Supplementary information

Prenylation of aromatic amino acids and plant phenolics by an aromatic prenyltransferase from Rasamsonia emersonii

Pimvisuth Chunkrua¹, Kai P. Leschonski¹, Alejandro A. Gran-Scheuch², Gijs J. C. Vreeke¹, Jean-Paul Vincken¹, Marco W. Fraaije², Willem J. H. van Berkel¹, Wouter J. C. de Bruijn¹, Mirjam A. Kabel¹*

* Corresponding author: Mirjam A. Kabel

Telephone: +31 (0)317 483209 Email: mirjam.kabel@wur.nl

¹ Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands

² Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

Supplementary tables

Table S1	Aromatic substrates used in the substrate screening	4
Table S2	Nucleotide and amino acid sequences of His-SUMO-RePT, and primer sequences used in gene sequencing	6
Table S3	Substrate conversion, UV and MS data, and the tentative identification of enzymatic products from RePT reactions in the presence of DMAPP and well-accepted substrates	20
Table S4	Substrate recovery (%) of aromatic substrates well-accepted by RePT	25
Table S5	NMR data of 1a and 1b, 2b, and 8b	26
Table S6	ESI-FT-MS data of the purified prenylated products produced using RePT	39

Supplementary figures

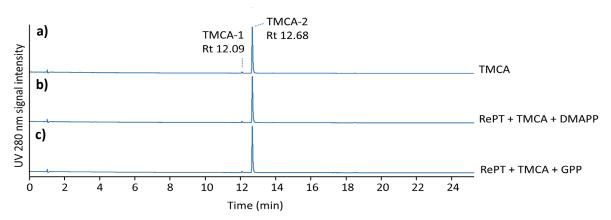
E: 01.4		_
Fig. S1-3	The results of using 3,4,5-trimethoxycinnamic acid (TMCA) as an internal standard for RePT reaction	7
Fig. S4	Nucleotide and amino acid sequences of His-SUMO-RePT, and primer sequences used in gene sequencing	8
Fig. S5	A structural model of untagged RePT acquired using AlphaFold2 colored according to pLDDT score and the order of amino acids	10
Fig. S6	Structural models of an N-terminal truncated AtaPT in an apo state and the untagged RePT acquired using AlphaFold2	11
Fig. S7	An expanded view of the active site architecture of RePT	12
Fig. S8	An expanded view of the active site architecture of four DMATSs	13
Fig. S9	SDS-PAGE analysis of the purified His-SUMO-RePT	14
Fig. S10	MS spectrum of intact His-SUMO-RePT	14
Fig. S11	Quantitative coverage of amino acids after peptide analysis of His-SUMO-RePT digested with porcine trypsin and <i>Bacillus licheniformis</i> protease	15
Fig. S12	Peptides released upon digestion of RePT hydrolyzed by porcine trypsin and BLP	15
Fig. S13	Substrate conversion of 1 and resveratrol 8 by RePT in the presence of DMAPP at three pHs	16
Fig. S14	Substrate conversion of 1 by RePT in the presence of DMAPP throughout 24-hours incubation at different reaction conditions: two different enzyme concentrations/methanol content/buffers/pHs	16
Fig. S15	Substrate conversion (%) and relative abundance of prenylated products (%) by RePT in the presence of DMAPP and 1, 2, or 8 with different reaction conditions (enzyme concentration, additives, time points)	17
Fig. S16	Substrate conversion of 1 converted by RePT when using different concentrations of 1 (0.1-20 mM)	17
Fig. S17	UHPLC-UV chromatograms of enzymatic reactions of RePT towards well-accepted substrates in the presence of DMAPP	18
Fig. S18 - S20	NMR spectra of 1a	27
Fig. S21 - S23	NMR spectra of 1b	30
Fig. S24 - S26	NMR spectra of 2b	33
Fig. S27 - S29	NMR spectra of 8b	36
Fig. S30	Experimental data involved in DMAPP synthesis	40
Supplement	ary methods	
Synthesis of dimeth	nylallyl pyrophosphate tri-ammonium salt (DMAPP)	39
Upscaled production	on of prenylated compounds	40

Table S1 Aromatic substrates used in substrate screening for RePT. Compounds accepted with > 10 % conversion, 1-10 % conversion, and < 1% conversion are shown in green, blue, and grey, respectively.

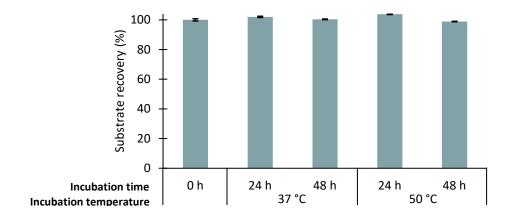
No.	Group	Compound	CAS no.	Purity (%)	Supplier ^a
1	Amino acids	L-Tryptophan	73-22-3	≥98	Sigma-Aldrich
2		L-Tyrosine	60-18-4	≥98	Sigma-Aldrich
3	Cyclic dipeptides	Cyclo(L-Trp-L-Trp)	20829-55-4	≥98	Cayman Chemical
4		Cyclo(L-Trp-L-Pro),	38136-70-8	≥98	Cayman Chemical
5	Stilbenes	Oxyresveratrol	29700-22-9	≥98	Cayman Chemical
6		Piceatannol	10083-24-6	>98	Cayman Chemical
7		Pinostilbene	42438-89-1	>97	Tokyo Chemical
8		Resveratrol	501-36-0	≥99	Sigma-Aldrich
9		Pinosylvin	22139-77-1	≥97	Sigma-Aldrich
10	Dihydrochalcones	Phloretin	60-82-2	≥99	Sigma-Aldrich
11	Flavonoids: Chalcones	Isoliquiritigenin	961-29-5	>98	Tokyo Chemical
12		Cardamonin	19309-14-9	≥98	Sigma-Aldrich
13		Xanthohumol	6754-58-1	≥99	Carl Roth
14	Flavonoids: Flavanols	(+)-Catechin	225937-10-0	>97	Tokyo Chemical
15		(-)-Epicatechin	490-46-0	>97	Tokyo Chemical
16	Flavonoids: Flavanonols	Taxifolin	480-18-2	99	Selleckchem
17	Flavonoids: Flavonols	Kaempferol	520-18-3	≥99	Extrasynthese
18		Quercetin	849061-97-8	95	Thermo Scientific
19	Flavonoids: Flavanones	Naringenin	67604-48-2	>93	Tokyo Chemical
20		Sakuranetin	520-29-6	≥95	Sigma-Aldrich
21		Eriodictyol	4049-38-1	≥99	Extrasynthese
22	Flavonoids: Flavones	Apigenin	520-36-5	≥99	INDOFINE Chemical
23		Luteolin	491-70-3	≥98	Extrasynthese
24		Baicalein	491-67-8	98	Sigma-Aldrich
25	Isoflavonoids: Isoflavans	(±)-Equol	94105-90-5	≥98	Cayman Chemical
26		Glabridin	59870-68-7	≥98	Sigma-Aldrich
27	Isoflavonoids: Isoflavones		486-66-8	≥95	Cayman Chemical
28		Genistein	446-72-0	≥98	Cayman Chemical
29		Glycitein	40957-83-3	≥98	FUJIFILM Wako Chemicals Europe
30		Formononetin	485-72-3	≥99	Sigma-Aldrich
31		Biochanin A	491-80-5	≥95	Sigma-Aldrich
32	Isoflavonoids: Coumestans	Coumestrol	479-13-0	≥95	Sigma-Aldrich
33	Benzopyrones: Coumarins	Esculetin	305-01-1	≥95	Sigma-Aldrich
34	Benzophenones	4-hydroxybenzophenone	1137-42-4	98	Sigma-Aldrich
35	Phenolic amides	Avenanthramide A	108605-70-5	≥98	Sigma-Aldrich
36		Avenanthramide B	108605-69-2	≥98	Sigma-Aldrich
37		Avenanthramide C	116764-15-9	≥98	Sigma-Aldrich
38	Hydroxybenzoic acid and	4-Hydroxybenzoic acid	99-96-7	99	Sigma-Aldrich
39	methoxylated derivatives	Vanillic acid	121-34-6	97	Sigma-Aldrich
40		Syringic acid	530-57-4	≥95	Sigma-Aldrich
41	Cinnamic acids and	trans-Cinnamic acid	140-10-3	≥99	Sigma-Aldrich
42	aldehyde derivatives	p-Coumaric acid	501-98-4	≥98	Sigma-Aldrich
43		trans-Ferulic acid	537-98-4	≥99	Sigma-Aldrich

No.	Group	Compound	CAS no.	Purity (%)	Supplier ^a
44		Sinapic acid	530-59-6	≥98	Sigma-Aldrich
45		3,4,5-Trimethoxycinnamic acid	90-50-6	>98	Tokyo Chemical
46	Monolignols	Coniferyl alcohol	458-35-5	98	Sigma-Aldrich
47		Sinapyl alcohol	537-33-7	80	Sigma-Aldrich
48	Lignin (related) dimers	Guaiacylglycerol-β-guaiacyl	7382-59-4	>97	Tokyo Chemical
49		Veratrylglycerol-β-guaiacyl	10535-17-8	97	abcr Gute Chemie
50		Hydrocoerulignone	25496-72-4	95	MP Biomedicals

^a abcr Gute Chemie (Karlsruhe Germany), Carl Roth (Karlsruhe, Germany), Cayman Chemical (Ann Arbor, MI, USA), Extrasynthese (Genay, France), FUJIFILM Wako Chemicals Europe (Neuss, Germany), INDOFINE Chemical (Hillsborough, NJ, USA), MP Biomedicals (Irvine, CA, USA), Selleckchem (Houston, TX, USA), Sigma-Aldrich (St. Louis, MO, USA), Thermo Scientific Chemicals (Waltham, MA, USA), and Tokyo Chemical Industry (TCI Europe) (Zwijndrecht, Belgium).


Table S2 Nucleotide and amino acid sequences of His-SUMO-RePT, and primer sequences used in gene sequencing. The sequence of the SUMO-tag is represented as **bold text**, and the sequence of RePT is represented as underlined text.

	Sequence
Codon-	ATGGGCAGCAGCCATCATCATCATCACGGCAGCGGCCTGGTGCCGCGCGGCAGC
optimized	GCTAGCATGTCGGACTCAGAAGTCAATCAAGAAGCTAAGCCAGAGGTCAAGCCA
nucleotide	GAAGTCAAGCCTGAGACTCACATCAATTTAAAGGTGTCCGATGGATCTTCAGAG
sequence	ATCTTCTTCAAGATCAAAAAGACCACTCCTTTAAGAAGGCTGATGGAAGCGTTC
_	GCTAAAAGACAGGGTAAGGAAATGGACTCCTTAAGATTCTTGTACGACGGTATT
	AGAATTCAAGCTGATCAGACCCCTGAAGATTTGGACATGGAGGATAACGATATT
	ATTGAGGCTCACAGAGAACAGATTGGTGGTATGGCACCTGGCAGTCATTCCACAG
	CGAACTTGACTCATGCGACCGACAGCGCATCCCTGTTGCCGCCTGTTGCAGCCCGCC
	<u>CTGCCACTTCCTTAGACAATAGCGTGTATCATTCACTCAC</u>
	<u>CGATCAAGATCAACTTTTCTGGTGGACCGAGACAGCCTCGATTGTTGCGAAACTGAT</u>
	<u>GGAAAGCGCCGGTTACGACGTGGAGTCACAACGTCGCTATCTGCTGCTTTACCACGC</u>
	<u>ACACATCCTGGCCGCATTAGGTCCCAAGCAGACGCCGTGTCCGTCC</u>
	<u>CAGTTCGCCATGGAAGTCTTTTATGACAGACGACCATACTCCCATTGAGATCAGCTG</u>
	<u>GAATCTTGGGGCCAATCGCTCTGTGGTGCGCCTGTCGATTGAGCCTATTGGTCCTTTC</u>
	<u>GCTGGTACCAGCTTTGATCCGTTCAACCAGCGCCCCGCGCTTGAGCTTCTCCAACAGT</u>
	TGCCAGGTATCGACCTGCAACTGTTTTACTACTTCCGTGACTGGTTCTTCATTGATGA
	$\underline{CGACGACGTCGACGACGTACTTAAGCGCCGTCCTGCTGGTGAGCATAGCTCGCAACT}$
	$\underline{CTTTGTAGCTTTCGACTTTGATGGTGGCAAGGTTACGACCAAGGCGTACATTTTCCCG}$
	CTCTTAAAGGCACTTGAAACCGGAATTCCGGTCTTGGACTTGGTTAGCACGGCGATC
	CGCAATTTAGATGAGCCAGCGTTATCCGTCAGCCCTGGCTGG
	$\underline{TTCATTCGCAGTTGCCCGATTGCGTCACGTCCTAAGCTGGAATTTATCGCGATCGACT}$
	<u>GTGTCGCGCCTGAGAAGTCCCGCATCAAAATCTACGTACG</u>
	<u>TAGAGAAAGTTAAGGATGTATTTACTCTTGGTGGCCGCTTAAATGACCAAACCATCC</u>
	<u>AAACCGCATTGGGCATGCTCGAGGAGCTTTGGCGCCTCGTCCTCGACCTGCCCGACG</u>
	<u>GGTTACGCGATAGTGATGAGTTGCACCCTCGCGACGAGAATTCAGCGGGGCATCGTA</u>
	<u>CGAGCGGAGTATTGTTTAATTTCGAGATCAAGCCAGGCGCCGCGCTGCCGGAACCTA</u>
	<u>AATTATACATCCCAGTCCGTCATTACGCGCGTAGTGACCTCGATATTGCACGCGGCTT</u>
	<u>GACCGCGTTCTTCCGTCGTCGTGGTTGGACATCCCTGGCGGAGACTTATACTGACAC</u>
	<u>CTTAAAAGAGACGTTCCCGCACCATCCTCTGGCGGAGTCTACCAGTACTCACACGTA</u>
	<u>TATCGTCTTTGCCTTTAAGAAGACCACAGGGGTGTATTTAACTGCGTATTATAATCCT</u>
	<u>CAGGTGTATGCGCGTCCCAAGCCGAGTGAGAAGTTGGAGTGGACGAAGGACCGTCT</u>
	<u>GCGCGGACATCGTCTTTGA</u>
Amino acid	GSSHHHHHHGSGLVPRGSAS MSDSEVNQEAKPEVKPEVKPETHINLKVSDGSSEIFFK
sequence	IKKTTPLRRLMEAFAKRQGKEMDSLRFLYDGIRIQADQTPEDLDMEDNDIIEAHRE
confirmed by	QIGG MAPGSHSTANLTHATDSASLLPPVAARPATSLDNSVYHSLTSVLEFADQDQLFW
4° 1	WITHER A CHALLED A FIRE A CARDATECORDAY LITTUAL HALL A LA CRIZACIDA DE LA CONTRACE ATE


A se peptide analysis $\underline{WTETASIVAKLMESAGYDVESQRRYLLLYHAHILAALGPKQTPCPSDRSASSPWKSFMT}$ DDHTPIEISWNLGANRSVVRLSIEPIGPFAGTSFDPFNQRPALELLQQLPGIDLQLFYYFRD WFFIDDDDVDDVLKRRPAGEHSSQLFVAFDFDGGKVTTKAYIFPLLKALETGIPVLDLVS <u>TAIRNLDEPALSVSPGWNVLEDFIRSCPIASRPKLEFIAIDCVAPEKSRIKIYVRTPHTALEK</u> VKDVFTLGGRLNDQTIQTALGMLEELWRLVLDLPDGLRDSDELHPRDENSAGHRTSGV <u>LFNFEIKPGAALPEPKLYIPVRHYARSDLDIARGLTAFFRRGWTSLAETYTDTLKETFPH</u> <u>HPLAESTSTHTYIVFAFKKTTGVYLTAYYNPQVYARPKPSEKLEWTKDRLRGHRL</u>

Primer (5'-3') ATGCCATAGCATTTTTATCC

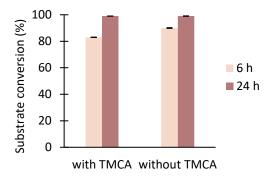

GGACTATGTCTAATTTAG Primer (3'-5')

Fig. S1 UHPLC-UV chromatograms of **a)** 3,4,5-trimethoxycinnamic acid (TMCA) isomers (TMCA-1 is *cis*-TMCA and TMCA-2, is *trans*-TMCA). The peak area ratio TMCA-2:TMCA-1 is 39:1. **b)** Incubation of RePT with TMCA in the presence of DMAPP and **c)** of GPP. No product formation was observed in both reactions.

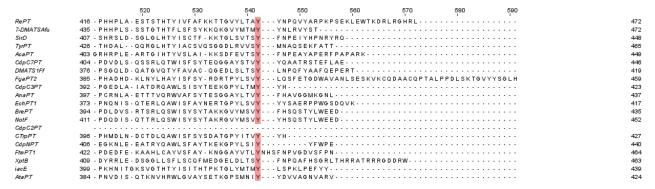


Fig. S2 Recovery of an aromatic reference compound TMCA-2 (*trans*-TMCA) tested at two temperatures (37 °C and 50 °C), up to 48 incubation hours. The recovery was calculated and reported in relative to a UV280 nm peak area of TMCA without incubation. The peak area of TMCA-1 was significantly smaller than TMCA-2, with less than 2.5% of the sum of the peak area of both isomers in all conditions. Therefore, the recovery was shown based on TMCA-2 only.

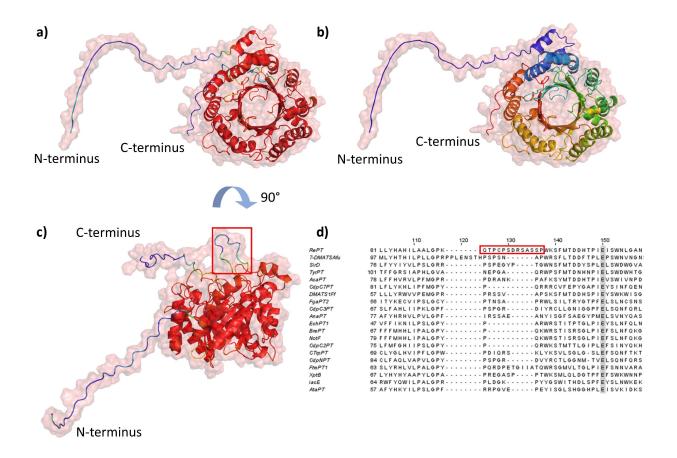
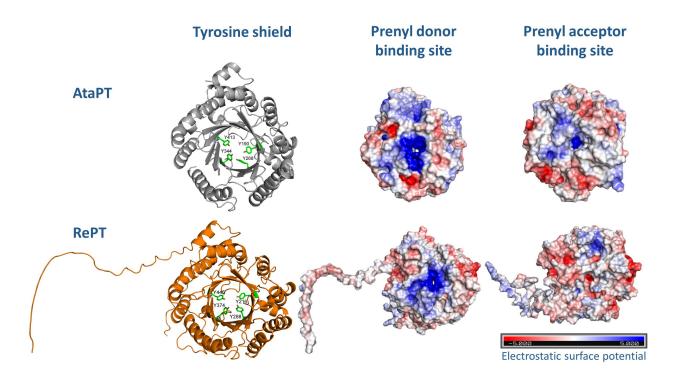
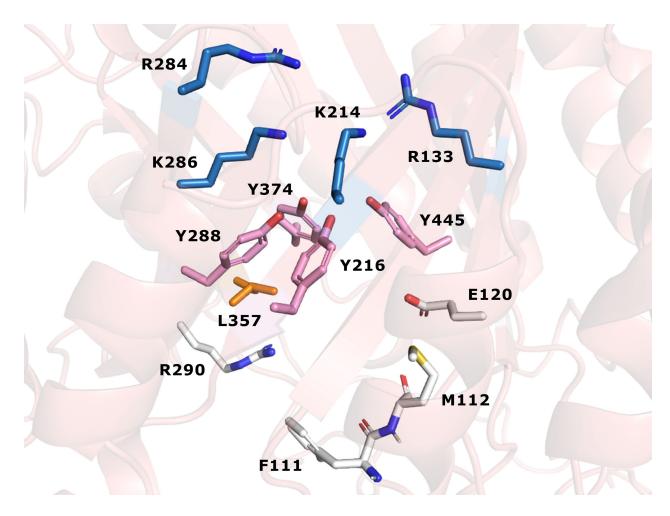


Fig. S3 Comparison of the conversion (%) of **1** by RePT in the presence of DMAPP, with or without 0.16 mM TMCA, after incubation for 6 and 24 hours at 37 °C. The concentration of RePT used in this experiment was 0.1 mg/mL, ten times lower than the concentration used to characterize the substrate scope of RePT.


	10	20 30	40	50	60	70	80	90	100
RePT		HATDSASLLPPVAARPA							
7-DMATSAfu SirD		APPGLNGTAAGYPAKTQ MQTARLFQGNLNLAA							
TyrPT		HYF ISVLYALF SSLFNL IP							
AcaPT		- ATSPISPILTKFPPTLF							
Cdp C7PT	1 MANRVSNDP	DAVSQNEVQAAKRPDIA							
DMATS1Ff FgaPT2	1		ATQ						
Cdp C3PT		MTVSSTAVEASAPCAEM	G H D	IF	YRTLSRSMIF	ANLDQY Q	YWHQIGPVLG	KMLVDGEYSIH	RQYEYL 66
AnaPT	1 MSPLS	MQTDSVQGTAENKSLET							
EchPT1 BrePT	1	MTAPELRAPAGHPQEPP						R F L K G A G Y D V H R F L E A G Q Y G L H	
NotF	1 MTAPELR	- · VDTFRAPEDAPKEPSAQ							
Cdp C2PT	1	MAINSRCGLACKRHSES MTTYTLSKGSDRPQ							
CTrpPT CdpNPT	1 MDGEMTASPPD I	SACDTSAVDEQTGQSGQ							
FtmPT1	1	MPPAPPDQK							
XptB iacE	1	MATDGMVLHKRSLSEGG MAISTPSNGVSHVA							
AtaPT	1	MAISIPSNGVSHVA							
	110	120 130	140	150	160	170	180	190	200
RePT	1	·····QTPCPSDRSASSP	1	1	_	1	1	1	1
7-DMATSAfu		LENSTHPSPSN AP							
SirD	76 LFYYIYVLPSLGRR	· · · · · · PSPEGYP· · · · TG	WNSFMTDDYSPL	ELSWDWG VA	A - EGESSV <mark>R</mark> FS	IEPIGKYAG	TQADPLNQKM	VYQLVDGLRPA	FHHTLD 164
TyrPT AcaPT	101 TFFGRSIAPHLGVA	NEPGA QR' PDRANK PA							
Cdp C7PT	81 LFLYKHLIPFMGPY								
DMATS 1Ff		PRSSVAP	SKSFMTDDHSPI	EYSWKWISG	- NKKPEI <mark>R</mark> YA	VELVSPLAG	SKQDPFNQIP	TRNLVYNLAKI	IP - ELD 142
FgaPT2		PTNSA PR' PSPGR DI							
CdpC3PT AnaPT		I RSSAE AN							
EchPT1		P AR'							
BrePT NotF		P Q K' P Q K'							
Cdp C2PT		P Q R'							
CTrpPT		PDIQRS KL							
CdpNPT FtmPT1		PSPGR DV PQRDPETGIIATQ'							
XptB		PREGASPPT							
iacE		P L D G K P Y							
AtaPT	57 AFYHKYILPSLGPF	R R P G V E P E	YISGLSHGGHPL	.EISVKIDKS	S KTIC <mark>R</mark> LG	LQAIGPLAG	TARDPLNSFG	DRELLKNLATL	LP - HVD 141
	210 22	1	240 250		60 27			290 30	
RePT	167 LQLFYYFRDWFFIDDD								
7-DMATSAfu SirD	192 LTLFEHFRNDMFVGPE 165 LTLFDVFSEALTTSRE								
TynPT	187 REWFDHFDQALAPD								
AcaPT	159 MKWFHALDEALVWHG -								
CdpC7PT DMATS1F 1	163 RDLYKHFADDLLPTKKI 143 LTWFEHFWHELLGPGS	DDEELILHEMIIDSNSL PTTSTSGVLTK							
FgaPT2	138 LEWFRHFKHDLTLNSE								
CdpC3PT AnaPT	152 LELHHALAADLTLTDR 162 LRLFDYFDSQFSLTT -	· · · NEQLLTAELAKT · · · NW							
EchPT1	129 TQLFNHFTNEFELSKSI								
BrePT	149 TQCFQQLLTRFQLS	LDEVRQLPPDDQ PL	KSQGAFGFDFNP	DGAILV <mark>K</mark> GY	VF PYLKAKAA	GVPVATL	IAESVRAIDA	- DRNQFMHAF -	S L · · · · 235
NotF CdpC2PT	161 TPFFQHLLSKFQLSLSI 157 MELHDYLINAFFPSANI								
CTrpPT	153 LQLYHQLVNEVSLTDQI								
CdpNPT	167 IELHHLLSEHLTLTAKI	DERNLNEEQLTKYLTNFQV	KTQYVVALDLRK	(TG - IVA <mark>K</mark> EY	FFPGIKCAAT	GQTGSNA	CFGAIRAVD -	- KDGHLDSLC -	Q L 258
FtmPT1 XptB	151 LTRFYEFETELVITKA 155 LTWTHHFLATLFDHDY								
iacE	150 LTRFNQFLEATNVPND								
AtaPT	142 LRLFDHFNAQVGLDR -	AQCAVATTKLIK ES	HNIVCTSLDL - K	(DGEVIP <mark>K</mark> V)	FSTIPKGLVT	ETPLFDL	TFAAIEQMEV	YHKDAPLRTAL	SS 230
	310 320	330 340	350	360	370	380	390	400	
RePT	255 LEDFIRSCPIASRP - K		LEFIAIDCV	/-APEKS <mark>R</mark> I	I YVRTPH - TA	LEKVKDVFT	LGGRL - NDQT	I Q T A L G M L E E L	WRLVLD 330
7-DMATSAfu	284 MEAWIGSYGGAAK								
SirD TyrPT	251 LNSDLEAFSATSYHRP 270 FEDFAQDPSTPPLE								
AcaPT	241 AYFNTLPAAIRP - G		IEIVATDCA	A - APKDS <mark>R</mark> I	I Y VRTRS - TN	FRDLEGLMT	LGGKL - KGSL	IDDAIAALMDL	WNLVMG 314
CdpC7PT DMATS1Ff	254 VREYTME · · · GSWHTG 222 VDAYLSSHDDGRQL · R								
FgaPT2	228 LEEY I R S R G S K S T A - S								
Cdp C3PT	239 IEAHMQR QTQT - D								
AnaPT EchPT1	247 LRTFVTKLFSKPTVTS 219 LNSYMEE SDGWN - E								
BrePT	236 INDYMQE STGYN - E		YTFLSCDLV	/-EMSRQRV	I YGAHTE - VT	WAKIAEMWT	LGGRLIEEPE	IMEGLARLKQI	WS - LLQ 309
NotF CdpC2PT	253 INDYMQE STGYN - E 248 MHDYLTK SSGYI - K								
CTrpPT	242 IEEYFTS - VRANA - A								
CdpNPT	259 IEAHFQ QSKI - D		DAFLCCDLV	/ - DPAHT <mark>R</mark> F	VY I A D P L - V T	LARAEEHWT	LGGRL - TDED	AAVGLEIIRGL	WS - ELG 329
FtmPT1 XptB	241 LQRY I ERRRRGLHV - PO 238 VHEFLSTNPEGKLL - K								
iacE	240 IESYLATFTRPEEAPQ								
AtaPT	231 LKDFLRPRVPTDASITI	PPL·····	TGLIGVDCI	- DPMLSRL	VYLATFR-MD	LSLIRDYWT	LGGLL - TDAG	TMKGLEMVETL	AK-TLK 309
	410 420	430 440	450	460	470	480	490	500	
RePT	331 L · · · PDGLRDSDELH · I								
7-DMATSAfu SirD	358 I · · · D D E D A E L P Q N · · · 327 L · · · P K D F P S D Q E L P ·								
TyrPT	345 · · · · QTGVPDDTPLP ·								
AcaPT	315 VDTSKPGWKDKRLPPR	VSVEANDNHIT	GGLLLYYELKPG	Q - PLPF F	KV <mark>Y</mark> LPVRHYC	ADDLAVARG	MEAYHRKKGS	MFL TGYVE	DVESIF 402
CdpC7PT DMATS1Ff	328 M · · · QMESPPMDRKR · 296 L · · · DPDTPPEDELP ·								
FgaPT2	303 L · · · SPGLKSYPAP · · ·								
Cdp C3PT	311 I VDGKRAEPQRP - :	SLPGDPLSI	VPFFMNYEITPG	Q - PLPK F	KF <mark>Y</mark> FPL IG	IPELKIANV	LAAFFERHGM	HDL ARVYPE	NLQSYY 391
AnaPT EchPT1	324 Y D D A V C S H S 293 N E G D R D Y K G G F A								
BrePT	310 I · · · GEGSRAFKGGFD								
NotF	327 I GEGSRAFKGGFD	YDKSSATDQIA	SPIIWNYEIHPG	S-RFPVF	KF <mark>Y</mark> LPVHG	ENDLHVARA	LAQFWDSLGW	PEH ACAYPD	TLQQLY 410
CdpC2PT CTmPT	321 LKSCTDNTAQPVELEFI 315 I QDGLREQKNRP - (
CdpNPT	330 I · · · I QGPLEPSAMM ·								
FtmPT1	338 M · · · REGYYTMPRGF ·	CELGK SSAGFE	APMMFHFHLDGS	QSPFPD F	QM <mark>Y</mark> VCVFG	MNSRKLVEG	LTTFYRRVGW	EEM ASHYQA	NFLANY 421
XptB iacE	312 VTEEHADFPETSEFPY								
AtaPT	310 L G D E A C E T L								


Fig. S4 Multiple sequence alignment analysis of RePT and 19 characterized DMATSs. The conserved key residues for prenyl donor binding are highlighted in blue, the conserved tyrosine residues for stabilizing the dimethylallyl carbocation intermediates in pink, and a key glutamate residue for binding the acceptor substrate in grey. Accession numbers of 20 DMATSs are as follow: RePT (XP_013322739.1), 7-DMATS_{Afu} (XP_754328.2), SirD (XP_003842411.1), TyrPT (XP_001396322.1), AcaPT (QHD39928.1), CdpC7PT (XP_001213396.1), DMATS1_{Ff} (XP_023436063.1), FgaPT2 (AAX08549.1), CdpC3PT (XP_001259405.1), AnaPT (XP_001258078.1), EchPT1 (ATP76206.1), BrePT (AFM09725.1), NotF (ADM34132.1), CdpC2PT (XP_001267443.1), CTrpPT (ADI60056.1), CdpNPT (ABR14712.1), FtmPT1 (AAX56314.1), XptB (P0DP82.1), iacE (A0A1J0HSL6.1), and AtaPT (AMB20850.1).

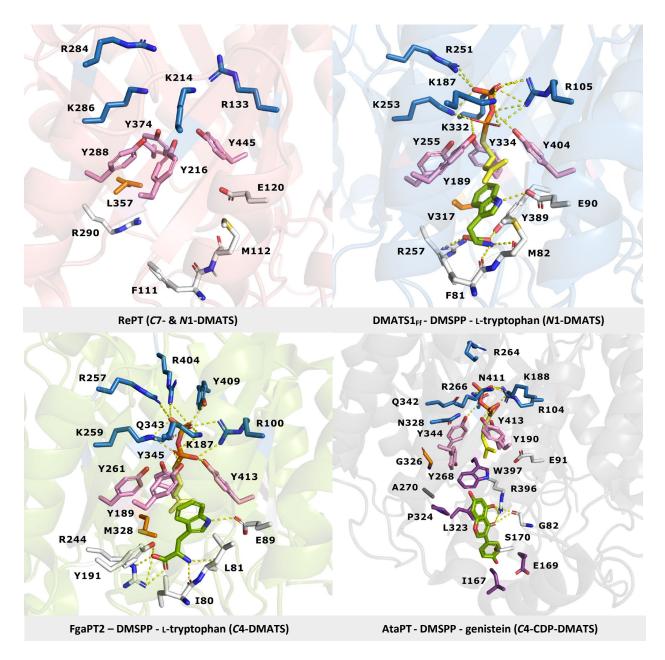

Fig. S5 A structural model of untagged RePT acquired using AlphaFold2. The model is colored according to **a**) the predicted local distance difference test (pLDDT) score of the AlphaFold2 model, with high and low confidence scores shown in red and blue, respectively, and **b**) the order of amino acids in which the *N*-terminus is colored blue and C-terminus is colored red. **c**) the view of **a**) with 90° rotation on X-axis to display the area with low pLDDT score (in the red rectangle). **d**) According to the multiple sequence alignment, the sequences in this area vary in amino acid composition and length among DMATSs. The structural models presented here were generated in PyMOL.

Fig. S6 Comparison of the structural models of *N*-terminal truncated AtaPT in the apo state (PDB: 5KCG) and the untagged RePT acquired using AlphaFold2. Residues in green represent the four highly conserved tyrosine residues (also known as the tyrosine shield). The electrostatic surface (positively charged in blue, negatively charged in red) of AtaPT displays a prenyl donor binding site (highly positively charged region) and an aromatic acceptor binding pocket (a more hydrophobic region) as reported by Chen et al. (2017).

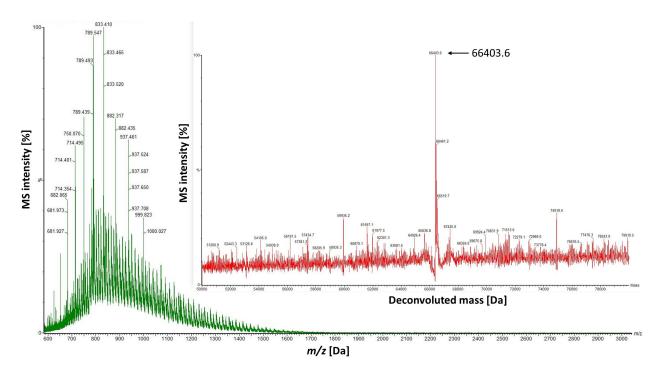

Fig. S7 An expanded view of the active site architecture of RePT using a model acquired with AlphaFold2. Possible key residues are highlighted: prenyl-donor binding (blue), carbocation-intermediate stabilizer (pink), acceptor-binding (white), and a possible determinant for prenyl donor specificity (orange). The proposed roles of the residues are based on Metzger et al. (2009), Chen et al. (2017), Burkhardt et al. (2019), and Eaton et al. (2022).

Fig. S8 An expanded view of the active site architecture of four DMATSs based on an AlphaFold2 model of RePT and crystal structures of DMATS1_{Ff} (PDB: 8DB0), FgaPT2 (PDB: 3I4X), and AtaPT (PDB: 5KDA) bound with a prenyl donor analogue (DMSPP) (in yellow) and an aromatic acceptor (in green). Key residues and analogues of the key residues identified from other relevant DMATSs are highlighted: prenyl-donor binding (blue); carbocation-intermediate stabilizer (pink); acceptor-binding (white); non-ligand residues involved in hydrophobic interaction (purple); an analogue of amino-acid converting DMATSs' arginine two positions downstream of the conserved RXKXY motif (R290 in RePT, R257 in DMATS1_{Ff}, R244 in FgaPT2), proposed to determine the preference of the enzyme between aromatic amino acid and cyclic dipeptide (CDP) (gray); a possible determinant for prenyl donor specificity (orange). Yellow dashed lines represent possible hydrogen bonds. The proposed roles of the residues in the crystal structures are based on Metzger et al. (2009), Fan and Li (2016), Chen et al. (2017), Burkhardt et al. (2019), and Eaton et al. (2022).

Mw (kDa) 250 150 100 75 50 37 25 20 15 10

Fig. S9 SDS-PAGE analysis of the purified His-SUMO-RePT.

 $\label{eq:Fig.S10} \textbf{MS} \ \text{spectrum of intact His-SUMO-RePT (sequence shown in } \textbf{Table S1)} \ \text{before and after deconvolution using } \\ \textbf{Maxent.}$

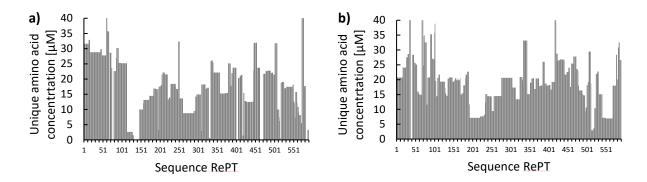


Fig. S11 Quantitative coverage of amino acids after peptide analysis of His-SUMO-RePT digested with porcine trypsin and *Bacillus licheniformis* protease (BLP). The average (unique) amino acid concentrations were 19 μ M and 20 μ M in RePT hydrolysates by porcine trypsin and BLP, respectively.

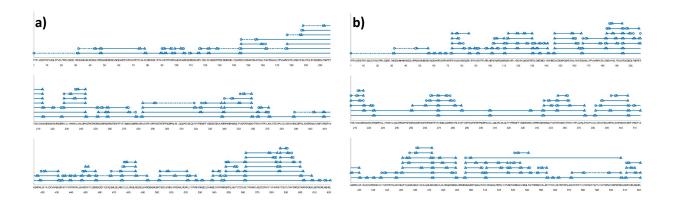


Fig. S12 Peptides released upon digestion of RePT hydrolyzed by a) porcine trypsin and b) BLP. The dotted lines indicate expected peptides that were not identified

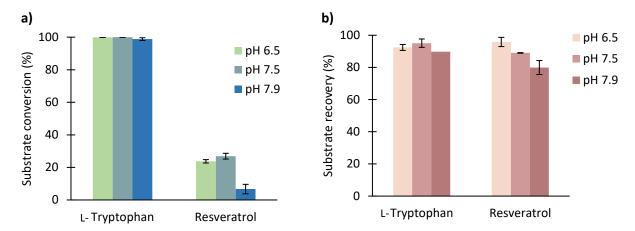
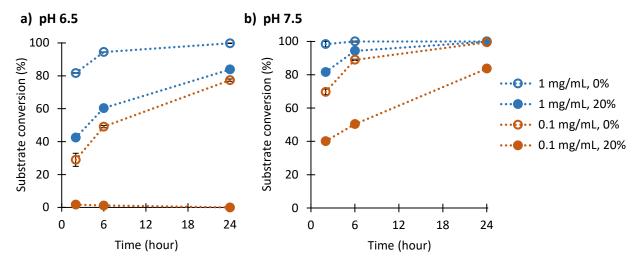
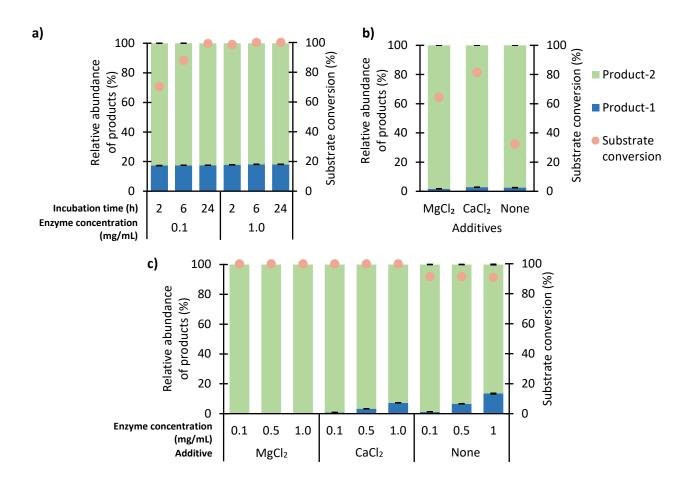




Fig. S13 a) Substrate conversion of L-tryptophan (1) and resveratrol (8) by RePT (1 mg/mL) in the presence of DMAPP at three pH values ranging from 6.5-7.9. The buffers used were 50 mM Bis-Tris/HCl (pH 6.5) and 50 mM Tris/HCl (pH 7.5 and 7.9) b) Substrate recovery after 24-hours incubation of 1 and 8 in the absence of RePT. The incubations were performed at a pH ranging from 6.5 to 7.9 in the presence of DMAPP. No clear pH optimum was observed when using 1, but the highest conversion was observed at pH 7.5 when using 8. The conversion of 8 was reduced to one-fourth at pH 7.9 compared to pH 7.5. This reduction could potentially be due to the lower stability of the substrate at high pH, as demonstrated by the lower substrate recovery at higher pH shown in b). Due to the potential stability loss of other aromatic substrates at high pH as observed with 8, pH 6.5 and 7.5 were then selected for further experiment to determine an optimum condition (Fig. S11). This experiment was performed without using TMCA as an internal standard.

Fig. S14 Substrate conversion of **1** by RePT in the presence of DMAPP throughout 24-hours incubation at different reaction conditions: RePT concentration 1 or 0.1 mg/mL, 0 % or 20 % (v/v) methanol, and the buffer **a)** 50 mM Bis-Tris/HCl buffer, pH 6.5 or **b)** 50 mM Tris/HCl, pH 7.5. At a lower enzyme concentration (0.1 mg/mL) or with 20 % (v/v) organic solvent, the conversion of **1** at pH 6.5 was lowered and was completely absent when all three suboptimal conditions were combined. Therefore, pH 7.5 was selected as an optimum condition for the enzymatic reaction.

Fig. S15 Substrate conversion (%) and relative abundance of prenylated products (%) by RePT in the presence of DMAPP and **a) 1** when incubated for 2, 6, and 24 hours using 0.1 or 1.0 mg/mL RePT; **b) 8** when incubated for 24 hours using 1.0 mg/mL RePT with 5 mM MgCl₂, CaCl₂, or no additives; and **c)** L-tyrosine (**2**) when incubated for 24 hours using 0.1, 0.5, or 1.0 mg/mL RePT with 5 mM MgCl₂, CaCl₂, or no additives.

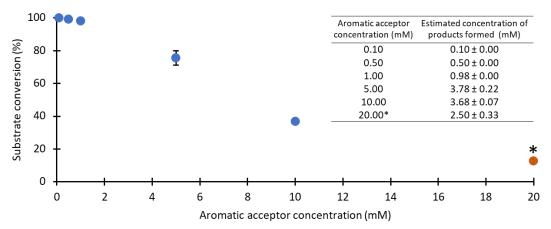
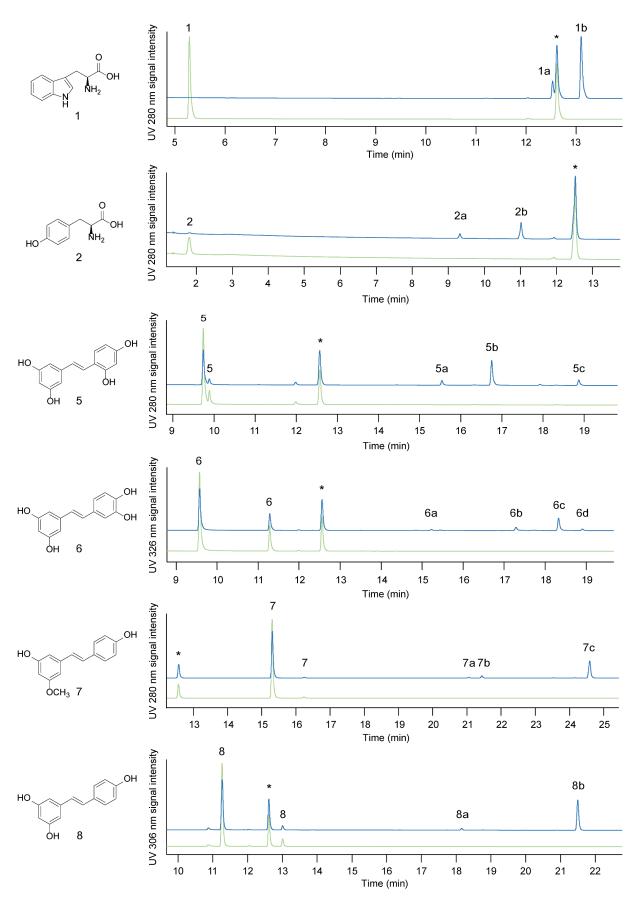
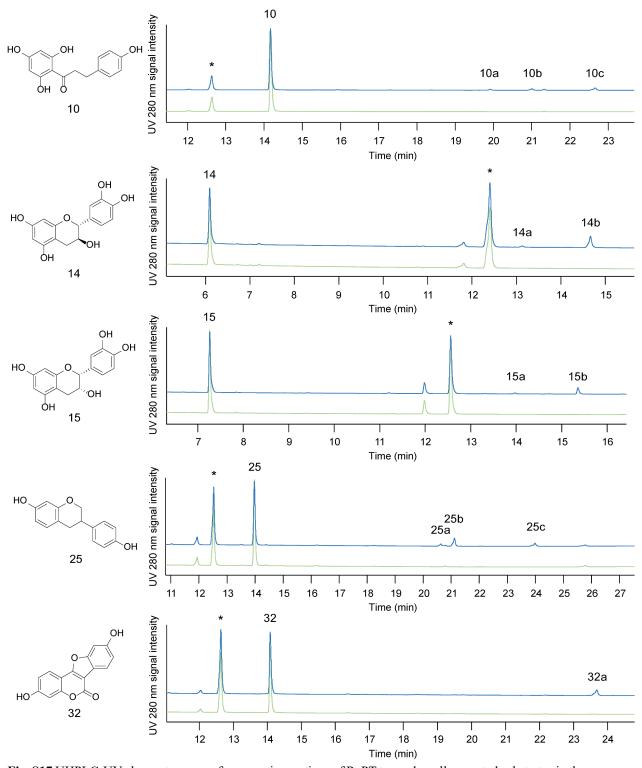




Fig. S16 Substrate conversion of 1 converted by RePT when incubated for 24 hours using different concentrations of 1 (0.1-20 mM). A concentration of 0.1 mg/mL RePT was used. The molar ratio of DMAPP to 1 was 2:1, except for the sample at 20 mM of 1 (the orange point with an asterisk), in which the ratio was 1:1. The estimated concentrations of the products formed are shown in the table.

Fig. S17 UHPLC-UV chromatograms of enzymatic reactions of RePT towards well-accepted substrates in the presence of DMAPP (in blue) and mixtures in the absence of RePT and DMAPP (blanks, in green). An asterisk indicates the main peak of TMCA, the internal standard used in the analysis. Peak numbers refer to compound numbers, detailed data for each peak are reported in **Table S3**.

Table S3 Substrate conversion, UV and MS data, and the tentative identification of enzymatic products from RePT reactions in the presence of DMAPP and well-accepted substrates (higher than 10% conversion).

No.	Compound	Substrate	Rel. substrate or	Rt UV	$UV_{\text{max}}^{}}$	[M-H]	MS ² NI (relative abundance) ^{d,e}	$[M+H]^+$	MS ² PI (relative abundance) ^{d,e}	(Tentative) prenylation
		(%)	product abundance	(min)			(relative abundance)		(relative abundance)	position
			(%) ^{a,b}							
1	L-Tryptophan	100 ± 0.0	-	5.30	278	203	159 (100), 116 (40), 142 (15), 186 (11)	205	188 (100)	-
1a	L-Tryptophan-PR1		20	12.53	286	271	184 (100), 158 (30), 157 (14), 159 (11), 227 (6)	273	256 (100), 205 (7)	n.i. / reverse N1 (NMR)
1b	L-Tryptophan-PR2		80	13.09	274	271	184 (100), 227 (64), 210 (50), 254 (13), 185 (5)	273	256 (100)	n.i. / norma C7 (NMR)
2	L-Tyrosine	91.7 ± 0.3	-	1.80	274	180	163 (100), 93 (14), 119 (13), 136 (11), 137 (5)	182	165 (100), 136 (27)	-
2a	L-Tyrosine-PR1		20	9.32	n.d.	248	204 (100), 231 (72), 187 (60), 161 (51), 174 (13), 175 (5)	250	233 (100), 194 (43) , 204 (11)	n.i.
2b	L-Tyrosine-PR2		80	11.02	274	248	135 (100), 119 (32), 204 (27), 231 (27), 180 (22) , 187 (20), 161 (20), 179 (7)	250	165 (100), 182 (13) , 204 (5), 233 (5)	n.i. / norma O4 (NMR)
5 ^{f,g}	trans-Oxyresveratrol	54.5 ± 0.4	75	9.74	326, 302	243	225 (100), 199 (33), 201 (33), 181 (21), 185 (19), 159 (17), 175 (16), 228 (14), 215 (11), 157 (8), 173 (6)	245	227 (100), 226 (48), 135 (11), 199 (9), 161 (6), 203 (6), 209 (5)	-
	cis-Oxyresveratrol		25	9.88	318, 286	243	225 (100), 201 (32), 199 (30), 185 (22), 175 (20), 181 (19), 159 (18), 228 (14), 215 (11), 157 (7), 173 (5)	245	n.d.	-
5a	Oxyresveratrol-PR1		12	15.54	326, 286	311	293 (100), 187 (35), 267 (27), 123 (22), 175 (17), 249 (17), 135 (14), 243 (13) , 296 (10), 269 (10), 242 (9) , 225 (9), 283 (9), 185 (7), 201 (7), 253 (7), 241 (6), 227 (6)	313	n.d.	n.i.

No.	Compound	Substrate conversion (%)	Rel. substrate or product abundance (%)a,b	Rt UV (min)	UV _{max} c	[M-H] ⁻	MS ² NI (relative abundance) ^{d,e}	[M+H] ⁺	MS ² PI (relative abundance) ^{d,e}	(Tentative) prenylation position
5b	Oxyresveratrol-PR2		71	16.75	338, 302	311	293 (100), 187 (37), 267 (29), 123 (22), 249 (18), 175 (17), 243 (14) , 135 (14), 296 (11), 269 (11), 242 (10) , 225 (9), 283 (9), 185 (8), 201 (8), 253 (7), 241 (6), 227 (6), 294 (6)	313	239 (100), 257 (80), 294 (35), 295 (34), 245 (14), 227 (7), 256 (6), 258 (6), 123 (5), 238 (5)	n.i.
5c	Oxyresveratrol-PR3		17	18.87	330	311	<u>242 (100)</u> , 241 (75), 243 (23) , 293 (8)	313	n.d.	O-prenyl
$6^{f,g,h}$	trans-Piceatannol	39.1 ± 1.6	79	9.71	326	243	255 (100), 201 (71), 199 (44), 175 (41), 200 (26), 243 (24), 215 (15), 159 (14), 173 (12), 185 (12), 228 (12), 214 (10), 181 (9), 198 (8), 197 (7), 157 (7), 226 (5)	245	n.d.	-
	cis-Piceatannol		21	11.35	262, 290	243	225 (100), 201 (64), 199 (44), 175 (41), 200 (26), 243 (21), 159 (13), 215 (13), 228 (12), 185 (12), 173 (11), 214 (10), 198 (9), 181 (9), 197 (7), 157 (7), 226 (6)	245	n.d.	-
6a	Piceatannol-PR1		1	15.23	334	311	254 (100), 253 (33), 241 (29), 255 (21), 201 (18), 269 (17), 267 (15), 256 (11), 212 (10), 242 (9), 268 (8), 227 (8), 243 (7), 293 (7), 240 (6), 187 (6), 123 (6), 189 (6), 109 (6)	n.d.	n.d.	C-prenyl
6b	Piceatannol-PR2		14	17.29	330	311	n.d.	n.d.	n.d.	n.i.
6c	Piceatannol-PR3		83	18.33	286, <u>326</u>	311	242 (100) , 243 (45) , 241(22), 267 (12), 224 (10), 293(6)	313	n.d.	O-prenyl
6d	Piceatannol-PR4		3	18.91	314	311	243 (100) , <u>242 (47)</u> , 241 (10)	313	245 (100) , 257 (8)	O-prenyl

No.	Compound	Substrate conversion (%)	Rel. substrate or product abundance $(\%)^{a,b}$	Rt UV (min)	UV _{max} ^c	[M-H] ⁻	MS ² NI (relative abundance) ^{d,e}	[M+H] ⁺	MS ² PI (relative abundance) ^{d,e}	(Tentative) prenylation position
7 ^{f,g}	trans-Pinostilbene	38.8 ± 0.5	94	15.31	306- 318	241	225 (100), 226 (88)	243	149 (100), 225 (65), 133 (42), 211 (39), 121 (25), 119 (24), 147 (18), 197(16), 159 (13), 210 (12), 183 (11), 145 (11), 135 (11), 224 (9), 226 (9), 215 (8), 123 (8), 213 (8), 193 (7), 227 (7), 107 (7), 105 (7), 157 (6), 201 (6), 212 (6), 91 (6), 125 (6), 207 (5)	-
	cis-Pinostilbene		6	16.23	286	241	225 (100), 226 (86)	243	n.d.	-
7a	Pinostilbene-PR1		5	21.05	330	309	n.d.	311	n.d.	n.i.
7b	Pinostilbene-PR2		8	21.44	326	309	254 (100), 293 (31), 294 (24), 255 (12), 309 (10), 310 (9), 253 (7), 251 (6)	311	n.d.	C-prenyl
7c	Pinostilbene-PR3		84	24.59	306- 318	309	n.d.	311	243 (100)	O-prenyl
8 ^{f,i}	trans-Resveratrol	36.7 ± 0.5	77	11.27	306	227	185 (100), 183 (42), 159 (34), 157 (28), 143 (14), 227 (14), 212 (5)	229	135 (100), 211 (54), 119 (21), 107 (19), 210 (16), 183 (12), 227 (7), 91 (6), 199 (6), 212 (6), 111 (5), 187 (5)	-
	cis-Resveratrol		23	13.01	290	227	185 (100), 183 (45), 159 (38), 157 (29), 143 (14), 227 (14)	229	n.d.	-
8a	Resveratrol-PR1		5	18.16	326	295	240 (100), 251 (51), 239 (32), 253 (31), 225 (29), 295 (23), 226 (10), 227 (10)	297	n.d.	C-prenyl

No.	Compound	Substrate conversion (%)	Rel. substrate or product abundance (%) ^{a,b}	Rt UV (min)	UV _{max} ^c	[M-H] ⁻	MS ² NI (relative abundance) ^{d,e}	[M+H] ⁺	MS ² PI (relative abundance) ^{d,e}	(Tentative) prenylation position
8b	Resveratrol-PR2		95	21.50	306	n.d.	n.d.	297	229 (100), 241 (69), 191 (17), 223 (17)	O-prenyl/ O4'-prenyl (NMR)
10	Phloretin	21.9 ± 0.1	-	14.18	286	273	167 (100)	275	107 (100), 149 (28), 169 (28), 127 (11)	-
10a	Phloretin-PR1		17	19.92	n.d.	341	167 (100), 123 (9)	343	217 (100), 175 (78), 325 (7), 127 (6)	n.i.
10b	Phloretin-PR2		28	21.01	290	341	235 (100), 193 (5), 191 (5)	343	287 (100)	C-prenyl
10c	Phloretin-PR3		56	22.66	286	341	<u>272 (100)</u> , 166 (5),273 (5)	343	n.d.	O-prenyl
14	(+)-Catechin	23.3 ± 0.3	-	6.09	278	289	245 (100), 205 (36), 179 (13), 203 (9), 231 (6), 247 (6)	291	123 (100), 139 (98), 165 (50), 273 (27), 151 (23), 147 (9)	-
14a	(+)-Catechin-PR1		9	13.13	n.d.	357	288 (100) , 289 (48) , 313 (21), 165 (20), 179 (9), 137 (8)	359	291 (100) , 191 (22), 273 (19), 303 (16), 139 (15), 341 (12), 207 (5), 123 (5)	O-prenyl
14b	(+)-Catechin-PR2		90	14.67	n.d.	357	288 (100), 150 (56), 289 (42), 313 (26), 166 (22), 137 (14), 179 (10), 165 (9), 226 (8), 273 (6), 270 (5)	359	291 (100) , 191 (21), 123 (18), 273 (17), 139 (13), 341 (6), 303 (5)	O-prenyl
15	(-)-Epicatechin	14.6 ± 0.7	-	7.26	278	289	245 (100), 205 (35), 179 (13), 203 (10), 231 (5), 247 (5)	291	123 (100), 139 (100), 165 (61), 273 (32), 151 (25), 147 (11)	-
15a	(-)-Epicatechin-PR1		13	13.97	n.d.	357	n.d.	359	n.d.	n.i.
15b	(-)-Epicatechin-PR2		87	15.36	278	357	150 (100), <u>288 (85)</u> , 289 (48), 166 (25), 137 (17), 313 (15), 165 (11), 226 (5), 179 (5)	359	291 (100) , 273 (16), 123 (15), 191 (12), 139 (9)	O-prenyl
25	(±)-Equol	25.1 ± 0.5	-	13.98	282	241	n.d.	243	123 (100), 107 (48), 134 (34), 133 (14), 135 (11), 137 (7), 132 (7), 108 (5)	-

No.	Compound	Substrate	Rel.	Rt	$UV_{\text{max}}^{}c}$	[M-H]-	MS ² NI	[M+H]+	MS ² PI	(Tentative)
		conversion	substrate or	UV			(relative abundance) ^{d,e}		(relative abundance) ^{d,e}	prenylation
		(%)	product	(min)						position
			abundance							
			(%)a,b							
25a	(±)-Equol-PR1		16	20.62	n.d.	n.d.	n.d.	311	n.d.	n.i.
25b	(±)-Equol-PR2		55	21.11	n.d.	n.d.	n.d.	311	n.d.	n.i.
25c	(±)-Equol-PR3		29	23.99	n.d.	n.d.	n.d.	311	243 (100) , 191 (59), 255	O-prenyl
									(51), 123 (36), 175 (30),	
									205 (24), 241 (23), 107	
									(13), 189 (12), 133 (7),	
									293 (6), 149 (6), 135 (5)	
32	Coumestrol	10.9 ± 0.4	-	14.08	<u>342</u> ,	267	267 (100), 239 (21), 268 (21),	269	241 (100), 197 (33), 225	-
					306		266 (19)		(26), 242 (10), 269 (6),	
									268 (5)	
32a	Coumestrol-PR1		100	23.68	346	335	266 (100)	337	269 (100)	O-prenyl

a Relative abundance of substrate was calculated using the substrate blanks incubated at 37 °C for 24 hours. ^b Relative abundance of prenylated products, only prenylated products with relative product abundance ≥ 5% are shown, except for prenylated products of 6 for which the relative abundance of each product greatly changed when using different UV wavelengths for calculation. ^c The underlined UV-Vis wavelength corresponds to the main peak. ^d Only fragments with relative abundance ≥ 5% are reported. ^e Fragments with a neutral loss of 55 (in case of prenylated stilbenes), 56, 57, 68, or 69 u are displayed in *italic blue bold text*, blue bold text, underlined blue bold text, black bold text, and underlined black bold text, respectively. ^f Stilbenes may occur as *cis*- and *trans*- isomers, showing two substrate peaks. Substrate conversion was calculated using the combination of a peak area of both isomers and shown as one value. ^g A correction factor for UV signal intensity between *cis*- and *trans*- isomers was unknown for this substrate, therefore semi-quantification was performed without correction. ^h UV signal intensity at 326 nm was used to semi-quantify 6 and 6a-d instead of UV 280 nm to avoid an error due to a co-eluting background peak. ⁱ UV signal intensity at 306 nm was used to semi-quantify *cis*- and *trans*- resveratrol. The intensity was corrected for a difference in the molecular extinction coefficients between the two isomers using the ratio of 3.426: 1 according to a known correction factor from Trela & Waterhouse (1996). Abbreviations: n.d. = not detected; n.i. = annotation guideline was not applicable to identify prenylation position or fragmentation pattern not available.

Table S4 Substrate recovery (%) of prenyl acceptor substrates with > 10 % conversion by RePT after an incubation at 37 °C for 24 hours.

No.	Compound	Recovery (%)
1	L-Tryptophan	100.0 ± 0.0
2	L-Tyrosine	99.8 ± 0.1
5	Oxyresveratrol	$90.3\pm0.2^{\rm a}$
6	Piceatannol	$88.1\pm1.8^{\rm a}$
7	Pinostilbene	$99.9 \pm 0.5^{\rm a}$
8	Resveratrol	102.2 ± 3.0
10	Phloretin	103.5 ± 0.1
14	(+)-Catechin	89.3 ± 0.2
15	(-)-Epicatechin	91.3 ± 0.5
25	(±)-Equol	100 ± 0.1
32	Coumestrol	76.7 ± 0.3

^a The recovery was calculated by using the sum of the two isomers of the substrates without taking into account the difference in UV response between isomers.

Table S5 NMR data of **1a** and **1b** in 70 % (v/v) methanol-d4 in deuterium oxide, **2b** and **8b** in DMSO-d6 (δ in ppm, J in Hz).

Posi-	1a		1b		2b		8b	
tion	5 4 3a 3 9 10 OH 6 7 7a N 1 4' 2' 3' 5'		5 4 3a 3 8 9 10 OH 6 7a H1 1' 2' 4' 3' 5'		3 2 1 7 8 9 OH 4' 3' 1' 5 6 NH ₂		HO 5 6 0 1 1 3 5 4 O 1 3 5 0 O O O O O O O O O O O O O O O O O O	
	$\delta_{ m H}$, mult., $J^{ m a}$	δ_{C}	$\delta_{\rm H}$, mult., J	δ_{C}	$\delta_{\rm H}$, mult., J	δ_{C}	$\delta_{\rm H}$, mult., J	δ_{C}
1	-	-	-	-	-	129.6	-	139.6
2	7.43, s	126.5	7.28, s		7.15, d, 7.9	130.8		104.9
3	-	108.0	-	109.7	6.84, d, 7.6	114.9	-	159.0
3a	-	130.4	-	128.4	-	-	-	-
4	7.70, dd, 2.0, 6.9	119.9	7.57, d, 7.8	117.4	-	157.6	6.13, t, 2.1	102.4
5	7.08, m, 6.8	120.3	7.05, t, 7.3	120.8	6.84, d, 7.6	114.9	-	159.0
6	7.10, m, 6.8	122.1	6.96, d, 7.1	122.1	7.15, d, 7.9	130.8	6.40, d, 2.0	104.9
7	7.51, d, 7.9	115.3	-	126.2	2.78, dd, 8.4, 14.3	36.5	-	-
	-	-	-	-	3.06, dd, 4.4, 14.3	1	-	-
7a	-	137.1	-	136.9	-	-	-	-
8	3.51, dd, 4.9, 15.3	28.1	3.23, dd, 8.7, 15.0	28.2	3.37, n.d. ^c	56.0 ^d	-	-
	3.21, dd, 4.3, 8.5		3.52, dd, 4.3, 15.3		-	-	-	-
9	3.95, m, n.d. ^b	56.7	3.96, dd, 4.1, 8.8	56.7	-	-	-	-
10	=	174.8	-	_	-	_	-	_
1'	5.21, d, 10.7	114.3	3.57, d, 7.4	30.5	4.49, d, 6.3	64.6	-	158.6
	5.16, d, 17.6		-	-	-	-	-	-
2'	6.17, dd, 10.6, 17.7	145.4	5.43, t, 7.4	122.9	5.42, t, 6.8	120.6	7.50, d, 8.7	128.2
3′	=	60.4	-	134.7	=	137.3	6.92, d, 8.4	115.3
4'	1.76, s	28.2	1.76, s	18.1	1.70, s	18.5	-	130.0
5′	1.76, s	n.f.	1.76, s	26.1	1.74, s	25.9	6.92, d, 8.4	115.3
6'	-	-	-	-	-	-	7.50, d, 8.7	128.2
α	-	-	-	-	-	-	6.89, d, 16.4	127.1
α'	-	-	-	-	-	-	6.97, d, 16.4	128.0
1"	-	-	-	-	-	-	4.54, d, 6.7	64.8
2"	-	-	-	-	-	-	5.44, t, 6.6	120.4
3"	-	-	-	-	-	-	-	137.5
4"	-	-	-	-	-	-	1.72, s	18.5
5"	-	-	-	-	-	-	1.75, s	25.9
ОН	-	-	-	-	-	-	9.20, s	-
	- -	-	-	-	-	-		-

^as: singlet, d: doublet, dd: doublet of doublets, t: triplet, m: multiplet; ^b overlapped with the peaks from **1b**; ^c overlapped with a residual solvent peak (H₂O); ^d Peak not observed in the ¹³C spectrum, but HMBC and/or HSQC correlations confirmed the chemical shift. Abbreviations: n.d. = no data due to peak overlapping, n.f. = not found

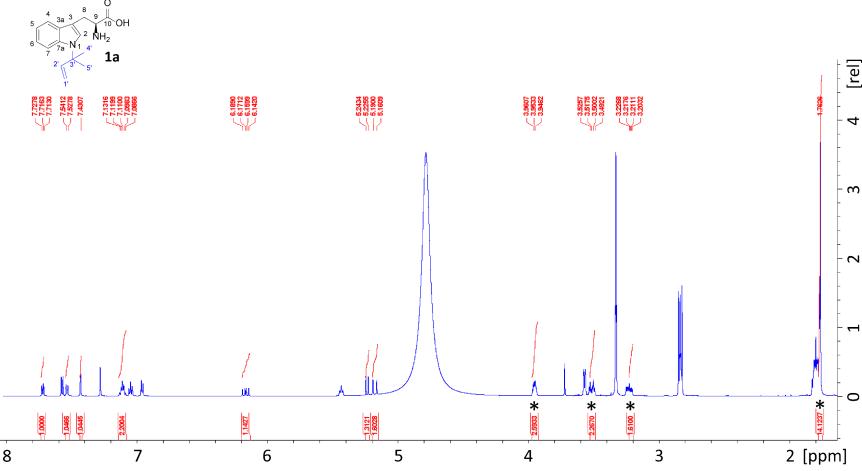


Fig. S18 ¹H-NMR spectrum (600 MHz) of 1a recorded in a mixture of 70 % (ν/ν) methanol-d4 and 30 % (ν/ν) deuterium oxide. Peaks with an asterisk were integrated including signals from both 1a and 1b, with a peak area ratio of 1a:1b = 1:1.4.

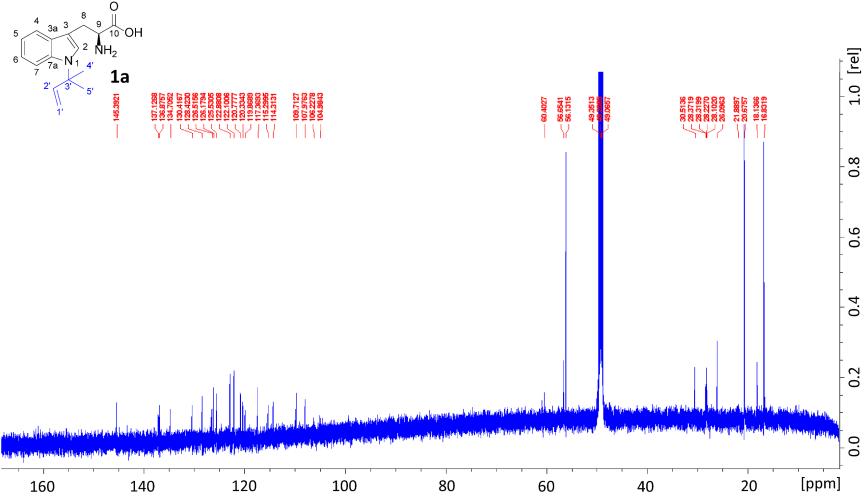
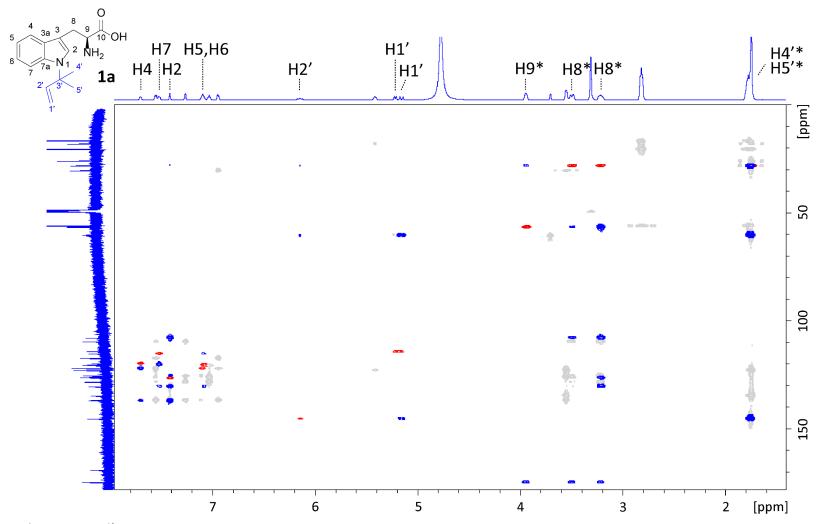



Fig. S19 ¹³C spectrum (150 MHz) of 1a recorded in a mixture of 70 % (v/v) methanol-d4 and 30 % (v/v) deuterium oxide.

Fig. S20 1 H(600 MHz)- 13 C (150 MHz) spectra and HSQC (red) and HMBC (blue) correlations of **1a** recorded in a mixture of 70 % (ν/ν) methanol-d4 and 30 % (ν/ν) deuterium oxide. Peaks with an asterisk were integrated including signals from both **1a** and **1b**. Peaks of the impurities (correlations shown in grey) mostly came from the presence of **1b**, while a few peaks were from unidentified impurities. Due to the lack of peak splitting in the extrapolated 1 H spectrum, a separate 1 H spectrum (**Fig. S18**) was used to acquire accurate peak shapes for data interpretation.

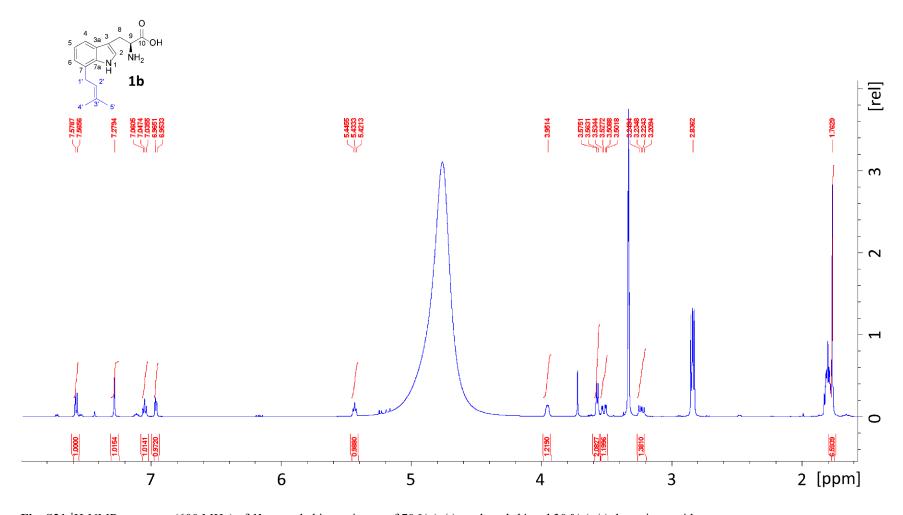


Fig. S21 ¹H-NMR spectrum (600 MHz) of **1b** recorded in a mixture of 70 % (v/v) methanol-d4 and 30 % (v/v) deuterium oxide.

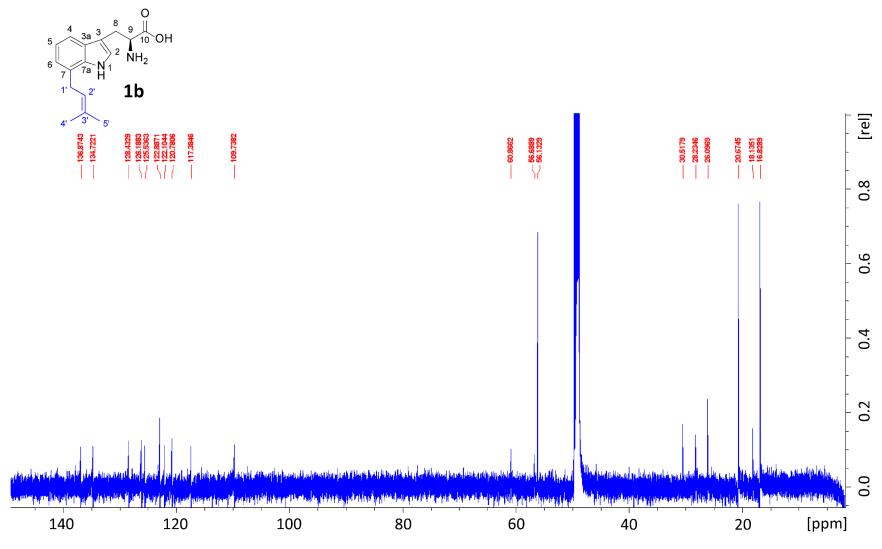


Fig. S22 ¹³C spectrum (150 MHz) of **1b** recorded in a mixture of 70 % (v/v) methanol-d4 and 30 % (v/v) deuterium oxide.

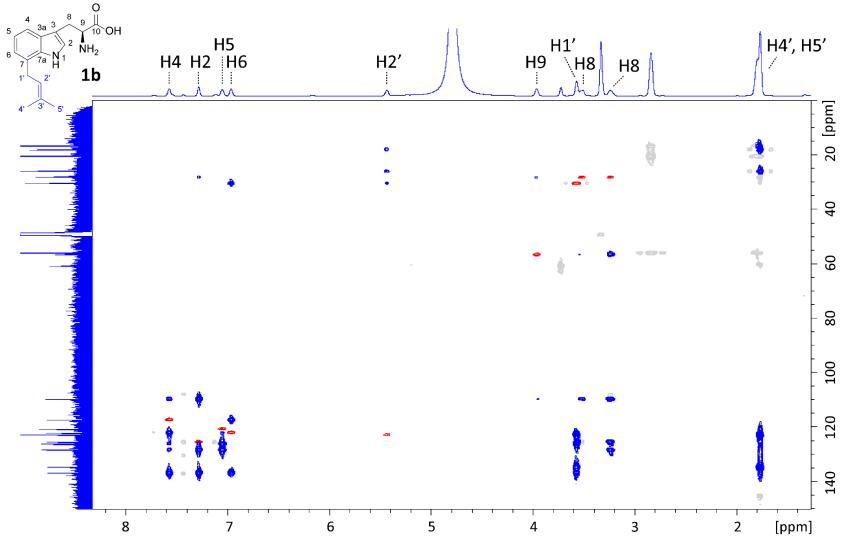


Fig. S23 1 H(600 MHz)- 13 C (150 MHz) spectra and HSQC (red) and HMBC (blue) correlations of **1b** recorded in a mixture of 70 % (ν/ν) methanol-d4 and 30 % (ν/ν) deuterium oxide. Peaks of the impurities (correlations shown in grey) mostly came from the trace presence of **1a**, while a few peaks were from unidentified impurities. Due to the lack of peak splitting in the extrapolated 1 H spectrum, a separate 1 H spectrum (**Fig. S21**) was used to acquire accurate peak shapes for data interpretation.

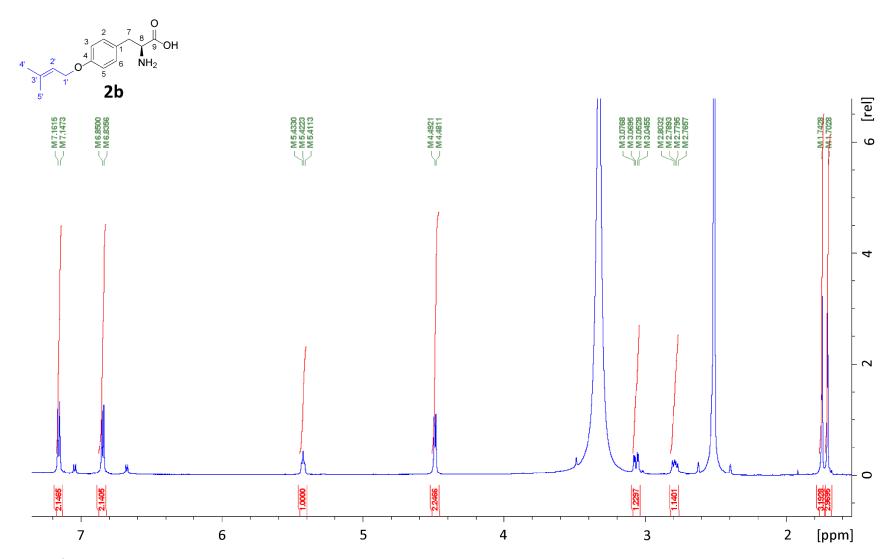


Fig. S24 ¹H-NMR spectrum (600 MHz) of 2b recorded in DMSO-d6.

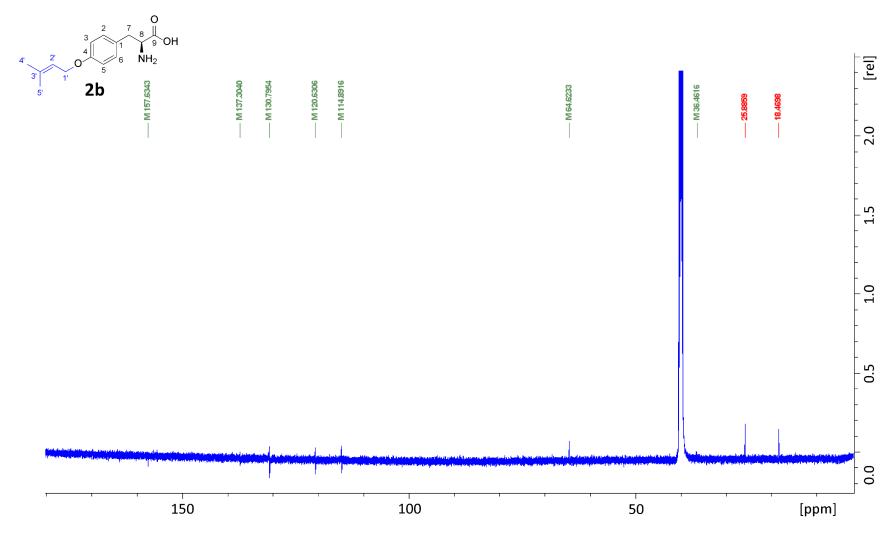


Fig. S25 ¹³C spectrum (150 MHz) of 2b recorded in DMSO-d6.

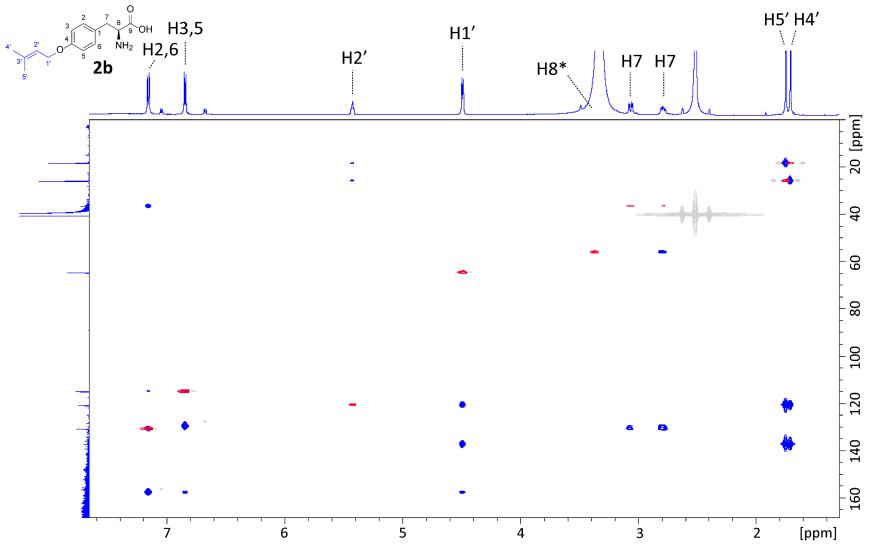


Fig. S26 ¹H(600 MHz)-¹³C (150 MHz) spectra and HSQC (red) and HMBC (blue) correlations of **2b** recorded in DMSO-d6.

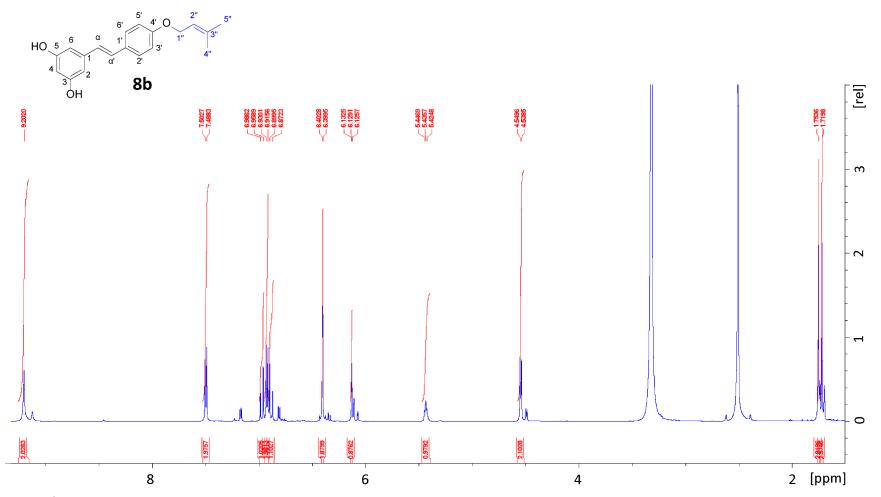


Fig. S27 ¹H-NMR spectrum (600 MHz) of 8b recorded in DMSO-d6.

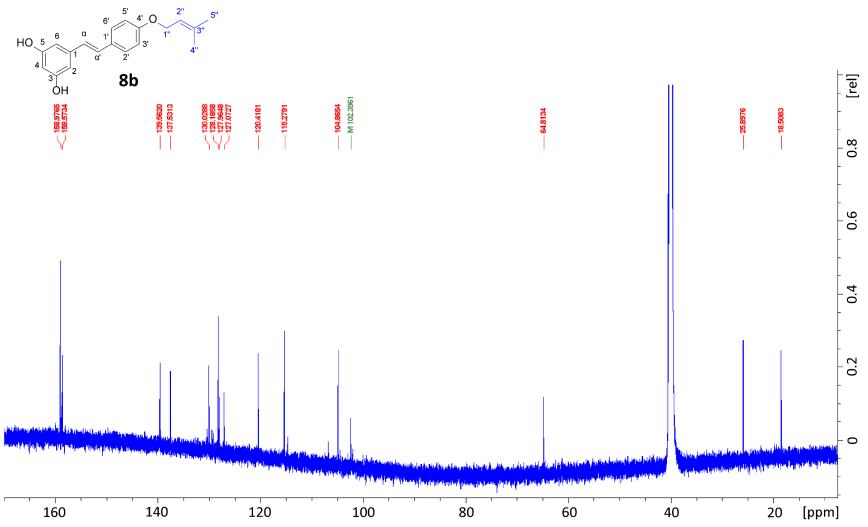


Fig. S28 ¹³C spectrum (150 MHz) of 8b recorded in DMSO-d6.

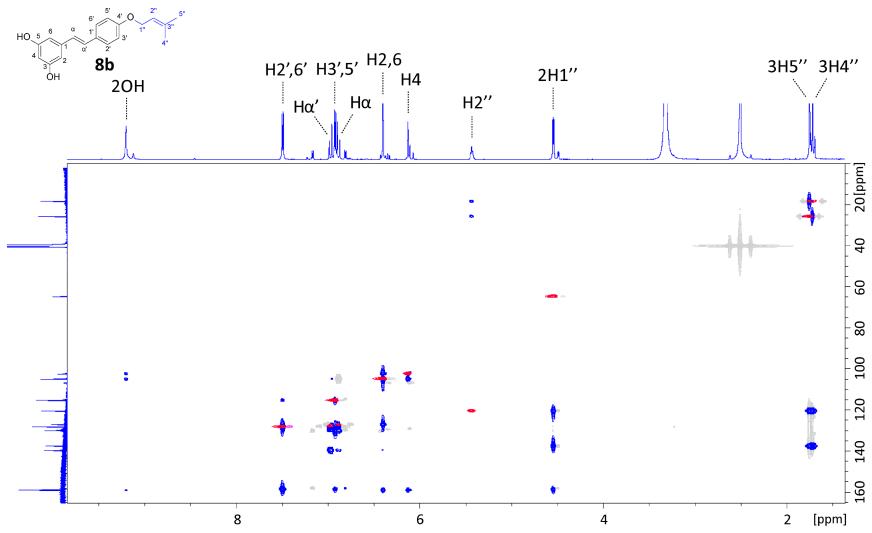
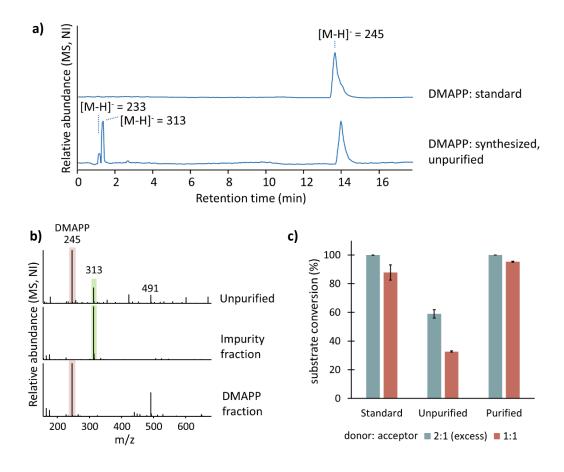


Fig. S29 ¹H(600 MHz)-¹³C (150 MHz) spectra and HSQC (red) and HMBC (blue) correlations of **8b** recorded in DMSO-d6.

Table S6 ESI-FT-MS data of the purified prenylated products produced using RePT


Compound	Chemical formula	[M-	Deviation	
	-	Calculated	Observed	(ppm)
N1-prenyl-L-tryptophan (1a)	$C_{16}H_{20}O_2N_2$	273.15975	273.16019	1.59
C7-prenyl-L-tryptophan (1b)	$C_{16}H_{20}O_2N_2$	273.15975	273.15991	0.57
O4-prenyl-L-tyrosine (2b)	$C_{14}H_{19}O_3N$	250.14377	250.14401	0.96
O4'-prenyl-resveratrol (8b)	$C_{19}H_{20}O_3$	297.14852	297.14871	0.64

Synthesis of dimethylallyl pyrophosphate tri-ammonium salt (DMAPP)

The synthesis of DMAPP was performed based on previously published protocols (Woodside et al. 1988; Chekan et al. 2020; Eggbauer et al. 2022) with several adaptations. Tris(tetrabutylammonium) hydrogen pyrophosphate 3.09 g (3.32 mmol) was dissolved in 1.5 mL acetonitrile (ULC/MS-grade). Prenyl bromide 202 µl (1.66 mmol) was added to the solution. The mixture was flushed with nitrogen and left to stir at room temperature for 5 h. The yellowish oil was then mixed with 1 mL of ion exchange buffer (2 g/L of NH₄HCO₃ in 2 % (v/v) isopropyl alcohol in water) and loaded onto a pre-treated ion-exchange column. The ion-exchange column was prepared by washing 40 mL dry volume of DOWEX AG 50W-X8 resin (H+ form, 100-200 mesh) (Bio-Rad Laboratories, Hercules, CA, USA) packed in a glass chromatography column with 170 mL of concentrated aq. ammonia. The column was further rinsed with 560 mL of water until the eluate reached pH 7. The column was equilibrated with 130 mL of ion-exchange buffer containing the reaction mixture. After the mixture was loaded, the reaction flask was rinsed with an additional 2 portions of 1 mL ion-exchange buffer, which were also loaded onto the column. The elution was performed with 80 mL of ion-exchange buffer (2 column volumes). Four fractions were collected and the presence of DMAPP was confirmed with thin-layer chromatography (TLC). Separation of DMAPP with TLC (R_f = 0.52) in each fraction was performed with 1propanol:NH₄OH:water (8:5:2) on a silica gel plate. The reaction products were visualized by staining with KMnO₄ stain (200 mL water containing 1.5 g KMnO₄, 10 g K₂CO₃, and 1.25 mL of 10 % NaOH). The fractions containing DMAPP were pooled and lyophilized, yielding 718 mg of white powder.

The purity of the synthesized DMAPP was assessed by testing substrate conversion with RePT and L-tryptophan at the same reaction condition as described in the substrate specificity test. Substrate conversion was reduced from 100 % to 59 % when using the synthesized DMAPP obtained after ion exchange chromatography compared to the DMAPP standard. Additionally, the synthesized DMAPP was analyzed by HILIC-UHPLC-ESI-IT-MSⁿ. A UHPLC-MS system identical to the one described in the substrate specificity test was equipped with an Acquity UPLC BEH HILIC column (2.1 x 150 mm, 1.7 μm) (Waters, Milford, MA, USA). The column temperature was set at 25 °C. The flow rate used was 400 μL/min with the following eluents: (A) 25 mM NH₄HCO₃ in water and (B) 25 mM NH₄HCO₃ in 10 % (*v/v*) water in acetonitrile. The elution gradient was 1 min isocratic 100 %B; 22 min linear gradient 100-90 %B; 5 min linear gradient 90-80 %B; 1 min linear gradient 80-100 %B; 12 min isocratic 100 %B. Mass spectrometric analysis was performed with the same MS system and settings as described in the substrate specificity test, with the exception of using a mass acquisition range of *m/z* 140-1000. Additionally, dynamic mass exclusion settings were adjusted. Most intense ion was fragmented 4 times with a repeat duration of 15 s and then excluded for fragmentation for 15 s. The purity of DMAPP was determined, based on MS¹ peak area in negative ionization mode, to be 70 % (**Fig. S30a**).

Further purification of DMAPP was performed with Flash chromatography, using Büchi FlashPure EcoFlex diol 4 g cartridge connected to Büchi Pure C-850 FlashPrep (Flawil, Switzerland). The eluents (Buffer A and B) used were the same as those used for HILIC-UHPLC-ESI-IT-MSⁿ. The synthesized DMAPP was resolubilized with Buffer A. The elution was performed with a flow rate of 15 mL/min with the following program: 1 column volume (CV) isocratic 100 %B; 20 CV linear gradient 100-50 %B; 5 CV isocratic 50 %B; 1 CV linear gradient 50-100 %B; 10 CV isocratic 100 %B. As DMAPP and the impurities could not be monitored via detection by UV or ELSD in the FlashPrep system, the obtained fractions were analyzed by direction injection ESI-IT-MSⁿ. Fractions containing DMAPP ([M-H]⁻ m/z 245 in MS NI, with MS² fragments m/z 227, 79, 159) (Fig. S30b) without impurities were pooled. Pooled fractions underwent solvent evaporation under reduced pressure and lyophilization, yielding 251 mg of the purified DMAPP. The purified DMAPP was assessed in an enzymatic reaction again, yielding a comparable substrate conversion to the reaction using DMAPP standard (Fig. S30c).

Fig. S30 a) HILIC-UHPLC-ESI-IT-MS NI chromatogram of DMAPP standard and synthesized, unpurified DMAPP obtained after ion-exchange and lyophilization, injected with a concentration of 1 mg/mL; **b)** MS NI spectra of unpurified DMAPP, a fraction containing the main impurity, and a fraction containing DMAPP, obtained from a direct injection to ESI-IT-MSⁿ. The corresponding m/z of 245, 313, and 491 were [M-H]⁻ of DMAPP, an unidentified impurity, and in-source dimer ([2M-H]⁻) of DMAPP; **c)** substrate conversion (%) of L-tryptophan in the presence of RePT and different DMAPPs. Two ratios of the concentration of DMAPP:L-tryptophan were used (2:1 and 1:1).

Upscaled production of prenylated compounds

N1-prenyl-L-tryptophan (1a) and C7-prenyl-L-tryptophan (1b)

The reaction was performed in 100 mL of 50 mM Tris/HCl pH 7.5 buffer containing 1 mM substrate, 1.9 mM DMAPP, and 0.1 mg/mL RePT. The reaction mixture was incubated in an oven at 37 °C for 24 h. Due to protein aggregation formed when using rotation or shaking to stir the reaction mixture, the mixture were left incubated without agitation. The enzyme was then removed by filtration using an ultra-centrifugal filter with 30 kDa molecular weight cut-off. The permeate was lyophilized, resuspended in 15 % (*v/v*) acetonitrile containing 1 % (*v/v*) formic acid, and purified using flash chromatography. The solution was loaded onto a 12 g FlashPure ID C18 40 μm connected to a Pure C-850 FlashPrep system (Büchi, Flawil, Switzerland). The flow rate used was 30 mL/min with the following eluents: (A) water containing 1 % (*v/v*) formic acid and (B) acetonitrile containing 1 % (*v/v*) formic acid. The elution program was as follows: 2 CV isocratic at 15 %B; 11 CV linear gradient of 15-55 %B; 1 CV linear gradient of 55-100 %B; 0.5 CV linear gradient of 100-15 %B; 1 CV isocratic at 15 %B. The presence of prenylated product was monitored with UV 280 nm detection. The composition of the collected fractions was confirmed with RP-UHPLC-PDA-ESI-IT-MSⁿ using the same method as described in substrate specificity test. Fractions containing the compound of interest were pooled,

underwent solvent evaporation using rotary evaporation under reduced pressure, and were further dried under a nitrogen stream overnight at 35 °C. The sample was lyophilized and stored at -20 °C for further investigation.

O4-prenyl-L-tyrosine (2b) and O4'-prenyl-resveratrol (8b)

The reactions were performed in 35 mL of 50 mM Tris/HCl pH 7.5 buffer containing 5 mM CaCl₂, 1 mM substrate, 1.8 mM DMAPP, and 0.1 mg/mL RePT for producing **2b** and 2 mg RePT/mL for **8b**. The reaction mixtures were incubated in an oven at 37 °C for 24 h without agitation. The enzymatic products were purified by using solid-phase extraction with Sep-Pak C18 6 cc Vac cartridge with 500 mg sorbent column (Waters, Milford, MA, USA) connected to an SPE vacuum manifold system (Waters, Milford, MA, USA). The column was conditioned with 2 x 6 mL of acetonitrile and equilibrated with 5 x 6 mL 0.1 % (ν/ν) formic acid in water (**2b**) or 0.1 % (ν/ν) formic in 20 % (ν/ν) acetonitrile (**8b**). Samples were loaded on the column and the elution was performed with a series of 0-40 % acetonitrile containing 0.1% formic acid (**2b**) or 20-60 % acetonitrile containing 0.1% formic acid (**8b**). The composition of the collected fractions was confirmed with RP-UHPLC-PDA-ESI-IT-MSⁿ. Fractions containing the compound of interest were pooled, and were further dried under a nitrogen stream overnight at 35 °C. The sample was lyophilized and stored at -20 °C for further investigation.

References

- Burkhardt I, Ye Z, Janevska S, Tudzynski B, Dickschat JS (2019) Biochemical and mechanistic characterization of the fungal reverse *N*-1-dimethylallyltryptophan synthase DMATS1_{Ff}. ACS Chem Biol 14:2922–2931. https://doi.org/10.1021/acschembio.9b00828
- Chekan JR, Mckinnie SMK, Noel JP, Moore BS (2020) Algal neurotoxin biosynthesis repurposes the terpene cyclase structural fold into an *N*-prenyltransferase. Proc Natl Acad Sci U S A 117:12799–12805. https://doi.org/10.1073/pnas.2001325117
- Chen R, Gao B, Liu X, Ruan F, Zhang Y, Lou J, Feng K, Wunsch C, Li SM, Dai J, Sun F (2017) Molecular insights into the enzyme promiscuity of an aromatic prenyltransferase. Nat Chem Biol 13:226–234. https://doi.org/10.1038/nchembio.2263
- Eaton SA, Ronnebaum TA, Roose BW, Christianson DW (2022) Structural basis of substrate promiscuity and catalysis by the reverse prenyltransferase *N*-dimethylallyl-L-tryptophan synthase from *Fusarium fujikuroi*. Biochemistry 61:2025–2035. https://doi.org/10.1021/acs.biochem.2c00350
- Eggbauer B, Schrittwieser JH, Kerschbaumer B, Macheroux P, Kroutil W (2022) Regioselective biocatalytic *C*4-prenylation of unprotected tryptophan derivatives. ChemBioChem 23. https://doi.org/10.1002/cbic.202200311
- Fan A, Li SM (2016) Saturation mutagenesis on Arg244 of the tryptophan C4-prenyltransferase FgaPT2 leads to enhanced catalytic ability and different preferences for tryptophan-containing cyclic dipeptides. Appl Microbiol Biotechnol 100:5389–5399. https://doi.org/10.1007/s00253-016-7365-3
- Metzger U, Schall C, Zocher G, Unsöld I, Stec E, Li SM, Heide L, Stehle T (2009) The structure of dimethylallyl tryptophan synthase reveals a common architecture of aromatic prenyltransferases in fungi and bacteria. Proc Natl Acad Sci U S A 106:14309–14314. https://doi.org/10.1073/pnas.0904897106
- Trela BC, Waterhouse AL (1996) Resveratrol: Isomeric molar absorptivities and stability. J Agric Food Chem 44:1253–1257. https://doi.org/https://doi.org/10.1021/jf9504576
- Woodside AB, Huang Z, Poulter CD (1988) Trisammonium geranyl diphosphate. Org Synth 66:211. https://doi.org/10.15227/orgsyn.066.0211