raw qPCR values were normalized to ACT1 levels 

and then normalized to the 2N ancestor (PY6006). Relative to the ancestor, the clone 

bearing SNF3-G439E had 8-fold higher HXT4 expression in raffinose medium.

Whole Genome Sequencing Overview

We performed whole genome sequencing and identified de novo variants for 74 evolved 

clones and 2 ancestors. Initially 6 evolved clones and one tetraploid ancestor were 

sequenced on ABI’s SOLiD 4 platform. Subsequent sequencing of 68 evolved clones and 

the haploid ancestor was performed on an Illumina HiSeq 2500. The specifics of the analysis 

pipeline for each sequencing platform are provided below. Regardless of the underlying 

platform, the overall analysis strategy was as follows. Briefly, the raw reads underwent 

quality analysis and barcode/adapter removal. High quality reads were mapped to the 

Saccharomyces cerevisiae reference genome (downloaded June 2010). Reads containing 

PCR-based artifacts were removed and alignments underwent local realignment around 

insertions and deletions (indels) resulting in the highest quality alignment. Single nucleotide 

polymorphisms (SNPs) and indels were called and combined across the evolved strains and 

within the parental strains to identify a set of variants in the strain background relative to the 

reference. Each evolved strain (all 74) was individually compared to the parental set to 

identify the set of potential de novo variants. These evolved strain calls were filtered by 

quality metrics and manually inspected. All variants of moderate or poor quality as well as a 

few good quality variants were analyzed by Sanger sequencing. Chromosomal aneuploidy 

was inferred from changes in read depth using a windowing approach.

Per cell, the evolved tetraploids have more mutations that haploids or diploids. However, per 

haploid genome, the evolved tetraploids on average accumulate a similar number of 

mutations (1.50 average SNPs per haploid genome, based on final evolved ploidy) as the 

evolved diploids (1.44 average SNPs per haploid genome) and fewer mutations than the 

evolved haploids (2.05 average SNPs per haploid genome), however neither comparison is 

significant. It is likely that the number of mutations in the evolved tetraploids is 

underestimated because of the high rate of chromosome loss in these strains. Interestingly, 

there is a higher average for the tetraploid evolved clones that became ~2N in ploidy (2.00 

average SNPs per haploid genome) than the diploid evolved clones (1.44 average SNPs per 

haploid genome), suggesting that near-diploid cells that underwent a tetraploid intermediate 
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may acquire more mutations than cells that remained diploid throughout the experiment. 

However, despite the trend, this effect did not reach statistical significance (p = 0.22)).

Illumina Sequencing (2×100)

Library Prep—Clones selected for whole genome sequencing were cultured overnight 

from −80°C stocks in 2 ml SC + 2% raffinose medium. Genomic DNA was isolated using 

phenol-chloroform- isoamylalcohol (24:25:1) and bead beating. Libraries were prepared as 

described53. Brielfy, DNA was sheered with Diagenode Bioruptor (UCD-200) to a median 

size of 300–500 bp, end-repair was performed with NEB Next End repair kit (NEB E6050L) 

and fragments were A-tailed with Klenow fragment (M0212L). Custom adaptors with in-

line barcodes were ligated overnight. Adaptor ligated fragments were size selected on 1% 

TBE agarose gel stained with Sybr Gold (Invitrogen S-11494) for fragments between 400–

600bp and isolated using Qiagen Gel Extraction Kit (28706). Libraries were amplified for 

12 cycles with Illumina PE PCR primers 1.0 and 2.0 (Oligonucleotide sequences © 2007–

2013 Illumina, Inc. All rights reserved.). Libraries were pooled and underwent additional 

size selection for fragments of 400–600bp.

Raw data—The genomes were sequenced on an Illumina HiSeq 2500 at the University of 

Colorado at Denver Next Generation Sequencing Facility. The data, which had an inline 

barcode, was demultiplexed by the sequencing facility into individual sample R1/R2 files—

one file for each read in the pair. The barcodes were removed prior to mapping using 

Fastx_trimmer (v0.0.13.2, http://hannonlab.cshl.edu/fastx_toolkit/). Read trimming from the 

5′ end of the R2 reads was performed on a sample-specific manner trimming anywhere from 

0–28 basepairs using in-house script and Fastx_trimmer.

Mapping—Reads were mapped to the Saccharomyces cerevisiae reference sequence for 

the laboratory yeast strain S288c reference genome (S. cerevisiae genome obtained July 28, 

2010 from the Saccharomyces Genome Database, FTP SITE: http://

downloads.yeastgenome.org/sequence/S288C_reference/genome_releases/

ACTUAL GENOME: http://downloads.yeastgenome.org/sequence/S288C_reference/

genome_releases/S288C_reference_genome_R63-1-1_20100105.tgz). The reads were 

mapped using the Bowtie2 (v2.0.2)54 local alignment strategy, allowing for multiple 

mapping, and setting following options: --very-sensitive-local -I 180 -X 1000 --score-min G,

70,8. The mapped reads then underwent file format conversion into the binary format for 

downstream analysis using Samtools view, sort, and index (v0.1.18)55.

Alignment Tailoring—Post-alignment to the genome, duplicate pairs resulting from PCR 

overamplification were removed using Samtools rmdup, eliminating 1–5% of the paired 

reads. The reads were realigned over potential indel sites using the Genome Analysis 

Toolkit (GATK) RealignerTargetCreator and IndelRealigner (v2.4-9)56,57.

Variant Calling and Refinement—Variant calling was performed on the tailored read 

mappings using GATK UnifiedGenotyper (v2.4-9)56,57. For the haploids and diploids SNPs 

were called using default parameters, and for the higher ploidy strains the ploidy option was 

increased to 5N, which allows for identification of mutations at allelic frequencies down to 
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5% alternate allele representation. Variant lists were combined based on ploidy-type using 

GATK CombineVariants. SNPs and short indels were compared to the parental set of 

mutations using in house scripts to generate a set of non-Parental mutations. These 

mutations were filtered for alternate allele support and allelic frequency (>2 reads 

supporting alternate allele for coverage 10–20x, and >4 reads supporting alternate allele for 

coverage >20x). The filtered mutations were manually inspected using the Integrative 

Genome Viewer (IGV) (v2.1.19)58 to refine the set and further remove mapping artifacts 

such as strand representation bias, regional mapping quality issues from non-unique 

mapping, and artifacts of homopolymer and simple repeat alignments. We Sanger sequenced 

variants with low read support (<5 reads supporting alternate allele), as well as a subset of 

the other medium and high confidence variants. The final set of evolved variants discovered 

was annotated versus the gene file specific to the genome using an in house script.

Chromosomal CNV Identification—Identification of chromosomal copy number 

variations (CNVs) was performed using HTSeq (v0.6.1)59 in conjunction with custom 

scripts. HTSeq performs coverage estimations on a per-gene basis, and the custom scripts 

provided normalized Log2FoldChange between each sample and the parental haploid strain. 

Estimates on chromosomal copy number were inferred using the median value for the 

Log2FoldChange on a chromosome-by-chromosome basis. We implemented the Cochran 

Armitage test to determine whether ChrXIII had a trend for higher copy number, relative to 

the copy number observed for all chromosomes in the tetraploid evolved clones (Fig. 2d and 

Supplementary Table 2). This trend analysis is similar to a Chi square test, but tests whether 

there is a significant trend or direction to the observed data set (ChrXIII copy number).

Sequencing Quality Assessment—Because our sequencing was highly multiplexed, 

quality assessment on the sequencing data was necessary to eliminate strains without 

adequate genome coverage. For the haploids and diploids, we determined the adequate depth 

of coverage to recover mutations in two ways. First, we took the set of “strain-background” 

mutations, which were identified by filtering the parental variant calls for a conservative, 

high quality (qual > 100), homozygous set of locations. Each strain was then queried for the 

ability to recapitulate these variants, reporting a percentage overlap between each strain’s 

variant calls and the set of background variants. Any strain with less than 97% of the 

background mutations was dropped from consideration. Additionally, we examined the 

impact of subsampling down to various depths to investigate the impact of lower coverage 

on recovering variants. This was done using Picard’s DownsampleSam.jar (v1.72, http://

broadinstitute.github.io/picard/) on two higher coverage diploid strains to randomly down-

sample the coverage to 100x, 50x, 25x, and 10x coverage. We examined the SNP call 

overlap and found that for the strain-unique SNPs they could be captured even at a level of 

10x coverage. Using this information, we set minimum coverage requirements for each 

strain on a genome wide scale to eliminate strains without adequate genomic representation. 

Depth of coverage analysis was performed on all of the mapped data using Bedtools 

genomeCoverageBed (v2.16.2)60. The per-base coverage was then analyzed using an in 

house script to produce statistics on minimum coverage per allele, average coverage, etc.
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SOLiD Sequencing (2×50)

Library Prep—A pilot experiment was performed on 7 strains using SOLiD paired-end 

sequencing (Supplementary Table 1). Clones selected for SOLiD sequencing were cultured 

overnight from −80°C stocks in 4 ml SC + 2% raffinose medium. Genomic DNA was 

isolated using QIAGEN Genomic-Tip 100 according to the manufacturer’s instructions. 

SOLiD library preparation and sequencing was performed by the Molecular Biology Core 

Facility at Dana-Farber Cancer Institute according to the manufacturer’s instructions 

(Applied Biosystems, Life Technologies).

Mapping—The sequencing reads were mapped to the Saccharomyces cerevisiae reference 

genome (See Illumina Mapping) using multiple different mapping software including BWA 

(v.0.5.9)61, NovoAlignCS (v1.01.05)62, Bfast(v0.6.5a)63, and BowtieCS (v 0.12.7)64. 

BowtieCS and BWA were used in the downstream variant calling and copy number 

changes, while NovoAlignCS and Bfast served as added support in manual inspection of 

variants.

Alignment Tailoring—After mapping, the reads were post-processed for local 

realignment using SRMA (v0.1.15)65 and Samtools BAQ (v0.1.18)55.

Variant Calling and Refinement—Single nucleotide polymorphisms (SNPs), small 

insertions and deletions (indels) were called from the post-processed reads using Samtools 

Mpileup(v0.1.18)55, VARiD (v1.0.7f)66, and Freebayes (v0.8.9, http://

bioinformatics.bc.edu/marthlab/FreeBayes). Samtools and VARiD variant calls were used to 

identify the strain background (parental variants relative to the reference). These variants 

were filtered on the basis of reads supporting the allele in both directions, quality score of 

the call, and adequate read coverage over the call. Once filtered, all of the variant calls for 

the evolved strains were merged and compared to the parent. Variations were verified by 

manual inspection followed by Sanger validation for both a set of randomly sampled loci 

and regions of disagreement between different combinations of the mapping software and 

the variant callers (i.e. dinucleotide SNPs and multiple indels within a single read). The 

resulting set is later used for identification of strain-unique variants in the evolved strains.

To identify strain-unique variants, Freebayes, a variant caller capable of higher-ploidy 

(ploidy > 2N), was used. Freebayes has the ability to set the assumed ploidy over a genomic 

region to adjust the expected distribution for allelic frequency. The assumed ploidy was 

determined using aCGH as well as the copy number changes. Freebayes’ called variants on 

each evolved progeny were then cross-referenced with the parental variants to produce 

strain-unique variants (Supplementary Table 1). These variants were then manually 

examined in IGV58 and validated by Sanger sequencing. PCR amplification and Sanger 

sequencing of ~200 bp on either side of the sequence variants was performed using DNA 

from the evolved clone and the ancestor.

Chromosomal Copy Number Variations—Copy number changes, first identified in 

the aCGH data, were confirmed in the gDNA sequencing using BedTools 

genomeCoverageBed60 in combination with custom in-house scripts and DESeq (v1.10.1)67. 

Selmecki et al. Page 22

Nature. Author manuscript; available in PMC 2015 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://bioinformatics.bc.edu/marthlab/FreeBayes
http://bioinformatics.bc.edu/marthlab/FreeBayes


Briefly, the normalized genomic copy number of all annotated genes in each strain was 

compared back to the parent. These comparisons then were plotted using an in house script 

(See Illumina Chromosomal CNV Identification).

Extended Data

Extended Data Figure 1. A schematic representation of the construction of isogenic haploid, 
diploid, and tetraploid strains used in this study
Relevant strain numbers are indicated for the CFP-containing and YFP-containing ancestors.
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Extended Data Figure 2. Estimates from our mathematical modeling of the best-fit value of the 
beneficial mutation rate (μ) and the selection coefficient (s) of each ploidy evolution experiment
(a) Table of μ and s values that had the best-fit between the simulations and the experimental 

data, brackets indicate 95% confidence intervals. Values were determined based on different 

assumptions about the underlying distribution of beneficial mutations, which included: (b) 

uniform, (c) exponential, and (d) delta distributions. Estimates of μ and s were also obtained 

with (e) the Equivalence Principle model18 that assumes a delta distribution of beneficial 

mutations. Each two-dimensional plot includes the error range obtained by parametric 

bootstrap of 1000 independent simulated datasets (Methods). The 95% confidence intervals 

of μ and s from those 1,000 datasets were defined as the error ranges. (f) A schematic 

diagram of the three distributions of fitness effects that we used in our mathematical 

modeling: exponential (red), uniform (black), and delta (green) distributions. Just for 

illustration, we also provide a narrow Gaussian distribution (blue) that is close to a delta 

function. The real distribution of fitness effects probably has a more complex structure than 

any of the examples shown. The diagram illustrates the fact that the shape of the assumed 

distribution mandates differences in mutation rates. For example, if the mutations that 

mainly drive adaptation fall within the region of the double arrow, only a small proportion 

of the mutations from the exponential distribution will fall within this range, necessitating a 

much higher mutation rate to generate mutations in this region. By contrast, the delta 
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distribution lies in the middle of the double arrow range; therefore, all of the mutations that 

arise from this distribution are strong enough to contribute to adaptation, resulting in a 

relatively lower mutation rate. The uniform distribution is intermediate between these two 

extremes. Only a small portion of the mutations of the uniform distribution is within the 

double arrow region, but the probability of these mutations is orders of magnitude larger 

than the exponential. Therefore, the mutation rate of the uniform is closer to the delta than to 

the exponential distribution. The values used to generate this figure are the best-fit values of 

μ and s of the haploid populations in the different three distributions. See Methods for more 

details.
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Extended Data Figure 3. Experimental and computational analyses of the noise in our 
experimental measurements and of the methods used in our mathematical modeling (see 
Supplementary Information)
(a) Three different methods were used to determine the percent of YFP-expressing cells in 

mixtures of the 1N, 2N, and 4N CFP and YFP ancestor strains. Cells were analyzed by flow 

cytometry (10,000 cells) and fluorescence microscopy (300 cells), and by single colony 

analysis (96 colonies) of the mixture before galactose induction. The percent YFP 

determined by all three methods was highly correlated (Pearson correlation coefficient = 

0.98). (b) Table showing variation in flow cytometry replicate measurements. The standard 

deviation of the percent YFP obtained from 48 replicate populations of 6 different CFP:YFP 

ratios, for each ploidy type. (c) Table showing the average and standard deviation of the 

best-fit values for different ratios between beneficial (Ub) and deleterious (Ud) mutations, 

obtained from 100 independent datasets. (d) Evaluation of different summary statistics by 

calculating the distribution of best-fit values from 1000 replicate simulations. Four different 

summary statistics were used to analyze 1000 replicates of a parameter pair, s and μ (see 

Methods). The summary statistic using 10 bins has the highest mode and no outliers and was 

used to generate our best-fit values. (e) Criteria for exclusion of near-neutral mutations for 

implementation of the branching evolutionary model with an exponential distribution of 

mutations. Shown is the average deviation from equal percentages of YFP and CFP-

expressing cells with different thresholds for neutral mutations. The threshold (Tr) 

represents the fraction of the average fitness effect (s), meaning every mutation whose 

absolute value is smaller than Tr*s was excluded. For this scenario (with parameters 

μ=2*10−5 and s=0.08), we can exclude every mutation with a fitness effect smaller than s 

(i.e. Tr=1, light blue) without changing the outcome relative to excluding no mutations 

(Tr=0). However, when excluding all mutations with fitness effects smaller than ten times s 

(Tr=10, dark green), the result changes substantially. Thus, for high mutation rates (μ*N>1), 

we can exclude weak mutations19.
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Extended Data Figure 4. aCGH karyotype of the ancestor strains used in this study
Aneuploidy was not detected in the parental 1N, 2N, or 4N strains. Genomic DNA from 

each strain was compared to that of an isogenic ancestor PY3295 (BY4741 MATa ura3 his3 

trp1 leu2 LYS2) and log2 DNA copy number ratios were plotted using a custom Matlab 

script. To account for regions of complete deletion, the data were cropped at log2 ratios of ± 

2.0 and averaged across each chromosome using a sliding window of nine oligos. A log2 

ratio of zero is indicated by the red line. Loci altered during strain construction are indicated 

(TRP1, pSTE5, URA3, STE4). Strain ploidy, determined by flow cytometry, is indicated on 

the right.
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Extended Data Figure 5. aCGH karyotype of haploid and diploid evolved clones at generation 
250
(a) aCGH of eight haploid evolved clones. Data are displayed as in Extended Data Fig. 4. 

No aneuploidy was detected. Clone 1N_131 acquired the HXT6/7 amplification (arrow). (b) 

aCGH of eight diploid evolved clones. No aneuploidy was detected, but all clones except 

2N_233 acquired the HXT6/7 amplification. Log2 ratios were averaged across each 

chromosome using a sliding window of twenty-nine oligos. The ploidy of the evolved clone, 

determined by flow cytometry, is indicated on the right.
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Extended Data Figure 6. aCGH karyotype for twenty tetraploid evolved clones at generation 250
aCGH data are displayed as in Extended Data Fig. 4. Note that whole chromosome or large 

segmental chromosome gain and loss events are observed in all clones except clone 4N_337. 

Ploidy of the evolved clone, determined by flow cytometry, is indicated on the right, with +/

− indicating chromosome aneuploidy. Some highly aneuploid clones had widely different 

chromosome copy numbers for different chromosomes (e.g. some chromosomes were 

disomic, others trisomic and tetrasomic).
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Extended Data Figure 7. Analysis of recurrent and concerted chromosome loss events in the 
tetraploid evolved clones
(a) Evolved tetraploids acquired large segmental aneuploidies (regions greater than the ~7kb 

HXT6/7 amplification). aCGH data for individual chromosomes with large segmental 

aneuploidies in 4N-evolved clones (plotted using Treeview31). All breakpoints occurred at 

or near Ty sequences (arrowheads). (b) The pairwise patterns (Pearson correlation) of all 

chromosome copy number alterations in the 4N-evolved clones at generation 250 (n = 30, 

Supplementary Table 2). The copy number of some chromosomes were correlated (e.g. 

ChrXV and chrXVI), whereas others were anti-correlated (e.g. ChrVIII and ChrIX), possibly 

reflecting the need for gene expression balance. (c) Hierarchical clustering showing the copy 

number relationship among the chromosomes. (d) Proportion of all chromosomes in the 

evolved tetraploid clones with the indicated copy number (black). The copy number of 

ChrXIII (grey) in the 4N-evolved clones at generation 250 was significantly different from 

that of all other aneuploid chromosomes (Cochran Armitage test, p<1e-07).
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Extended Data Figure 8. aCGH karyotype for tetraploid evolved clones at generations 35, 55, 
and 500
All 4N-evolved clones at (a) generations 35 and 55 and (b) generation 500 are aneuploid for 

multiple chromosomes or carry large segmental chromosome aneuploidies, except for clone 

4N_503, which remained tetraploid. Data are displayed as in Extended Data Fig. 4. Ploidy 

of the evolved clone, determined by flow cytometry, is indicated on the right, with +/− 

indicating chromosome aneuploidy.
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Extended Data Figure 9. aCGH from isogenic 2N and 4N strains with an extra copy of ChrXIII 
or ChrXII
Data are displayed as in Extended Data Fig. 5b.

Extended Data Table 1

Yeast strains and plasmids used in this study

Strain (Ploidy) or 
Plasmid

Parental strain Relevant genotype Source

BY3295 (1N) BY4741 MATa his3Δ leu2Δ met15Δ ura3Δ Pellman collections

PY5997 (1N) BY3295 matΔ::pSTE5-ura3::TRP1 ste4Δ::HygroR trp1::NatR This study

PY5998 (1N) PY5997 matΔ::pSTE5-ura3::TRP1 ste4Δ::HygroR trp1::NatR::pGAL-ceCFP-tADH-SpHIS5 This study

PY5999 (1N) PY5997 matΔ::pSTE5-ura3::TRP1 ste4Δ::HygroR trp1::NatR::pGAL-eYFP-tADH-SpHIS5 This study

PY6006 (2N) PY5999 (2x) matΔ::pSTE5-ura3::TRP1 ste4Δ::HygroR trp1::NatR::pGAL-eYFP-tADH-
SpHIS5

This study

PY6008 (2N) PY5998 (2x) matΔ::pSTE5-ura3::TRP1 ste4Δ::HygroR trp1::NatR::pGAL-ceCFP-tADH-
SpHIS5

This study

PY6014 (2N) PY5999 (2x) matΔ::pSTE5-ura3::TRP1 ste4Δ::HygroR trp1::NatR::pGAL-eYFP-tADH-
SpHIS5

This study

PY6022 (2N) PY5998 (2x) matΔ::pSTE5-ura3::TRP1 ste4Δ::HygroR trp1::NatR::pGAL-ceCFP-tADH-
SpHIS5

This study

PY6031 (4N) PY6008 (4x) matΔ::pSTE5-ura3::TRP1 ste4Δ::HygroR trp1::NatR::pGAL-ceCFP-tADH-
SpHIS5

This study

PY6032 (4N) PY6022 (4x) matΔ::pSTE5-ura3::TRP1 ste4Δ::HygroR trp1::NatR::pGAL-ceCFP-tADH-
SpHIS5

This study

PY6040 (4N) PY6006 (4x) matΔ::pSTE5-ura3::TRP1 ste4Δ::HygroR trp1::NatR::pGAL-eYFP-tADH-
SpHIS5

This study
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Strain (Ploidy) or 
Plasmid

Parental strain Relevant genotype Source

PY6045 (4N) PY6014 (4x) matΔ::pSTE5-ura3::TRP1 ste4Δ::HygroR trp1::NatR::pGAL-eYFP-tADH-
SpHIS5

This study

PY7232 (4N) PY5999 SNF3-G439E This study

PY7237–PY7238 (2N) PY5999 SNF3-G439E/SNF3 This study

PY7233–PY7236 (2N) PY5999 SNF3-G439E/SNF3-G439E This study

PY7241–PY7244 (4N) PY5999 SNF3-G439E/SNF3/SNF3/SNF3 This study

PY7245 (2N) S288c RLY4737 MATa/α ura3Δ his3Δ trp1Δ leu2Δ 50

PY7246 (2N) PY7245 RLY4888 MATa/α + ChrXIII trisomy 50

PY7247–PY7249 (4N) PY7245 MAT a/a/α/α This study

PY7250–PY7252 (4N) PY7245 MATa/a/α/+ ChrXIII pentasomy This study

PY7253–PY7255 (4N) PY7245 MATa/a/α/+ ChrXII pentasomy This study

PB1500 YFP-tADH-SpHIS5, AmpR Yeast Resource Center

PB1499 CFP-tADH KanR AmpR Yeast Resource Center

PB2452 CFP-tADH SpHIS5, AmpR Pellman collection

PB2694 pGAL1-ceCFP-tADH-SpHIS5, AmpR This study

PB2697 pGAL1-eYFP-tADH-SpHIS5, AmpR This study

PB2314 MATa::pSTE5-URA3, AmpR 12

PB1308 ura3::TRP1 AmpR 47

PB2577 MATα URA3 CEN AmpR This study

B1819 LEU2 CEN AmpR Pellman collection

PB2647 STE4 LEU2 CEN AmpR This study

PB2649 STE4 URA3 CEN MATα, AmpR This study

PB1640 hphMX4 AmpR 68

PB1942 pGAL-HO HIS3 AmpR Gift of the Fink lab

PB1650 pGAL-HO URA3 LEU2 Gift of the Elion lab

pCORE kanMX4 KIURA3 48

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This work was supported by the Howard Hughes Medical Institute, the National Institutes of Health (R37 
GM61345), the G. Harold & Leila Y. Mathers Charitable Foundation, the Dana-Farber Cancer Institute Physical 
Sciences-Oncology Center (U54CA143798), the Boettcher Foundation’s Webb-Waring Biomedical Research 
Program, the National Science Foundation (NSF 1350915), the National Institutes of Health (R01 GM081617), and 
an American Cancer Society Postdoctoral Fellowship.

References

1. Ohno S, Wolf U, Atkin NB. Evolution from fish to mammals by gene duplication. Hereditas. 1968; 
59:169–187. [PubMed: 5662632] 

2. Otto SP, Whitton J. Polyploid incidence and evolution. Annu Rev Genet. 2000; 34:401–437. 
[PubMed: 11092833] 

Selmecki et al. Page 33

Nature. Author manuscript; available in PMC 2015 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Semon M, Wolfe KH. Consequences of genome duplication. Curr Opin Genet Dev. 2007; 17:505–
512. [PubMed: 18006297] 

4. Hufton AL, Panopoulou G. Polyploidy and genome restructuring: a variety of outcomes. Curr Opin 
Genet Dev. 2009; 19:600–606. [PubMed: 19900800] 

5. Paquin C, Adams J. Frequency of fixation of adaptive mutations is higher in evolving diploid than 
haploid yeast populations. Nature. 1983; 302:495–500. [PubMed: 6339947] 

6. Anderson JB, Sirjusingh C, Ricker N. Haploidy, diploidy and evolution of antifungal drug resistance 
in Saccharomyces cerevisiae. Genetics. 2004; 168:1915–1923. [PubMed: 15371350] 

7. Zorgo E, et al. Ancient Evolutionary Trade-Offs between Yeast Ploidy States. PLoS genetics. 2013; 
9:e1003388. [PubMed: 23555297] 

8. Mayer VW, Aguilera A. High levels of chromosome instability in polyploids of Saccharomyces 
cerevisiae. Mutation research. 1990; 231:177–186. [PubMed: 2200955] 

9. Bennett RJ, Johnson AD. Completion of a parasexual cycle in Candida albicans by induced 
chromosome loss in tetraploid strains. EMBO J. 2003; 22:2505–2515. [PubMed: 12743044] 

10. Gerstein AC, Chun HJ, Grant A, Otto SP. Genomic convergence toward diploidy in 
Saccharomyces cerevisiae. PLoS genetics. 2006; 2:e145. [PubMed: 17002497] 

11. Fujiwara T, et al. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null 
cells. Nature. 2005; 437:1043–1047. [PubMed: 16222300] 

12. Storchova Z, et al. Genome-wide genetic analysis of polyploidy in yeast. Nature. 2006; 443:541–
547. [PubMed: 17024086] 

13. Rancati G, et al. Aneuploidy underlies rapid adaptive evolution of yeast cells deprived of a 
conserved cytokinesis motor. Cell. 2008; 135:879–893. [PubMed: 19041751] 

14. Selmecki A, Forche A, Berman J. Aneuploidy and isochromosome formation in drug-resistant 
Candida albicans. Science. 2006; 313:367–370. [PubMed: 16857942] 

15. Zack TI, et al. Pan-cancer patterns of somatic copy number alteration. Nature genetics. 2013; 
45:1134–1140. [PubMed: 24071852] 

16. Chao DY, et al. Polyploids exhibit higher potassium uptake and salinity tolerance in Arabidopsis. 
Science. 2013; 341:658–659. [PubMed: 23887874] 

17. Haccou, P.; Jagers, P.; Vatutin, VA. International Institute for Applied Systems Analysis. . 
Branching processes: variation, growth, and extinction of populations. Cambridge University 
Press; 2005. 

18. Hegreness M, Shoresh N, Hartl D, Kishony R. An equivalence principle for the incorporation of 
favorable mutations in asexual populations. Science. 2006; 311:1615–1617. [PubMed: 16543462] 

19. Barrett RD, M’Gonigle LK, Otto SP. The distribution of beneficial mutant effects under strong 
selection. Genetics. 2006; 174:2071–2079. [PubMed: 17028334] 

20. Kao KC, Sherlock G. Molecular characterization of clonal interference during adaptive evolution 
in asexual populations of Saccharomyces cerevisiae. Nature genetics. 2008; 40:1499–1504. 
[PubMed: 19029899] 

21. Lang GI, et al. Pervasive genetic hitchhiking and clonal interference in forty evolving yeast 
populations. Nature. 2013; 500:571–574. [PubMed: 23873039] 

22. Brown CJ, Todd KM, Rosenzweig RF. Multiple duplications of yeast hexose transport genes in 
response to selection in a glucose-limited environment. Molecular biology and evolution. 1998; 
15:931–942. [PubMed: 9718721] 

23. Gresham D, et al. The repertoire and dynamics of evolutionary adaptations to controlled nutrient-
limited environments in yeast. PLoS genetics. 2008; 4:e1000303. [PubMed: 19079573] 

24. Kvitek DJ, Sherlock G. Reciprocal sign epistasis between frequently experimentally evolved 
adaptive mutations causes a rugged fitness landscape. PLoS genetics. 2011; 7:e1002056. 
[PubMed: 21552329] 

25. Ozcan S, Dover J, Rosenwald AG, Wolfl S, Johnston M. Two glucose transporters in 
Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene 
expression. Proc Natl Acad Sci USA. 1996; 93:12428–12432. [PubMed: 8901598] 

Selmecki et al. Page 34

Nature. Author manuscript; available in PMC 2015 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



26. Barrick JE, Kauth MR, Strelioff CC, Lenski RE. Escherichia coli rpoB mutants have increased 
evolvability in proportion to their fitness defects. Molecular biology and evolution. 2010; 
27:1338–1347. [PubMed: 20106907] 

27. Kryazhimskiy S, Rice DP, Jerison ER, Desai MM. Global epistasis makes adaptation predictable 
despite sequence-level stochasticity. Science. 2014; 344:1519–1522. [PubMed: 24970088] 

28. Sheltzer JM, et al. Aneuploidy drives genomic instability in yeast. Science. 2011; 333:1026–1030. 
[PubMed: 21852501] 

29. Dewhurst SM, et al. Tolerance of whole-genome doubling propagates chromosomal instability and 
accelerates cancer genome evolution. Cancer discovery. 2014; 4:175–185. [PubMed: 24436049] 

30. Ezov TK, et al. Molecular-genetic biodiversity in a natural population of the yeast Saccharomyces 
cerevisiae from “Evolution Canyon”: microsatellite polymorphism, ploidy and controversial 
sexual status. Genetics. 2006; 174:1455–1468. [PubMed: 16980391] 

31. Saldanha AJ. Java Treeview--extensible visualization of microarray data. Bioinformatics. 2004; 
20:3246–3248. [PubMed: 15180930] 

32. Durrett R, Foo J, Leder K, Mayberry J, Michor F. Intratumor heterogeneity in evolutionary models 
of tumor progression. Genetics. 2011; 188:461–477. [PubMed: 21406679] 

33. Zhu YO, Siegal ML, Hall DW, Petrov DA. Precise estimates of mutation rate and spectrum in 
yeast. Proc Natl Acad Sci USA. 2014; 111:E2310–2318. [PubMed: 24847077] 

34. Barbera MA, Petes TD. Selection and analysis of spontaneous reciprocal mitotic cross-overs in 
Saccharomyces cerevisiae. Proc Natl Acad Sci USA. 2006; 103:12819–12824. [PubMed: 
16908833] 

35. Rouzine IM, Wakeley J, Coffin JM. The solitary wave of asexual evolution. Proc Natl Acad Sci 
USA. 2003; 100:587–592. [PubMed: 12525686] 

36. Desai MM, Fisher DS, Murray AW. The speed of evolution and maintenance of variation in 
asexual populations. Curr Biol. 2007; 17:385–394. [PubMed: 17331728] 

37. Fogle CA, Nagle JL, Desai MM. Clonal interference, multiple mutations and adaptation in large 
asexual populations. Genetics. 2008; 180:2163–2173. [PubMed: 18832359] 

38. Vetterling, WT. Numerical recipes example book (C). 2. Cambridge University Press; 1992. 

39. Wakeley, J. Coalescent theory: an introduction. Roberts & Co. Publishers; 2009. 

40. Moura de Sousa JA, Campos PR, Gordo I. An ABC method for estimating the rate and distribution 
of effects of beneficial mutations. Genome biology and evolution. 2013; 5:794–806. [PubMed: 
23542207] 

41. Goyal S, et al. Dynamic mutation-selection balance as an evolutionary attractor. Genetics. 2012; 
191:1309–1319. [PubMed: 22661327] 

42. Ewens, WJ. Mathematical population genetics. 2. Springer; 2004. 

43. Efron, B.; Tibshirani, R. An introduction to the bootstrap. Chapman & Hall; 1993. 

44. Frenkel EM, Good BH, Desai MM. The fates of mutant lineages and the distribution of fitness 
effects of beneficial mutations in laboratory budding yeast populations. Genetics. 2014; 196:1217–
1226. [PubMed: 24514901] 

45. Longtine MS, et al. Additional modules for versatile and economical PCR-based gene deletion and 
modification in Saccharomyces cerevisiae. Yeast. 1998; 14:953–961. [PubMed: 9717241] 

46. Mumberg D, Muller R, Funk M. Yeast vectors for the controlled expression of heterologous 
proteins in different genetic backgrounds. Gene. 1995; 156:119–122. [PubMed: 7737504] 

47. Cross FR. ‘Marker swap’ plasmids: convenient tools for budding yeast molecular genetics. Yeast. 
1997; 13:647–653. [PubMed: 9200814] 

48. Storici F, Lewis LK, Resnick MA. In vivo site-directed mutagenesis using oligonucleotides. Nature 
biotechnology. 2001; 19:773–776.

49. Storici F, Resnick MA. The delitto perfetto approach to in vivo site-directed mutagenesis and 
chromosome rearrangements with synthetic oligonucleotides in yeast. Methods in enzymology. 
2006; 409:329–345. [PubMed: 16793410] 

50. Pavelka N, et al. Aneuploidy confers quantitative proteome changes and phenotypic variation in 
budding yeast. Nature. 2010; 468:321–325. [PubMed: 20962780] 

Selmecki et al. Page 35

Nature. Author manuscript; available in PMC 2015 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



51. Selmecki A, Bergmann S, Berman J. Comparative genome hybridization reveals widespread 
aneuploidy in Candida albicans laboratory strains. Molecular microbiology. 2005; 55:1553–1565. 
[PubMed: 15720560] 

52. Wenger JW, et al. Hunger artists: yeast adapted to carbon limitation show tradeoffs under carbon 
sufficiency. PLoS genetics. 2011; 7:e1002202. [PubMed: 21829391] 

53. Hittinger CT, et al. Remarkably ancient balanced polymorphisms in a multi-locus gene network. 
Nature. 2010; 464:54–58. [PubMed: 20164837] 

54. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012; 9:357–
359. [PubMed: 22388286] 

55. Li H, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009; 25:2078–
2079. [PubMed: 19505943] 

56. McKenna A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-
generation DNA sequencing data. Genome research. 2010; 20:1297–1303. [PubMed: 20644199] 

57. DePristo MA, et al. A framework for variation discovery and genotyping using next-generation 
DNA sequencing data. Nature genetics. 2011; 43:491–498. [PubMed: 21478889] 

58. Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-
performance genomics data visualization and exploration. Briefings in bioinformatics. 2013; 
14:178–192. [PubMed: 22517427] 

59. Anders S, Pyl PT, Huber W. HTSeq-a Python framework to work with high-throughput sequencing 
data. Bioinformatics. 2014

60. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. 
Bioinformatics. 2010; 26:841–842. [PubMed: 20110278] 

61. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. 
Bioinformatics. 2010; 26:589–595. [PubMed: 20080505] 

62. Novocraft. Novocraft short read alignment package. 2009. http://www.novocraft.com

63. Homer N, Merriman B, Nelson SF. BFAST: an alignment tool for large scale genome 
resequencing. PloS one. 2009; 4:e7767. [PubMed: 19907642] 

64. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short 
DNA sequences to the human genome. Genome biology. 2009; 10:R25. [PubMed: 19261174] 

65. Homer N, Nelson SF. Improved variant discovery through local re-alignment of short-read next-
generation sequencing data using SRMA. Genome biology. 2010; 11:R99. [PubMed: 20932289] 

66. Dalca AV, Rumble SM, Levy S, Brudno M. VARiD: a variation detection framework for color-
space and letter-space platforms. Bioinformatics. 2010; 26:i343–349. [PubMed: 20529926] 

67. Anders S, Huber W. Differential expression analysis for sequence count data. Genome biology. 
2010; 11:R106. [PubMed: 20979621] 

68. Goldstein AL, McCusker JH. Three new dominant drug resistance cassettes for gene disruption in 
Saccharomyces cerevisiae. Yeast. 1999; 15:1541–1553. [PubMed: 10514571] 

Selmecki et al. Page 36

Nature. Author manuscript; available in PMC 2015 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.novocraft.com


Figure 1. Rapid spread of beneficial mutations in tetraploid yeast
(a) Schematic of the evolution experiment. (b) Flow cytometry analysis of isogenic haploid 

(black), diploid (blue), and tetraploid (red) populations during adaptation to raffinose 

medium. Each line is the percentage of YFP cells in an independent population of YFP and 

CFP cells. Here and below, data from haploids is black, from diploids is blue, and from 

tetraploids is red. (c) The adaptation rate of the evolved clones relative to the diploid 

ancestor after 250 generations. Data points are the average rate of adaptation (change in 

fitness between generation 250 and generation zero, divided by 250 generations) of two 

replicate fitness measurements for the evolved clones. Clones from replicate evolution 

experiments (A or B) are indicated. The tetraploids acquired significantly more fitness in the 

same number of generations as compared to the haploids and diploids (t-test, p<1e-10). (d) 

Estimates from the branching evolution model of the best-fit value of the selection 

coefficient and beneficial mutation rate of each ploidy experiment, and their error range, 

determined using a uniform distribution of acquired mutations (other distributions are 

analyzed in Extended Data Fig. 2c–d, and the Equivalence Principle model is analyzed in 

Extended Data Fig. 2e). Error ranges were obtained by parametric bootstrap of 1000 

independent realizations (Methods).
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Figure 2. Tetraploid clones acquire frequent sequence variants, recurrent whole chromosome 
aneuploidy, and large-scale ploidy shifts during adaptation
(a) The number of sequence variants per clone was determined with whole genome 

sequencing of 74 evolved clones (22 haploid, 24 diploid, and 28 tetraploid clones, 

Supplementary Table 1). The difference between tetraploids and haploids or diploids was 

significant (t-test, p<1e-04 and p=0.004, respectively). (b) DNA content of evolved clones at 

generation 250, measured as the mean G1 propidium iodide fluorescence for each evolved 

clone (n = 192). For reference, the DNA content of ancestral, control strains (1N, 2N, 3N, 

and 4N) is shown in gray. (c) Heat map of chromosome copy number data obtained from 

aCGH and WGS for the ancestral and evolved 1N, 2N, and 4N clones at generation 250; 

color key at left. See Extended Data Figs. 4–6, and Supplementary Table 2 for all individual 

clones).
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Figure 3. Ploidy-specific fitness effects for certain beneficial mutations
Gain of ChrXIII is beneficial to tetraploid cells grown in raffinose medium but not for 

diploids. Shown is the fitness of isogenic wild-type 2N and 4N strains, with or without 

ChrXIII gain, relative to the 2N ancestor in raffinose (a) or glucose (b) medium. Error bars 

indicate the mean with the S.E.M. of seven individual clones and two technical replicates. 

(c) Competitive fitness of engineered isogenic strains of the indicated ploidy and genotype, 

relative to the 2N ancestor, in raffinose and (d) glucose medium. Error bars indicate the 

mean with the S.E.M. of three independent SNF3-G439E transformants of each ploidy type, 

t-test ***p<1e-04.
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Figure 4. Rapid adaptation of tetraploids normalized for initial fitness
Fitness of 2N and 4N clones relative to the 2N ancestor. Evolved tetraploids (4N250) with 

fitness equivalent to the diploid ancestors were identified and passaged for another 250 

generations to generate 4N500 clones (n=48). The fitness of these 4N500 clones was then 

compared to the fitness of evolved diploids after 250 generations (2N250, n= 192, replicate 

experiments A and B). 4N500 clones reached a higher fitness than 2N250 clones, irrespective 

of whether the 4N500 clones maintained a 3N-4N DNA content (n=14, KS-test, **p<1e-06) 

or underwent large-scale chromosome loss to a near diploid chromosome content (n=34, 

KS-test, ***p<1e-08). Error bars indicate the mean with the S.E.M.
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