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Simple Summary: Exosomes are an emerging source of cancer biomarkers. Molecular components
of serum-derived exosomes have been addressed in several reports in the context of biomarkers for
early detection of lung cancer. However, despite the promising results of pilot studies, the clinical
applicability of such biomarkers has not been validated yet. In this review, the diagnostic potential
of miRNA content of serum-derived exosomes is presented. Moreover, potential target genes and
signaling pathways affected by miRNA present in lung cancer signatures are discussed.

Abstract: Early detection of lung cancer in screening programs is a rational way to reduce mortality
associated with this malignancy. Low-dose computed tomography, a diagnostic tool used in lung
cancer screening, generates a relatively large number of false-positive results, and its complementa-
tion with molecular biomarkers would greatly improve the effectiveness of such programs. Several
biomarkers of lung cancer based on different components of blood, including miRNA signatures,
were proposed. However, only a few of them have been positively validated in the context of early
cancer detection yet, which imposes a constant need for new biomarker candidates. An emerging
source of cancer biomarkers are exosomes and other types of extracellular vesicles circulating in body
fluids. Hence, different molecular components of serum/plasma-derived exosomes were tested and
showed different levels in lung cancer patients and healthy individuals. Several studies focused on
the miRNA component of these vesicles. Proposed signatures of exosome miRNA had promising
diagnostic value, though none of them have yet been clinically validated. These signatures involved
a few dozen miRNA species overall, including a few species that recurred in different signatures. It
is worth noting that all these miRNA species have cancer-related functions and have been associated
with lung cancer progression. Moreover, a few of them, including known oncomirs miR-17, miR-19,
miR-21, and miR-221, appeared in multiple miRNA signatures of lung cancer based on both the
whole serum/plasma and serum/plasma-derived exosomes.

Keywords: biomarkers; exosome; extracellular vesicles; lung cancer; miRNA; plasma; serum

1. Introduction

Lung cancer is among the major cancer-related public health problem responsible for
about a quarter of cancer-related deaths worldwide. Overall, the lung cancer five-year
survival rate (below 20%) is much lower than other leading cancer sites, such as colorectal
(about 65%), breast (about 90%), and prostate (about 95%). Though the risk and incidence
of lung cancer are slightly higher among men, this malignancy is becoming the major cause
of cancer-related death also in women. The majority of lung cancer cases are diagnosed at
advanced stages and have unfavorable prognoses (the average five-year survival of about
10–15%). However, in the case of the disease detected at the early stages, the prognosis
is much better (the average five-year survival varies between 65 and 85%). Thus, in
addition to primary prevention (i.e., tobacco smoking control), screening for early detection
was proposed as a promising strategy to reduce lung cancer mortality [1,2]. Several
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screening tools have been investigated during the past decades, but only one, the low-dose
computed tomography (LD-CT), has found an application in clinical practice. Originally,
the results of the National Lung Screening Trial (NLST) showed that compared to chest
X-ray examination, the LD-CT screening was associated with over 20% reduction of lung
cancer-specific mortality in a high-risk group of subjects defined by their smoking status
and age [3]. The potential of LD-CT screening programs to reduce lung cancer mortality
was further confirmed by other studies [2], including the Dutch–Belgian NELSON trial [4]
and the Danish Lung Cancer Screening Trial (DLCST) [5]. It is estimated that the use of
LD-CT allows for earlier detection of lung cancers in about 12,000 people a year, which is
about 8% of deaths annually due to this disease. It is worth noting, however, that LD-CT
allows detecting abnormalities in 20–40% of people undergoing this examination, but as
much as 95% of results could be false-positive [6]. Hence, due to the low specificity of
LD-CT (positive predictive value of only 3.8% in the NLST), the vast majority of patients
with screen-detected chest abnormalities are subjected to further expensive and potentially
harmful diagnostic procedures, such as transthoracic or bronchoscopic biopsy or surgery.
It is estimated that about 75% of patients unnecessarily underwent diagnostic workup,
including 25% subjected to invasive procedures [7]. Hence, there is an urgent need for
clinical and molecular tests supporting CT-based screening for the detection of lung cancer
to reduce “over-diagnosis” and decrease the costs. Such test(s) could either pre-select
individuals for LD-CT examination or discriminate between benign and malignant chest
abnormalities detected by LD-CT [8,9].

Potential biomarkers for early lung cancer can be found in various biological fluids;
however, blood is the richest and most readily available source [10,11]. Candidates for such
biomarkers include serum proteins, free nucleic acids, and metabolites [11,12]. Several
works reported serum/plasma proteins, which levels are associated with the risk of lung
cancer [13]. Another candidate for the biomarker of lung cancer is circulating free DNA
(cfDNA) [14] and circulating tumor cells (CTC) [15]. More recently, serum metabolites and
lipids have emerged as another class of potential biomarkers in lung cancer [16,17]. Several
other review papers could be suggested that cover this well-researched field [11–13,18–21].
However, though numerous biomarker candidates have been proposed only a few of them
have been positively validated in the proper clinical settings. The main reason was the lack
of sensitivity and analytical reproducibility, which in turn led to the elimination of potential
candidates from further stages of biomarker testing [9,12]. Moreover, none of the tested
biomarkers increased the actual number of detected early lung cancer cases yet [18,20,22].
Currently, only two molecular tests are used in clinical practice to help in the diagnosis of
indeterminate pulmonary nodules detected by CT. One of them is the autoantigen-based
EarlyCDT-Lung test, which enables the classification of indeterminate nodules with a
positive predictive value (PPV) >70% [23]. Another test is the XL2 test, which combines
the clinical probability of cancer score with the level of two plasma proteins: LG3BP and
C163A [24]. Hence, the identification of the reliable molecular biomarker that could be
used for the early detection of lung cancer remains a timely and vital issue.

The purpose of this literature review is to summarize current data on the emerging
biomarker of early lung cancer-circulating serum exosomes and their microRNA cargo.

2. Micro RNA Signatures of Lung Cancer

In the search for a lung cancer biomarker, there were numerous studies focused on
microRNAs (miRNAs). It is a class of small endogenous non-coding RNAs of 18–24 nucleotides
responsible for the regulation of target genes. More than 2500 mature miRNAs have been
described in humans yet [25–27]. miRNA is transcribed in the cell nucleus with the participation
of RNA polymerase II resulting in pri-miRNA, which is processed by the Drosh/DGCR8
enzyme complex to precursor miRNA (pre-miRNA). The resulting pre-miRNA is transported
from the nucleus to the cytoplasm involving Exportin-5, where it is processed by Dicer nuclease
to form miRNA duplexes or mature miRNA. Usually, a less-thermostable 5’-terminus strand is
packed to the protein complex (RISC), whose main component is a protein from the Argonaut
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family (AGO), while the second strand is degraded. The RISC complex then recognizes the
target mRNA and binds at the 3’UTR position: mRNA degradation occurs in the case of perfect
miRNA/mRNA matching, while translation repression in the case of incomplete alignment.
Thus, by silencing target mRNAs, miRNAs affect many critical cellular processes such as cell
proliferation, apoptosis, differentiation, and metabolism [27,28].

The composition of miRNA component of tissues (so-called miR-ome) could be af-
fected by different pathological conditions; hence, the diagnostic and prognostic values of
miRNA signatures have been addressed in many studies [29–34]. miRNA is resistant to
RNase digestion, boiling, extended storage, extreme pH, and multiple freezing and thawing
cycles [35]. Moreover, miRNA is considered to be more stable than other classes of RNA
in blood and other biofluids. However, it should be noted that during the analysis of free
circulating miRNA in human blood, miRNA molecules released by cancer cells and other
classes of “normal” cells (platelets, red blood cells, and endothelial cells) are co-purified
and co-analyzed [36]. Nevertheless, miRNA circulating in the blood and present in the
isolated serum (i.e., the liquid fraction of blood remaining after removal of the clot followed
coagulation) or plasma (i.e., the liquid fraction of blood remaining after removal of cell
components without coagulation), is an emerging source of disease biomarkers including
lung cancer.

Several studies addressed circulating miRNA as potential molecular signatures to be
used for the diagnosis of lung cancer. Numerous papers have been published since 2011
that described signatures of serum/plasma miRNA, which enabled the differentiation be-
tween lung cancer patients and healthy individuals. Some of these reports described single
miRNA, yet most of them proposed multi-component panels up to 24 plasma miRNAs [37]
or 34 serum miRNAs [38]. Examples of such studies are listed in Table 1. Proposed lung
cancer signatures involved about 100 miRNA species overall, which (according to our
literature review) included 39 miRNA species that recurred in more than one signature.
However, only four miRNA species were included in more than five signatures, namely,
miR-21 (11 signatures), miR-148b (8 signatures), miR-126, and miR-486–5p (seven signa-
tures). Hence, the overlap among different signatures was relatively low, which putatively
reflected different clinical characteristics of lung cancer patients and their ethnic/genetic
backgrounds as well as different analytical approaches used in different studies. Never-
theless, we analyzed a subset of 39 miRNA species that appeared in multiple lung cancer
signatures in the search for their target genes and associated biological functions; the
bioinformatics tool miRSystem (version 20160513) was used [39]. Among the biological
processes associated with this subset of miRNAs and statistically overrepresented, several
pathways were involved in cancer development, including the MAPK signaling, FGFR sig-
naling, transport of glucose, apoptosis, and antigen processing/presentation. This subset
included several known “oncomirs”, exemplified by miR-21, which will be discussed in de-
tail below. Furthermore, among the genes hypothetically targeted by the highest number of
miRs from this subset were a few genes with putative cancer-related functions, exemplified
by IFI30, PLA2G10, FGF6, ZBTB16, and CORO1A. IFI30 encodes a lysosomal thiol reductase
involved in the processing of MHC class II-restricted antigen, which was reported in the
development of melanoma [40]. PLA2G10 encodes a phospholipase A2 family member
involved in the production of inflammatory lipid mediators (e.g., prostaglandins), which
was reported in the progression of breast cancer [41]. FGF6 encodes a fibroblast growth
factor (FGF) family member involved in tumor growth [42]. ZBTB16 encodes a Krueppel
C2H2 zinc finger family member involved in the regulation of cell cycle, apoptosis, and
the AKT/Foxo3a pathway [43]. CORO1A encodes a WD-repeat protein family member
involved in the cell cycle progression, apoptosis, and signal transduction [44]. Hence,
cancer-related functions of miRNA species present in the proposed lung cancer signatures
provide additional validation of their putative diagnostic importance.

In conclusion, circulating miRNA appears a forward-looking diagnostic tool in the
detection of lung cancer. Proposed signatures revealed promising sensitivity and speci-
ficity, which usually reached 80–90%. Still, their actual diagnostic reproducibility requires
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further validation and clinical testing [25,35,45–47]. Further, none of the proposed miRNA
signatures have yet been conclusively validated in the prospective clinical studies. Never-
theless, three registered clinical trials are currently ongoing that include validation of the
serum/plasma miRNA signatures of early lung cancer. The BIOMILD study (NCT02247453)
sponsored by the Fondazione IRCCS Istituto Nazionale dei Tumori (Milano) is aimed at the
validation of the Plasma miR Signature Classifier [37]. The COSMOS study (NCT01248806)
sponsored by the European Institute of Oncology involves validation of the miR-Test [48]
in the context of lung cancer screening. Moreover, a smaller study sponsored by Hum-
mingbird Diagnostics (NCT03452514) is aimed at the validation of the commercial HMBDx
microRNA Test in a group of participants of the LD-CT lung cancer screening. However,
all these clinical trials are still running, and no conclusions are available yet (the planned
completion date of these studies is 2021).

Table 1. Examples of serum/plasma miRNAs as biomarkers of lung cancer.

Biofluid miRNA Signature Size of Groups Diagnostic Value Reference

Plasma miR-21, miR-126, miR-210, miR-486 Control: 29
Cases: 29 (Stage I–IV)

AUC = 0.86
SEN = 75%
SPE = 85%

[49]

Plasma miR-21, miR-335 Control: 38
Cases: 36 (Stage I)

AUC = 0.86
SEN = 72%
SPE = 81%

[50]

Plasma miR-21, miR-486 Control: 46
Cases: 54 (Stage I–III)

AUC = 0.90
SEN = 87%
SPE = 87%

[51]

Plasma miR-21, miR-145, miR-155 Control: 92
Cases: 96 (Stage I–IV)

AUC = 0.85
SEN = 69%
SPE = 78%

[52]

Plasma

miR-101, miR-106a, miR-126, miR-133a, miR-140-3p,
miR-140-5p, miR-142-3p, miR-145, miR-148a, miR-15b,
miR-16, miR-17, miR-197, miR-19b, miR-21, miR-221,

miR-28-3p, miR-30b, miR-30c, miR-320, miR-451,
miR-486-5p, miR-660, and miR-92a

(Plasma miR Signature Classifier; MSC)

Control: 870
Cases: 69 (Stage I–III)

SEN = 87%
SPE = 81% [37]

Plasma miR-182, miR-183, miR-210, miR-126 Control: 40
Cases: 112 (Stage I–III)

AUC = 0.97
SEN = 81%
SPE = 100%

[53]

Plasma miR-145, miR-20a, miR-21, miR-223 Control: 83
Cases: 129 (Stage I–II)

AUC = 0.90
SEN = 82%
SPE = 90%

[54]

Plasma miR-19b, miR-21, miR-221, miR-409, miR-425, miR-584 Control: 124
Cases: 141 (Stage I–IV)

AUC = 0.84
SEN = 73%
SPE = 80%

[55]

Serum

miR-92, miR-484, miR-486, miR-328, miR-191,
miR-376a, miR-342, miR-331, miR-30c, miR-28, miR-98,
miR-17, miR-26b, miR-374, miR-30b, miR-26a, miR-142,

miR-103, miR-126, let-7a, let-7d, let-7b, miR-32,
miR-133b, miR-566, miR-432, miR-223, miR-29a,
miR-148a, miR-142, miR-22, miR-148b, miR-140,

miR-139

Control: 69
Cases: 95 (Stage I–IV)

AUC = 0.89
SEN = 71%
SPE = 90%

[38]

Serum miR-15b, miR-27b Control: 95
Cases: 85 (Stage I–IV)

AUC = 0.98
SEN = 100%
SPE = 84%

[56]
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Table 1. Cont.

Biofluid miRNA Signature Size of Groups Diagnostic Value Reference

Serum

miR-92a-3p, miR-30b-5p, miR-191-5p, miR-484,
miR-328-3p, miR-30c-5p, miR-374a-5p, let-7d-5p,

miR-331-3p, miR-29a-3p, miR-148a-3p, miR-223-3p,
miR-140-5p
(miR-Test)

Control: 984
Cases: 48 (Stage I–III)

AUC = 0.85
SEN = 72%
SPE = 77%

[48]

Serum miR-193b, miR-301, miR-141, miR-200b Control: 45
Cases: 154 (Stage I–III)

AUC = 0.99
SEN = 97%
SPE = 96%

[57]

Serum miR-483, miR-193a, miR-25, miR-214, miR-7 Control: 63
Cases: 63 (Stage I–IV)

AUC = 0.82
SEN = 89%
SPE = 68%

[58]

Serum miR-152, miR-148a, miR-148b, miR-21 Control: 70
Cases: 70 (Stage I–IV)

AUC = 0.97
SEN = 96%
SPE = 91%

[59]

Serum miR-15b, miR-16, miR-20a Control: 58
Cases: 94 (Stage I–III)

AUC = 0.93
SEN = 86%
SPE = 91%

[60]

Serum miR-429, miR-205, miR-200b, miR-203, miR-12,
miR-34b

Control: 74
Cases: 138 (Stage I–IV)

AUC = 0.89
SEN = 88%
SPE = 71%

[61]

Serum miR-141, miR-193b, miR200b, miR-301 Control: 185
Cases: 213 (Stage I–IV)

AUC = 0.92
SEN = 91%
SPE = 78%

[62]

Serum miR-1268b, miR-6075
Control: 2178
Cases: 1566
(Stage I–IV)

AUC = 0.99
SEN = 99%
SPE = 99%

[63]

AUC—Area Under the Receiver Operating Characteristic (ROC) Curve; SEN—Sensitivity; SPE—Specificity.

3. Exosomes, an Emerging Type of Liquid Biopsy

Exosomes are membrane-enclosed nanovesicles (30–150 nm) of endosomal origin.
Exosomes arise as a result of the concavity of the plasma membrane inward, resulting in
the formation of an early endosome. The early endosome matures into the late endosome,
which then transforms into a multivesicular body (MVB) that could attach to the plasma
membrane from inside and release exosomes into the extracellular space [64,65] (Figure 1).
Exosomes can be detected in various biological fluids such as urine, cerebrospinal fluid,
saliva, blood, and its derivatives (serum and plasma). Exosomes are secreted by all
types of cells, either non-tumorigenic and cancerous. These vesicles are enclosed by a
double film of symmetrically distributed lipids containing several tetraspanins and other
membrane proteins involved in the formation of MVB (CD9, CD63, CD81, TSG101, and
Alix). However, the full set of proteins present in the exosome cargo (involving thousands
of different cellular proteins) is variable and reflects the current phenotype of the parent
cell. Except for proteins and lipids, exosomes also contain different classes of nucleic acids
(single-stranded RNA, long non-coding RNA, and microRNA) and metabolites, whose
composition is also regulated by the state of the cell [64,66,67].
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Figure 1. Biogenesis of exosomes.

In general, exosomes are involved in many aspects of cell-to-cell communication
working in both paracrine and endocrine modes. In the case of exosomes from “normal”
(non-tumorogenic) cells, their role in immunity, coagulation, angiogenesis, spermatogene-
sis, and various physiological processes in the central nervous system has been confirmed.
In the case of tumor-derived exosomes (TEX), several lines of evidence indicate their asso-
ciation with immunomodulation, pre-metastatic niche formation, tumor growth, resistance
to the treatment, and drug removal from cells [68]. TEX are signal mediators and promote
disease development by participating in processes such as angiogenesis, metastasis, and
many others [66,68–70]. TEX are released into the bloodstream so they can reach distant
organs and modify the phenotype of many different cell types. This ability of TEX depends
on their bioactive cargo, which differs from the content of exosomes released by “normal”
cells and corresponds to the malignant phenotype of cancer cells [71]. Several review
papers focused on the functional role of TEX have already been published, including a few
recent ones [68,70,72,73]

Exosomes released by lung cancer cells were reported to be involved in tumor pro-
motion, immunomodulation, and remodeling of the tumor microenvironment, also in
the context of metastatic niche [66,69]. TEX secreted by lung cancer cells contain several
proteins involved in tumor development, including CD91, Galectin-9, LRG1, EGFR, and
Wnt5b [53,70,73–76]. Several studies also addressed the functional importance of non-
coding RNA present in TEX released by lung cancer cells. For example, miR-103a present
in TEX directly affected the polarization of macrophages by reducing PTEN protein expres-
sion, which in turn led to the accumulation of tumor-promoting factors such as IL10, CCL2,
and VEGF-A [70,77]. Moreover, miR-21 present in TEX promoted tumor growth by increas-
ing the permeability of blood vessels and the accumulation of hypoxia-induced factor-1α
(HIF-1α) under both normoxic and hypoxic conditions [78]. Other miRNAs present in
TEX secreted by lung cancer cells (e.g., miR-9, miR-126, miR-122, and miR-210) could
also participate in the process of angiogenesis of neoplastic blood vessels [73,74,79–82].
Long non-coding RNAs (lncRNAs) are another group of nucleic acids present in TEX
secreted from lung cancer cells. It has been reported that several such lncRNAs (MALAT1,
AK126698, SCAL1, and HOTAIR) are associated with the anti-apoptotic activity, resis-
tance to cisplatin, protection of cells against oxidative stress, and increased migration
proliferation and invasiveness [74,79,83,84].
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The molecular composition of TEX reflects that of parental cancer cells. Therefore,
TEX present in blood and other biofluids are an emerging type of liquid biopsy, considered
a gold mine of potential cancer markers [26,72,85–87]. It should be emphasized, however,
that exosomes represent only a subset of the heterogeneous group of extracellular vesicles
(EV) that also include microvesicles (also known as ectosomes; 250–1000 nm) and apoptotic
bodies (>1000 nm) formed by outward budding (“blebbing”) of the plasma membrane.
The term “exosomes” should be reserved for vesicles of endosomal origin that form via
MVB. However, due to the limitations of current methods used for the isolation of EV
the adequate discrimination between various EV subsets is not feasible. Therefore, to
avoid possible misconceptions, a simplified nomenclature has been recently proposed that
distinguishes small EV (i.e., <200 nm) and medium/large EV (>200 nm). A class of small
EV (sEV) consists mostly of exosomes, yet other types of EV, e.g., small microvesicles, could
also copurify with this fraction [88]; in this review, the terms “exosome” and “sEV” are
used interchangeably for simplicity. Moreover, sEV present in blood and other biofluids
represent a complex mixture of vesicles released by different types of cells. It is estimated
that TEX represent about 20–60% of sEV present in the plasma of cancer patients while the
remaining exosomes and other sEV present in this specimen are released by “normal” non-
cancerous types of cells (e.g., platelets, immune cells, and endothelial cells) [89]. However,
due to current limitations of methods allowing purification of specific TEX from body
fluids [90], the mixture of different sEV that could be isolated from serum or plasma remains
a feasible material in the search of cancer markers. Nevertheless, even such heterogeneous
material is a promising source of biomarkers for the detection of lung cancer, which is
discussed below.

4. Serum Exosomes as Potential Lung Cancer Biomarkers

Exosomes are secreted by various cells. However, the concentration of exosomes is
much higher in the blood of cancer patients, including lung cancer, compared to healthy
individuals. Recent reports indicate that the concentration of vesicles in the blood of cancer
patients may reach 109 vesicles/mL of blood [71]. The above observations have been con-
firmed in many types of cancers, including prostate cancer, ovarian cancer, breast cancer,
pancreatic ductal adenocarcinoma, hepatocellular carcinoma, and breast cancer [91–95].
Increased levels of vesicles in the blood of cancer patients correlate with a worse prognosis.
The molecular cargo of exosomes is the primary source of cancer biomarkers. However,
apart from a different molecular cargo, TEX may have a different morphology than exo-
somes secreted by “normal” cells. Exosomes isolated from the serum of patients diagnosed
with pancreatic cancer had a significantly smaller size compared to exosomes isolated
from healthy people [91]. Similar observations were made with the use of atomic force
microscopy in the case of exosomes present in patients with oral cancer [96]. Hence, the
number, composition, and morphology of exosomes can be an important diagnostic cancer
biomarker, though no specific data regarding lung cancer patients is available yet.

Different molecular components of exosomes existing in body fluids (serum, plasma,
and saliva) of patients with lung cancer have been tested in the search for a biomarker of
this malignancy [85,97–102]. Identified biomarker candidates include different classes of
molecules-nucleic acids, proteins, and metabolites. Results of these studies (except for exo-
some miRNA discussed in the subsequent paragraph) are listed in Table 2. A few signatures
of lung cancer have been proposed based on proteins present in serum/plasma-derived ex-
osomes [86,103–107]. Moreover, several studies have proposed long non-coding RNAs and
circular RNAs present in serum-derived exosomes as lung cancer biomarkers [84,108–111].
Furthermore, different levels of several phospholipids (phosphatidylcholines and sphin-
gomyelins), triglycerides, and cholesterol esters present in the exosome membrane have
been observed in plasma-derived exosomes in lung cancer patients and healthy con-
trols [112]. Different diagnostic performance of proposed signatures was reported (Area
Under the ROC Curve, AUC, was in the range 0.70 to 0.90), yet the observed difference
could be attributed to differences in the statistical methodology. Nevertheless, though
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some of these biomarker candidates are promising, their actual diagnostic performance
has not yet been validated in the proper clinical settings.

Table 2. Potential exosome biomarkers of lung cancer.

Biofluid/EV
Isolation Size of Groups Proposed Biomarker Analytic. Method Diagnostic Value Reference

Serum/UC
TEM, NTA, WB

Control: 46
Cases: 125

(Stage I–IV)
AHSG, ECM1 proteins MS

AUC = 0.80
SEN = 54%
SPE = 89%

[104]

Serum/IMA
Control: 10
Cases: 26

(Stage III–IV)
CD91 MS

AUC = 0.72
SEN = 60%
SPE = 89%

[105]

Plasma/UC
TEM, NTA, WB

Control: 15
Cases: 13

(Stage I–II)

SRGN, TPM3, THBS1,
HUWE1 proteins MS

AUC = 0.90
SEN = 81%
SPE = 82%

[106]

Serum/UC
TEM, NTA, WB

Control: 90
Cases: 183

(Stage I–IV)

LPS-binding
protein (LBP) ELISA

AUC = 0.71
SEN = 65%
SPE = 76%

[107]

Plasma/EV array
Control: 150
Cases: 431

(Stage I–IV)

CD151, Tspan8, NYESO1,
HER2, CD171, EGFRvIII
SFTPD, Flotilin1, CD142,

Mucin16

EV array
AUC = 0.74
SEN = 71%
SPE = 69%

[103]

Serum/PRE
TEA, NTA

Control: 150
Cases: 150

(Stage I–IV)
lncRNA (TBILA) qPCR

AUC = 0.78
SEN = 65%
SPE = 81%

[108]

Serum/PRE
TEA, NTA

Control: 150
Cases: 150

(Stage I–IV)
lncRNA (AGAP2-AS1) qPCR

AUC = 0.73
SEN = 67%
SPE = 73%

[108]

Serum/PRE
TEM, NTA, WB

Control: 64
Cases: 72

(Stage I–IV)
lncRNA (DLX6-AS1) qPCR

AUC = 0.81
SEN = 78%
SPE = 86%

[109]

Serum/PRE
TEM, NTA, WB

Control: 30
Cases: 77

(Stage I–IV)
lncRNA (MALAT-1) qPCR

AUC = 0.70
SEN = 60%
SPE = 81%

[85]

Serum/PRE
TEM, NTA, WB

Control: 40
Cases: 64

(Stage I–IV)
lncRNA (GAS5) qPCR

AUC = 0.86
SEN = 86%
SPE = 70%

[110]

Serum/PRE
WB

Control: 30
Cases: 120

(Stage I–IV)

circular RNA
(circRNA-002178) qPCR

AUC = 0.99
SEN = 99%
SPE = 100%

[111]

Plasma/UC
Control: 39
Cases: 44

(Stage I–II)

PC(32:0), PC(34:2),
PC(36:1)/(36:2)/(36:3),
PC(38:3)/(38:5)/(38:6),
LPC(12:0), LPC(16:0),
SM(34:1), SM(42:2),
TG(52:5), TG(54:6),

CE(20:4)

MS
AUC = 0.85
SEN = 77%
SPE = 72%

[112]

sEV’s isolation and characterization methods: UC—Ultracentrifugation; PRE—Precipitation; IMA—Immunoaffinity; TEM—Transmission
Electron Microscopy; NTA—Nanoparticle Tracking Analysis; WB—Western Blot; MS—mass spectrometry; qPCR—quantitative real-time
PCR; AUC—Area Under the ROC Curve; SEN—Sensitivity; SPE—Specificity.

5. Exosome miRNA as a Biomarker of Lung Cancer

The miRNA content of serum/plasma-derived exosomes is another promising source
of lung cancer biomarkers addressed in several papers. Two analytical methods of miRNA
detection dominate in these studies—quantitative PCR and next-generation sequencing.
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However, many different approaches were applied to isolate and characterize sEV from
serum or plasma; hence, different classes of vesicles could be studied in different reports.
The representative papers are summarized in Table 3. Some of these studies tested the
diagnostic performance of miRNA signatures, which resulted in AUC values that ranged
between 0.71 and 0.98. However, none of these signatures have yet been validated in an
independent study. Furthermore, none of them have been studied in the context of lung
cancer screening. Analyzed groups had different sizes and represented different clinical
characteristics and ethnic/genetic backgrounds. Therefore, different miRNA signatures
of serum/plasma exosomes proposed to discriminate lung cancer patients from healthy
controls should be compared with caution.

Table 3. Potential sEV miRNA biomarkers of lung cancer.

Biofluid/EV Isolation miRNA Signature Size of Groups Diagnostic Value Reference

Plasma/PRE miR-378a, miR-379, miR-139-5p,
miR-200b-5p

Control: 25
Cases: 80 (Stage I)

AUC = 0.91
SEN = 98%
SPE = 72%

[113]

Plasma/PRE
WB, TEM

miR-30b, miR-30c, miR-103, miR-122,
miR-195, miR-203, miR-221, miR-222

Control: 6
Cases: 12 (Stage -) - [114]

Plasma/PRE miR-19-3p, miR-21-5p, miR-221-3p Control: 14
Cases: 18 (Stage I–IV) - [55]

Plasma/PRE
WB, NTA, TEM miR-23b-3p, miR-10b-5p, miR-21-5p Control: 10

Cases: 10 (Stage I–IV)

AUC = 0.91
SEN = 82%
SPE = 85%

[115]

Plasma/PRE
WB, NTA, TEM miR-451a, miR-194-5p, miR-486-5p

Control: 149
Cases: 434
(Stage I-IV)

AUC = 0.97
SEN = 95%
SPE = 71%

[36]

Plasma/PRE
WB, NTA, TEM

miR-185-5p, miR-32-5p, miR-140-3p,
let-7f-5p

Control: 20
Cases:79

(Stage I–III)

AUC = 0.91
SEN = 59%
SPE = 100%

[116]

Plasma/SEC + IMA
miR-17-3p, miR-21, miR-106a, miR-146,
miR-155, miR-191, miR-192, miR-203,
miR-205, miR-210, miR-212, miR-214

Control: 8
Cases: 28

(Stage I–IV)
- [117]

Plasma/IMA let-7f, miR-20b, miR-30e-3p, miR-223,
miR-301

Control: 48
Cases:78

(Stage I–IV)
- [118]

Plasma/UC + IMA
WB, NTA let-7b-5p, let-7e-5p, miR-24-5p, miR-21-5p Control: 13

Cases: 47 (Stage I)

AUC = 0.90
SEN = 80%
SPE = 92%

[119]

Plasma/UC
TEM miR-21, miR-4257

Control: 30
Cases: 195

(Stage I–III)
- [120]

Plasma/SEC miR-411-5p Control: 7
Cases: 19 (Stage -) - [121]

Serum/PRE
miR-451a, miR-486-5p, miR-363-3p,
miR-660-5p, miR-15b-5p, miR-25-3p,

miR-16-2-3p

Control: 10
Cases: 20

(Stage I–IV)

AUC = 0.98
SEN = 100%
SPE = 90%

[122]

Serum/PRE
WB, NTA, TEM miR-17-5p

Control: 137
Cases: 172

(Stage I–III)

AUC = 0.74
SEN = 67%
SPE = 77%

[123]

Serum/PRE
WB, NTA, TEM miR-146a-5p, miR-486-5p

Control: 80
Cases: 48

(Stage I–II)

AUC = 0.90
SEN = 83%
SPE = 90%

[124]
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Table 3. Cont.

Biofluid/EV Isolation miRNA Signature Size of Groups Diagnostic Value Reference

Serum/PRE miR-216b
Control: 60
Cases: 105

(Stage I–IV)

AUC = 0.84
SEN = 87%
SPE = 75%

[125]

Serum/PRE
WB, TEM miR-106b

Control: 72
Cases: 72

(Stage I–IV)
- [126]

Serum/PRE 106a-5p, miR-20a-5p, miR-93-5p
Control: 36
Cases: 34

(Stage I–III)
AUC = 0.83 [127]

Serum/PRE
WB, NTA, TEM

miR-210-5p, miR-1269a, miR-205-5p,
miR-9-3p

Control: 150
Cases: 148

(Stage I–III)

AUC = 0.74
SEN = 81%
SPE = 61%

[128]

Serum/PRE
WB, NTA, TEM miR-1290

Control: 40
Cases: 70

(Stage I–IV)

AUC = 0.94
SEN = 80%
SPE = 97%

[129]

Serum/PRE miR-378
Control: 60
Cases: 103

(Stage I–IV)

AUC = 0.84
SEN = 78%
SPE = 82%

[130]

Serum/PRE
WB, TEM miR-7977, miR-98-3p

Control: 65
Cases: 65

(Stage I–IV)

AUC = 0.82
SEN = 81%
SPE = 75%

[131]

Serum/UC
WB, NTA, TEM miR-126

Control: 31
Cases: 45

(Stage I–III)

AUC = 0.84
SEN = 90%
SPE = 86%

[132]

Serum/UC
WB, NTA, TEM miR-21-5p, miR-126-3p, miR-140-5p

Control: 16
Cases: 23

(Stage I–IV)
- [133]

Serum/UC
WB, NTA, TEM miR-620

Control: 231
Cases: 235

(Stage I–IV)

AUC = 0.71
SEN = 63%
SPE = 68%

[134]

Serum/UC
WB, NTA, TEM miR-5684, miR-125b-5p

Control: 312
Cases: 330

(Stage I–IV)

AUC = 0.74
SEN = 81%
SPE = 61%

[135]

Serum/UC
WB, NTA, TEM miR-20b-5p, miR-3187-5p

Control: 30
Cases: 380
(Stage 0–I)

AUC = 0.84 [136]

sEV’s isolation and characterization methods: UC—Ultracentrifugation; PRE—Precipitation; IMA—Immunoaffinity; SEC—Size Exclusion
Chromatography; TEM—Transmission Electron Microscopy; NTA—Nanoparticle Tracking Analysis; WB—Western Blot; AUC—Area
Under the ROC Curve; SEN—Sensitivity; SPE—Specificity.

According to current literature research, proposed lung cancer exosome signatures
involved above 60 miRNA species overall, and 14 miRNA species appeared in more than
one signature. This included miR-21 (seven signatures), miR-221 (three signatures), and
miR-486-5p (three signatures). Figure 2 illustrates miRNA species present in lung cancer
signatures, detected in either whole serum/plasma or serum/plasma-derived exosomes,
which were included in more than one signature. There were nine miRNA species, namely,
miR-17, miR-19, miR-21, miR-221, miR-451, miR-486-5p, miR-126, miR-140, and miR-210,
which appeared in both whole serum/plasma and exosome-based signatures. Functions
associated with this interesting subset of miRNAs are discussed below.
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Figure 2. MicroRNA species present in lung cancer signatures. Showed are components present in
at least 2 signatures identified in either whole serum/plasma or serum/plasma-derived exosomes
(small extracellular vesicles).

Shared components of the whole serum/plasma-based and exosome-based lung can-
cer signatures contain several oncomirs, i.e., miRNAs with known cancer-related functions.
These include miR-17 and miR-19 belonging to the miR-17-92 cluster, which is regulated by
MYC. The miR-17-92 cluster is a unique oncomir due to the polycistronic miRNA transcript,
which allows obtaining six individual miRNAs involved in many cancer-associated pro-
cesses: miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1, and miR-92a-1 [137]. A high level
of miR-17 and miR-19 induces cell proliferation, while the deletion is lethal (it causes lung
and lymphoid cell developmental defects) [138]. miR-17 suppresses the expression of the
E2F1 transcription factor, shifting the cellular balance in favor of increased proliferation. In
lung cancer, overexpression of miR-17 and miR-19 affects the expression of HIF1A, PTEN,
BCL2L11, CDKNA, and TSP1, enhancing tumor growth by increasing the permeability of
blood vessels, inducing hypoxia, increasing proliferation, inhibiting apoptosis, and stimu-
lating tumor cell migration [139,140]. miR-21 is another oncomir frequently overexpressed
in cancer cells, one of the first miRNAs identified in mammals. Among the targets of
miR-21 are tumor suppressor genes such as PTEN, RHOB, and TP63. Further, miR-21
blocks AKT and MAPK signaling pathways via inhibition of several phosphatases. As a
result of miR-21 overexpression, the action of tumor suppressors is blocked, causing the
development of many cancers such as lung, ovarian, breast, brain, and many others [141].
In lung cancer, overexpression of miR-21 is associated with increased cell proliferation,
angiogenesis, cell invasion, and metastasis, as well as chemo- and radioresistance [142].
The inhibition of miR-21 resulted in the induction of apoptosis (due to inhibiting the
PI3K/Akt/NF-KB signaling pathway and increased caspase activity) as well as impeded
the migration and invasiveness of NSCLC cells [143]. miR-21 is involved in modulating
the tumor microenvironment by targeting PTEN in the stromal compartment, which is
mediated by miR-21-containing TEX [144]. Another oncogenic miRNA found in TEX is
miR-221. miR-221 inhibits p27 tumor suppressor, which causes the transition from G1 to
S phase and acceleration of cell division [145]. Among miR-221 targets is also CD117, a
known proto-oncogene that regulates cell survival, migration, and differentiation. Overex-
pression of miR-221 induces proliferation and migration of tumor cells as well as tumor
angiogenesis via the Wnt/β-catenin signaling pathway and has been shown to promote the
chemoresistance of lung cancer cells by activating the PTEN/Akt pathway [146]. miR-210
is also an important factor in the development of lung cancer, whose level increases in
NSCLS tissues and is associated with a worse prognosis [147]. The action of miR-210
involves the regulation of HIF-1, ATG7, LC3, and Beclin-1 [148].
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Other miRNA observed in multiple lung cancer signatures are putative tumor sup-
pressors. In lung cancer, a decreased level of miR-451 correlates with poor prognosis [149].
Functionally, decreased expression of miR-451 increases drug resistance and accelerates
the epithelial-mesenchymal transition due to MYC overexpression, which is a miR-451 tar-
get [150]. Moreover, miR-451 targets several genes involved in the inflammation and stress
response pathways that modulate the tumor microenvironment, including PSMB8, NOS2,
and CARF [151]. Another component of exosome lung cancer signature is miR-126, which
level was reduced in cancer patients. Overexpression of miR-126 inhibits cancer cell prolif-
eration, colony formation, migration, invasion, induces cell cycle arrest, and apoptosis via
targeting ITGA6 gene [152]. Another characteristic component of serum-derived exosomes
is miR-140 involved in carcinogenesis and tumor progression, which level is significantly
lowered in tumors. Overexpression of miR-140 is associated with inhibition of proliferation,
migration, and invasion of NSCLC cells via targeting of ATP8A1 and IGF1R genes [153,154].
Another miRNA shared by serum and exosome-based signatures is miR-486-5p. This
miRNA, one of the most abundant miRNAs in the peripheral blood, plays an important
role in the development of many cancers. Overexpression of miR-486-5p increases cell
proliferation by regulating the PTEN/PI3K/AKT pathway [155]. On the other hand, how-
ever, decreased levels of miRNA-486-5p in NSCLC tissues correlated with increased drug
resistance and a worse prognosis [156]. Moreover, overexpression of miR-486-5p inhibits
the development of lung cancer due to the suppression of GAB2 [157]. Further, decreased
level of miRNA-486-5p correlates with KIAA1199 protein overexpression, which in turn
results in increased cancer proliferation and poor prognosis [158].

Interesting cancer-related features could be attributed also to five miRNA species
detected only in exosome-based signatures of lung cancer, namely, let-7f, miR-146, miR-203,
miR-106a, and miR-20b. Let-7f belongs to the let-7 (lethal-7) family, which consists of 12
members that regulate cell cycle and cell proliferation by affecting RAS, cyclin A2, CDC34,
Aurora A and B kinases, E2F5, CDK8, and HMGA2 [159]. Decreased expression of let-7
is observed in different tumor tissues [160]. Increased expression of let-7f is associated
with inhibition of proliferation, migration, and invasion of neoplastic cells, including lung
cancer cells, while its decreased expression was observed in metastatic cells [161]. miR-146
is involved in the regulation of inflammation [162]. The overexpression of miR-146 is asso-
ciated with increased survival and migration of NSCLC cells via suppressing TRAF6 [163].
Further, increased expression of miR-146 in lung cancer cells lowers the level of claudin-12,
which in turn leads to activation of the Wnt/β-catenin and PI3K/AKT/MAPK signaling
pathways resulting in the increased viability and migration, as well as resistance to cisplatin
and inhibition of apoptosis [164]. Another oncogenic miRNA observed in exosomes of
lung cancer patients is miR-106, which increased expression correlates lymph node metas-
tases, drug resistance, and poor prognosis [165]. Increased level of miR-106 decreased
expression of BTG3, which in turn promotes proliferation and inhibits apoptosis [166]. The
expression of miR-20b is also significantly higher in lung cancer cells. miR-20b contributes
to the development of NSCLC by inhibiting APC via the canonical Wnt signaling path-
way [167]. Moreover, similar to miR-106, miR-20b directly targets BTG3 [168]. The last
miRNA detected in multiple lung cancer signatures is miR-203, which is a putative tumor
suppressor. High expression of miR-203 inhibits the proliferation and invasiveness of lung
cancer cells through negative regulation of survivin [169]. Moreover, increased expression
of miR-203 inhibits RGS17 oncogene, which results in reduced cell proliferation through
the cAMP-PKA-CREB pathway [170]. Furthermore, miR-203 acts as a suppressor of the
SRC/Ras/ERK pathway by inhibiting the expression of SRC oncogene, resulting in the
suppression of proliferation and migration of lung cancer cells [171].

Furthermore, to search systemically for genes regulated by 14 miRNA species that
recurred in sEV-based signatures of lung cancer (Figure 2), the miRTarBase database of
experimentally validated interactions between miRNA and genes [172] was analyzed. This
returned the set of about 600 genes, which functions were analyzed using the FunRich
functional enrichment analysis tool [173]. The set comprised of 390 genes associated with
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lung cancer, including several ones responsible for clinical features of this cancer (e.g.,
KRAS, EGFR, CASP8, PIK3CA, ERBB2, FASLG, RB1, MYD88, and TP53). Among molecular
functions and biological processes associated with this set of genes, several terms poten-
tially involved in cancer development and progression were significantly over-represented,
which is summarized in Table 4. Moreover, over-represented biological pathways associ-
ated with the most numerous subsets of genes were outweighed by signaling pathways
associated with inflammation, immune response, cell growth, cell-to-cell communication,
and cancer.

Table 4. Functions associated with genes regulated by exosome miRNAs common in lung cancer signatures.

Molecular Function No. of Genes Fold Enrichment FDR

Transcription factor activity 72 2.64 <0.00001
Receptor activity 32 2.73 0.00003

Protein serine/threonine kinase activity 28 2.87 0.00005
Transmembrane receptor protein tyrosine kinase activity 11 6.06 0.00008

Receptor signaling complex scaffold activity 28 2.68 0.00010
Receptor binding 16 3.83 0.00016

Protein-tyrosine kinase activity 8 6.50 0.00077
Transcription regulator activity 47 1.74 0.00451

GTPase activity 18 2.50 0.00868
Kinase regulator activity 5 6.71 0.01639

Biological Process No. of Genes Fold Enrichment FDR

Signal transduction 240 1.88 <0.00001
Cell communication 223 1.85 <0.00001

Regulation of nucleotide and nucleic acid metabolism 144 1.57 <0.00001
Apoptosis 26 3.64 <0.00001

Regulation of cell growth 5 7.35 0.01662

No. of genes—number of genes connected to specific term among 600 genes in the whole set; FDR—corrected p-value of the hypergeometric
test for the significance of over-representation.

6. Conclusions

MicroRNA component of serum/plasma is an attractive source of cancer biomarkers,
and several miRNA signatures of lung cancer have been proposed. Though none of them
is applied in clinical practice yet, a few are currently tested in prospective clinical trials
aimed at validation of their applicability in the early detection of lung cancer and/or
diagnosis of the indeterminate pulmonary nodules. Among other potential biomarkers
of early lung cancer are exosomes (or rather small extracellular vesicle, sEV) circulating
in the blood. Several molecular components of sEV, including proteins, lipids, and non-
coding RNAs, have been reported to have different levels in vesicles isolated from lung
cancer patients and healthy individuals. The largest number of published reports that
address this issue focus on the miRNA component of vesicles. Proposed signatures of
exosome miRNA have promising diagnostic value (AUC in the 0.75–0.95 range), yet none
of them has been validated in the context of the early detection of lung cancer. These
signatures involve a few dozen miRNA species overall, including 14 miRNA (so far) that
recurred in different signatures. It is worth noting that all these miRNA species have cancer-
related functions and have been associated with lung cancer progression, which further
confirms their diagnostic importance. Importantly, a few miRNA species, including known
oncomirs miR-17, miR-19, and miR-21, appear in multiple miRNA signatures of lung cancer
that are based on both the whole serum/plasma and serum/plasma-derived exosomes.
However, one should note, that due to barely standardized methods of sEV isolation, the
analysis of exosome miRNA content represents a diagnostic challenge. Therefore, the direct
comparison of a diagnostic value of miRNA signature based on the serum/plasma-derived
sEV and the whole specimen is desired, which is not available yet.
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