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Abstract: Nodal marginal zone lymphoma (NMZL) is a rare B-cell neoplasm, the genetic and
transcriptomic landscape of which are unclear. Using high-throughput sequencing for whole-exome
and transcriptome, we investigated the genetic characteristics of NMZL in a discovery cohort (n = 8)
and validated their features in an extended cohort (n = 30). Novel mutations in NFKBIE and ITPR2
were found in 7.9% (3/38) and 13.9% (5/36), respectively, suggesting roles for the NF-κB pathway
and B-cell-receptor-mediated calcium signaling pathway in the pathogenesis of NMZL. RNA-seq
showed that NMZLs were characterized by an aberrant marginal zone differentiation, associated with
an altered IRF4-NOTCH2 axis and the enrichment of various oncogenic pathways. Based on gene
expression profile, two subgroups were identified. Compared with subgroup 1, subgroup 2 showed
the following: the significant enrichment of cell cycle-associated and MYC-signaling pathways, a more
diverse repertoire of upstream regulators, and higher Ki-67 proliferation indices. We designated two
subgroups according to Ki-67 labeling, and subgroup 2 was significantly associated with a shorter
progression-free survival (p = 0.014), a greater proportion of large cells (p = 0.009), and higher MYC
expression (p = 0.026). We suggest that NMZL has unique features and, in this study, we provide
information as to the heterogeneity of this enigmatic entity.

Keywords: malignant lymphoma; marginal zone lymphoma; genetics; whole exome sequencing;
RNA sequencing

1. Introduction

Nodal marginal zone lymphoma (NMZL) is a rare mature B-cell neoplasm that accounts for about
1–2% of all B-cell non-Hodgkin lymphoma (NHL) [1,2]. Compared with its related entities—splenic
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marginal zone lymphoma (SMZL) and extranodal marginal zone lymphoma (EMZL)—NMZL is
characterized by the primary involvement of nodal sites [3]. Most patients present with localized or
generalized lymphadenopathy, and bone marrow (BM) involvement is noted in 28–62% of patients [4].
NMZL mimics the nodal involvement of EMZL and SMZL, but the lack of disease-defining markers
makes it difficult to diagnose this entity [4,5]. Among the three types of marginal zone lymphomas
(MZLs), NMZL is the least known in terms of genetic alterations and pathogenesis. To date, only two
studies have evaluated the genetic characteristics of NMZL by high-throughput sequencing. Spina et al.
found frequent genetic alterations that affect chromatin modifiers and the NOTCH pathway and
suggested that PTPRD mutation is the key genetic feature of NMZLs [6]. In another study performed
on Swiss patients with NMZL, Pillonel et al. reported recurrent BRAF mutations, suggesting that
BRAF mutations are diagnostically and therapeutically useful [7]. Despite the partially overlapping
genetic features of NMZLs reported by the two studies (altered chromatin remodeling and the NOTCH
pathway), the key findings of each study—PTPRD and BRAF mutations—were not reproducible.
This suggests the pathogenic heterogeneity of NMZL, emphasizing the need for investigation of its
genetic alterations. In addition, most previous molecular studies on NMZLs involved European or
western population [8–10], thus the molecular genetic characteristics of NMZL in other ethnicities
are unknown.

By a comprehensive review of the clinical and histopathological features, we established
a cohort of patients with NMZL and performed the first genetic study of NMZLs in Asians.
We performed whole-exome sequencing (WES) and transcriptomic analysis using various gene
expression and knowledge-based bioinformatics platforms and validated the findings in an extended
cohort. We identified novel genetic alterations, dysregulated pathways, and distinct subgroups
of NMZLs.

2. Results

2.1. Clinicopathological Characteristics of the NMZL Cohorts

A total of 38 NMZLs were included in this study (Table 1). Detailed information on the
clinicopathological features and histopathological characteristics of the cohort are shown in Table S1
and Figure S1.

Table 1. Clinicopathological features of study population.

Discovery Set Validation Set Total p

Age Median (min–max) 64 (42–78) 63 (29–85) 64 (29–85) 0.902
<60 years 4 (50.0%) 15 (50.0%) 19 (50.0%) 1.000
≥60 years 4 (50.0%) 15 (50.0%) 19 (50.0%)

Sex Male 4 (50.0%) 16 (53.3%) 20 (52.6%) 1.000
Female 4 (50.0%) 14 (46.7%) 18 (47.4%)

B-symptoms Absent 7 (87.5%) 26 (86.7%) 33 (86.8%) 1.000
Present 1 (12.5%) 4 (13.3%) 5 (13.2%)

ECOG PS 0 5 (62.5%) 15 (53.6%) 20 (55.6%) 0.454
1 3 (37.5%) 10 (35.7%) 13 (36.1%)
2 0 (0.0%) 3 (10.7%) 3 (8.3%))

LDH No elevation 4 (50.0%) 16 (57.1%) 20 (55.6%) 1.000
Elevation 4 (50.0%) 12 (42.9%) 16 (44.4%)

Ann Arbor Stage I 1 (12.5%) 5 (16.7%) 6 (15.8%) 0.250
II 0 (0.0%) 9 (30.0%) 9 (23.7%)
III 3 (37.5%) 5 (16.7%) 8 (21.1%)
IV 4 (50.0%) 11 (36.7%) 15 (39.5%)

IPI 0 0 (0.0%) 6 (21.4%) 6 (16.7%) 0.353
1 2 (25.0%) 7 (25.0%) 9 (25.0%)
2 4 (50.0%) 7 (25.0%) 11 (30.6%)
3 1 (12.5%) 6 (21.4%) 7 (19.4%)
4 1 (12.5%) 2 (7.1%) 3 (8.3%)
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Table 1. Cont.

Discovery Set Validation Set Total p

BM involvement Absent 4 (50.0%) 13 (59.1%) 17 (56.7%) 0.698
Present 4 (50.0%) 9 (40.9%) 13 (43.3%)

Progression No 5 (62.5%) 25 (83.3%) 30 (78.9%) 0.327
Yes 3 (37.5%) 5 (16.7%) 8 (21.1%)

HBV or HCV infection Absent 5 (62.5%) 26 (86.7%) 31 (81.6%) 0.146
Present 3 (37.5%) 4 (13.3%) 7 (18.4%)

Large cell component <20% 4 (50.0%) 12 (40.0%) 16 (42.1%) 0.698
≥20% 4 (50.0%) 18 (60.0%) 22 (57.9%)

Total 8 (21.1%) 30 (78.9%) 38 (100.0%)

Bone marrow (BM); Eastern Cooperative Oncology Group performance status (ECOG PS); International Prognostic
Index (IPI); lactate dehydrogenase (LDH); hepatitis B virus (HBV); hepatitis C virus (HCV).

2.2. Mutational Landscape of NMZL and Identification of Candidate Genes

A total of 390 non-synonymous variants in 367 genes and a mean number of variants per case
of 48.8 (range 13–96) were found (Table S2). We selected 92 candidate NMZL genes (CNGs) based
on the following criteria: (i) genes with mutations in at least two of the eight patients, (ii) genes with
mutations in NMZL3 or NMZL5 (which had matched germline controls), or (iii) genes with mutations
in at least one case and implicated in B-cell lymphomas (Figure 1). Of 92 CNGs, mutations in genes
involved in chromatin remodeling (KMT2D, 25.0%; HIST1H1E, 25.0%; HIST1H1B, 12.5%) and B-cell
receptor (BCR)-signaling and related pathways (CD79B, 25.0%; CARD11, 12.5%; BCL6, 12.5%) were
recurrently affected.

We also identified 46 novel genes with mutations not reported previously in NMZLs. NFKBIE
Y254fs mutation was detected in one patient (NMZL3); this is a loss-of-function mutation, resulting in
deregulation/activation of NF-κB signaling [11]. Two other NMZL samples (NMZL17 and NMZL27)
with the same NFKBIE mutation were found in the validation set by direct sequencing; thus, in total,
NFKBIE Y254fs was observed in 7.9% (3/38) of the NMZLs (Figure 2A). The clinical and histopathologic
features of the NFKBIE-mutated NMZLs are shown in Table S3 and Figure 3A. Briefly, patients with
NFKBIE-mutated NMZLs tended to have a higher International Prognostic Index (IPI) score, more
advanced disease and a higher Ki-67 proliferation index.

Mutations in ITPR2 have not been reported previously in NMZLs. In this study, two patients
in the discovery set had point mutations in ITPR2 (NMZL1, V239A; NMZL8, R265P). Three more
patients in the validation set harbored ITPR2 point mutations; thus, 13.9% (5/36) of NMZLs had
ITPR2 mutations (Figure 2B). Notably, all five ITPR2 mutations found in NMZLs were clustered
within the MIR domain of ITPR2, whereas ITPR2 mutations previously reported in other types of
lymphomas at lower frequencies were located at other sites (Figure 2B). In silico prediction using five
tools indicated that all ITPR2 mutations observed in NMZLs would result in functional alterations
(Table S4). The histopathologic features of ITPR2-mutated NMZLs are presented in Figure 3B. All cases
had varying degrees of marginal zone (MZ) differentiation with the proliferation of small-to-medium
sized B-lymphocytes, whereas NMZL8 and NMZL16 showed some intermingled large blastic cells.
The clinical features of patients with ITPR2-mutated NMZLs were not significantly different from those
with wild-type ITPR2 (Table S5).

Several genes related to the immune response (MYD88, 12.5%; CD70, 12.5%; TNFRSF14, 12.5%)
were also mutated, suggesting linkage between immune dysregulation and the pathogenesis of NMZL.
CD70 A80fs mutation, a novel variant not in the COSMIC database or the literature, was found in NMZL3
and validated by direct sequencing (Figure 2C). No additional case with a CD70 mutation was found
in the validation cohort; however, 61.1% (22/36) of NMZL cases showed loss or attenuated expression
of CD70 by immunohistochemistry (IHC) (Figure 2C), indicating alteration of the immune-stimulatory
molecule CD70 in NMZLs.

In addition, we manually searched for common gene fusions reported in B-cell NHLs, however,
no fusions involving these genes were found.
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Figure 1. Mutational landscape of nodal marginal zone lymphoma (NMZL). A total of 92 candidate
NMZL genes (CNGs) were grouped according to their functional relevance. Consistent with previous
reports on the genetics of NMZL, genes related to chromatin remodeling and the B-cell receptor
(BCR)-signaling pathway were the most frequently mutated. Other genes, presumably related to the
immune response, transcription, and cell cycle were also found to be altered in NMZLs (asterisk: novel
genes with mutations not previously found in NMZLs).
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Figure 2. Validation of novel mutations found in the current study. (A) A 4-bp deletion frameshift
mutation of NFKBIE (Y254fs) was found in NMZL3 by whole-exome sequencing (WES) (left), and
direct sequencing identified another two patients in the validation set (NMZL17 and NMZL27) with
the identical mutation (right). In total, three out of 38 (7.9%) patients with NMZL harbored this
mutation (bottom). (B) WES revealed two patients in the discovery set with ITPR2 mutations (left).
Direct sequencing was performed to identify alterations in the other NMZL patients (right). Of the
NMZLs, 13.9% (5/36) had mutations in ITPR2, all of which were predicted to be damaging and to affect
the MIR domain of ITPR2 (red box), whereas all ITPR2 mutations in other types of lymphomas affected
different sites (bottom). (C) NMZL3 patient harbored a frameshift mutation in CD70 (left), which was
confirmed by direct sequencing (right). Immunohistochemistry (IHC) images with loss or attenuation
of CD70 expression (NMZL3 and NMZL22) and intact CD70 expression (NMZL23) (bottom) are shown
(abbreviations: multiple myeloma (MM)).
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Figure 3. Histologic features of NMZLs harboring NFKBIE or ITPR2 mutations. (A) NMZLs with
NFKBIE mutations had varying proportions of medium-to-large B-lymphocytes intermingled with small
cells. Heterogeneous medium-sized, CD20-positive, plasmacytoid B-cell proliferation, intermingled
with small lymphocytes and a few large cells, was observed in a neck lymph node (LN) of NMZL3
(left), which also exhibited high Ki-67 positivity. The LNs of NMZL17 (middle) and NMZL27 (right)
were composed of occasional large blastic cells intermingled with small lymphocytes. (B) All cases
with ITPR2 mutations showed varying degrees of marginal zone differentiation with proliferation of
monocytoid B-cells, sometimes with clear cytoplasm. NMZL1 (left) exhibited prominent marginal zone
hyperplasia (asterisk) (abbreviations: hematoxylin and eosin (H&E)).

2.3. Transcriptomic Features of NMZLs in Comparison with Non-Neoplastic LNs

Considering the small number of sample replicates used in this study, the gene set permutation
gene set enrichment analysis (GSEA) algorithm [12] was used to identify the pathways enriched
in NMZLs compared with non-neoplastic lymph nodes (LNs). Selected gene sets from MSigDB
(http://software.broadinstitute.org/gsea/msigdb) and the SignatureDB collection (https://lymphochip.
nih.gov/signaturedb/) [13] were used for the analyses. In total, we found 20 significantly
enriched gene sets in NMZLs (Figure 4A). Gene sets representing cell cycle/proliferation and
oncogenic pathways associated with MYC, NOTCH, NF-κB, and STAT3 were notably enriched
in NMZLs. Sets of genes reportedly upregulated in splenic MZ B-cells compared with naïve
B-cells or germinal center (GC) B-cells (SPLENIC_MARGINAL_ZONE_BCELL_GT_GC_BCELL
and SPLENIC_MARGINAL_ZONE_BCELL_GT_NAIVE_AND_GC_BCELL) [14] were significantly
enriched (normalized enrichment score (NES) = 1.40 and 1.37; false discovery rate (FDR) q-value = 0.15
and 0.17). Notably, sets of genes upregulated after IRF4 and/or SPIB knockdown in activated B-cell
(ABC)-type diffuse large B-cell lymphoma (DLBCL) cell line [15] (IRF4_ABC_REPRESSED_ALL and
IRF4_SPIB_ABC_REPRESSED_ALL; NES = 1.38 and 1.55; FDR q-value = 0.17 and 0.07) were also
significantly enriched in NMZLs. These findings suggest that NMZLs can be characterized by their
accelerated cell cycle and proliferation, possibly driven by a number of oncogenes and transcription
factors (TFs).

http://software.broadinstitute.org/gsea/msigdb
https://lymphochip.nih.gov/signaturedb/
https://lymphochip.nih.gov/signaturedb/
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Figure 4. Gene set enrichment analysis (GSEA) and network analysis of NMZL samples compared to
non-neoplastic LNs. (A) Significantly enriched gene sets in NMZLs and their normalized enrichment
score (NES) are plotted. False discovery rate (FDR) q-values are shown to the right side of the bars
(left). Representative enrichment plots of key gene sets are shown (right). (B) Mechanistic networks for
the key upstream regulators MYC and IRF4 are shown. (C) IRF4 and ATF6 were predicted to cooperate,
resulting in altered DNA metabolism and development of hematopoietic neoplasm, according to
regulator effect analysis, and the B-cell-specific TF POU2F2 was implicated in transcription and
inhibition of apoptosis.

2.4. Major Upstream Regulators and Their Roles in the Pathogenesis of NMZL

According to the log2FC ratios, 2696 differentially expressed genes (DEGs) were identified: 78 were
downregulated and 2618 upregulated compared with LNs. We performed upstream regulator analysis
on DEGs using Ingenuity Pathway Analysis (IPA®) to identify upstream regulators that can account
for the gene expression profile (GEP) of NMZLs. Among the significant upstream regulators (Table S6),
MYC was notably activated regulator (z = 3.291, p = 0.008), and IRF4 was inhibited (z = −2.913,
p = 0.004); IRF4 was predicted to affect AICDA, IRF1, JAK2, STAT1 and STAT2 (Figure 4B). MITF had
the highest z-score (z = 4.796, p = 3.47E-04); other molecules related to the cell cycle and apoptosis,
including FOXM1, E2F6, TP53, NUPR1, and the histone modifier KDM5B, were identified (Figure S2).
Subsequent regulator effect analysis predicted the biological effects of upstream regulators (Table S7).
The B-cell specific TF POU2F2 was predicted to inhibit tumor cell apoptosis and enhance transcription,
and IRF4 in combination with ATF6 was predicted to play an important role in the development of
hematopoietic neoplasm (Figure 4C).

2.5. Characterization of NMZL Subgroups according to GEPs

Unsupervised clustering analysis was performed based on the results of a sample-to-sample
Pearson correlation analysis (Figure 5A). While NMZL1, 2 and 7 (subgroup 1) were observed to be
admixed with non-neoplastic LNs (LN1, 2 and 3), NMZL3, 4, and 5 (subgroup 2) were grouped together,
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with a significantly high correlation (Pearson’s r = 0.925, NMZL3 and 4; 0.899, NMZL3 and 5; 0.931,
NMZL4 and 5). Thus, we hypothesized that subgroup 2 has unique characteristics and performed
further GEP analyses of subgroups 1 and 2.

Figure 5. Subgroups of NMZL. (A) Pearson correlation matrix was created based on the GEPs of
six NMZLs and three non-neoplastic LNs. An unsupervised clustering analysis revealed strong
associations among NMZL3, 4, and 5, leading to determination of subgroup 1 (NMZL1, 2 and 7) and
subgroup 2 (NMZL3, 4 and 5). GSEA between subgroup 1 and LNs and between subgroup 2 and
LNs showed that certain gene sets were enriched in only one of the two subgroups. GSEA between
subgroups 2 and 1 further supported the enrichment of cellular proliferation pathways and the MYC
pathway in subgroup 2. (B) Ki-67 proliferation indices in the whole population was performed, and
two subgroups were defined according to the median Ki-67 value. (C) Representative cases of MYC
expression are shown. MYC positivity was assessed by digital image analysis and was 3.78% and
12.90% in NMZL37 (left) and NMZL19 (right), respectively. The scatter plot shows the association
between Ki-67 proliferation index and MYC positivity, and the higher MYC positivity of subgroup 2 is
shown as a violin plot.

The gene sets enriched in the two subgroups compared with non-neoplastic LNs largely overlapped
with those enriched in all six NMZLs (Figure 5A). However, a few newly noted gene sets were
identified; a gene set representing the memory B-cell signature (B_CELL_MEMORY_NEWMAN) [16]
was enriched only in subgroup 1 (NES = 1.43; FDR q-value = 0.13), whereas the MTORC1-signaling
pathway (NES = 1.36; FDR q-value = 0.05) was enriched only in subgroup 2. We also performed GSEA
between the two subgroups; compared with subgroup 1, gene sets related to the cell cycle, DNA repair,
MYC-signaling, and NOTCH pathway were significantly enriched in subgroup 2, as well as a set of
genes induced immediately by IL-6 stimulation in a DLBCL cell line. These findings further support
the existence of NMZL subgroups with discrete characteristics.

The DEGs of subgroups compared with normal LNs were subjected to upstream regulator analysis
by IPA, revealing that the subgroups were governed by discrete upstream regulators (Table S8 and
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Figure S3). Whereas POU2F2 and NUPR1 were common to both subgroups, subgroup 2—presumably
a more proliferative subset of NMZLs based on the GSEA results—was regulated by a larger number
of oncogenic molecules and TFs, including MYC, MITF, FOXM1, ATF6, E2F1, E2F3, and MYBL2.

2.6. NMZL Subgroups and Their Clinicopathological Implications

The GEP of the discovery set suggested that subgroup 2 NMZLs are characterized by an increased
proliferative drive and MYC-signaling. Concordantly, we found a significantly higher Ki-67 labeling
index in subgroup 2 compared with subgroup 1 (Figure 5B; p = 0.04953; Mann–Whitney test). Therefore,
we classified all patients in the discovery and validation sets according to the Ki-67 proliferation index
and assessed the status of the MYC pathway by IHC.

Image analyses of representative areas of the tumors (median number of analyzed nuclei, 12,453;
range, 8650–28,840) were performed in all cases. Areas containing relatively monomorphic monocytoid
B-cells were selected, and GCs were carefully excluded to prevent overestimation (Figure S4). The Ki-67
index ranged from 2.0% to 33.4%. Cases were classified into Ki-67Low (subgroup 1) and Ki-67High groups
(subgroup 2) based on a cutoff median Ki-67 index of 9.1% (Figure 5B). Subgroup 2 was significantly
associated with older age (p = 0.043), elevated lactate dehydrogenase (LDH) level (p = 0.002), advanced
stage (p = 0.021), higher IPI score (p = 0.001) and progression events (p = 0.021) (Table 2). To assess
whether the large cell component of the tumor was associated with the subgroups, we reviewed the
histology of all samples and estimated the proportions of the large cell component (Figure S5 and
Table S9). Subgroup 2 was associated with a higher proportion (≥20%) of the large cell component
(Table 2; p = 0.009). These findings support the biological relevance of the NMZL subgrouping.

Table 2. Clinicopathological characteristics according to subgroup determined by the Ki-67
proliferation index.

Subgroup 1
(Ki-67Low)

Subgroup 2
(Ki-67High) Total p

Age Median (range, years) 58 (29–79) 70 (30–85) 64 (29–85) 0.043
<60 years 13 (68.4%) 6 (31.6%) 19 (50.0%) 0.050
≥60 years 6 (31.6%) 13 (68.4%) 19 (50.0%)

Sex Male 11 (57.9%) 9 (47.4%) 20 (52.6%) 0.516
Female 8 (42.1%) 10 (52.6%) 18 (47.4%)

B-symptoms Absent 18 (94.7%) 15 (78.9%) 33 (86.8%) 0.340
Present 1 (5.3%) 4 (21.1%) 5 (13.2%)

ECOG PS 0 13 (72.2%) 7 (38.9%) 20 (55.6%) 0.022
1 5 (27.8%) 8 (44.4%) 13 (36.1%)
2 0 (0.0%) 3 (16.7%) 3 (8.1%)

LDH No elevation 14 (82.4%) 6 (31.6%) 20 (55.6%) 0.002
Elevation 3 (17.6%) 13 (68.4%) 16 (44.4%)

Ann Arbor Stage I 6 (31.6%) 0 (0.0%) 6 (15.8%) 0.021
II 5 (26.3%) 4 (21.1%) 9 (23.7%)
III 2 (10.5%) 6 (31.6%) 8 (21.1%)
IV 6 (31.6%) 9 (47.4%) 15 (39.5%)

IPI 0 5 (29.4%) 1 (5.3%) 6 (16.7%) 0.001
1 6 (35.3%) 3 (15.8%) 9 (25.0%)
2 6 (35.3%) 5 (26.3%) 11 (30.6%)
3 0 (0.0%) 7 (36.8%) 7 (19.4%)
4 0 (0.0%) 3 (15.8%) 3 (8.3%)

BM involvement Absent 10 (62.5%) 7 (50.0%) 17 (56.7%) 0.491
Present 6 (37.5%) 7 (50.0%) 13 (43.3%)

HBV or HCV infection Absent 17 (89.5%) 14 (73.7%) 31 (81.6%) 0.209
Present 2 (10.5%) 5 (26.3%) 7 (18.4%)

Progression No 17 (94.4%) 12 (63.2%) 29 (78.4%) 0.021
Yes 1 (5.6%) 7 (36.8%) 8 (21.6%)

NFKBIE Wild type 19 (100.0%) 16 (84.2%) 35 (92.1%) 0.230
Mutant 0 (0.0%) 3 (15.8%) 3 (7.9%)

ITPR2 Wild type 16 (84.2%) 15 (88.2%) 31 (86.1%) 1.000
Mutant 3 (15.8%) 2 (11.8%) 5 (13.9%)
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Table 2. Cont.

Subgroup 1
(Ki-67Low)

Subgroup 2
(Ki-67High) Total p

MYC IHC <10% 19 (100.0%) 12 (63.2%) 31 (81.6%) 0.008
≥10% 0 (0.0%) 7 (36.8%) 7 (18.4%)

Large cell component <20% 12 (63.2%) 4 (21.1%) 16 (42.1%) 0.009
≥20% 7 (36.8%) 15 (78.9%) 22 (57.9%)

Total 19 (50.0%) 19 (50.0%) 38 (100.0%)

Bone marrow (BM); Eastern Cooperative Oncology Group performance status (ECOG PS); International
Prognostic Index (IPI); lactate dehydrogenase (LDH); hepatitis B virus (HBV); hepatitis C virus (HCV);
immunohistochemistry (IHC).

The percentage of MYC positivity quantified by image analysis ranged from 0.01% to 33.01%
(Figure 5C). A significant positive correlation between MYC positivity and the Ki-67 proliferation index
was observed (Spearman’s rho = 0.383, p = 0.018; Mann–Whitney p = 0.026) (Figure 5C). Using 10% as
the cutoff IHC positivity rate for establishing the MYCHigh and MYCLow groups, we found significant
associations between the MYCHigh group and advanced stage (p = 0.029), and progression events
(p = 0.002) (Table S10).

Progression-free survival (PFS) was analyzed according to various clinicopathological factors
(Figure 6A and Figure S6); subgroup 2 was noted for its significant association with shorter PFS
(p = 0.014), along with MYCHigh (p < 0.001), elevated LDH level (p = 0.033) and advanced stage
(p = 0.005). When patients treated with R-CVP based regimen and R-CHOP based regimen were
separately analyzed, we observed similar trends of poor prognosis of subgroup 2, though statistical
significances were not achieved (Figure S7). Collectively, these data suggest that NMZLs can be
distinguished into clinically relevant subgroups according to the Ki-67 proliferation index (Figure 6B),
which is significantly associated with MYC expression.

Figure 6. Summary of the clinicopathological characteristics. (A) Kaplan–Meier curves of
progression-free survival (PFS) according to subgroups, large cell component, and MYC expression are
shown. (B) The characteristics of the 38 NMZLs are summarized and depicted.

3. Discussion

There is little overlap among studies on the genetic features of NMZLs [6,7], possibly due to the
heterogeneity of the disease and the lack of prior studies. By WES and RNA-seq on the discovery
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cohort, followed by validation in an extended cohort of patients with NMZLs, we identified novel
genetic alterations, enriched cellular pathways, and clinically relevant subgroups.

Some genetic characteristics reported in previous studies on NMZL were reproduced
here [6–8,10,17], including the high frequencies of mutations in genes affecting chromatin modifiers
and BCR-signaling pathways and a lack of recurrent driver fusions. However, we did not find PTPRD
or BRAF mutations, the most important genetic alterations in NMZLs reported in two WES-based
studies [6,7]. We report the discovery of two novel recurrent genetic alterations in NFKBIE and ITPR2
in NMZL (Figure 6); though we did not find significantly different clinicopathological features between
patients harboring mutations of these genes and those do not, these novel findings are noteworthy for
their potential to be used as diagnostic or therapeutic biomarkers.

NFKBIE encodes NFKB inhibitor epsilon (NFKBIE), a negative regulator of the NF-κB pathway [18].
The NFKBIE Y254fs mutation has been reported in aggressive chronic lymphocytic leukemia (CLL),
Hodgkin lymphoma (HL), DLBCL, primary mediastinal B-cell lymphoma (PMBCL) and a few cases of
low-grade B-cell NHL, including follicular lymphoma (FL), EMZL [19], and SMZL [11,20]. However,
this mutation has never been reported in patients with NMZLs. In this study, the NFKBIE Y245fs
mutation was observed in 7.9% (3/38) of patients, all in subgroup 2. These findings suggest a role for
the NF-κB pathway in the pathogenesis of subgroup 2, which warrants further investigation.

Mutations in ITPR2 have been reported in various types of solid tumors, including endometrial
carcinoma (9.3%) [21], malignant melanoma (6.4%) [22], urothelial carcinoma (7.0%) [23], and rarely in
lymphoid neoplasm including DLBCL (3.0–7.5%) [24,25], multiple myeloma (1.5%) [26], CLL (0.2%) [27],
and a case with Sezary syndrome [28]. To our knowledge, NMZL has the highest frequency of ITPR2
mutations, which were encountered in 13.9% of patients with NMZL. Notably, ITPR2 mutations
identified in NMZLs were clustered within the MIR domain, unlike other types of lymphoma. ITPR2
encodes a member of the inositol 1,4,5-triphosphate receptor (IP3R) family, and the major function of
ITPR2 in B-cells is BCR-induced Ca2+ signaling process by binding to IP3, leading to activation of the TFs
that orchestrate diverse genetic programs. A study using a B-cell specific IP3R family triple-knockout
mouse model demonstrated that impaired Ca2+ signaling results in abnormal B-cell development,
and that intact IP3R function supports BCR-induced proliferation and survival of B-cells [29]. Although
the functional consequences of ITPR2 variants in NMZL are yet to be determined, these variants were
identified within the MIR domain, which is a part of the IP3-binding core [30]. Thus, it is possible that
ITPR2 mutations in NMZL alter the ligand-binding ability of ITPR2. Together with the other genetic
alterations involving BCR-signaling pathway, recurrent clustered ITPR2 mutations may contribute to
the pathogenesis of NMZLs.

Previous studies on SMZLs reported frequent KLF2, NOTCH2, TRAF3, KMT2D, and TNFAIP3
mutations [31–33]. None of our patients harbored mutations in these genes, except for KMT2D.
Characteristics genetic features of EMZLs included TNFAIP2, CREBBP, TBL1XR1, MALT1 or BCL10
alterations [34,35]. However, most of the above findings were not present in our patients; only one
case (NMZL7) harbored the TBL1XR1 V445G mutation, near the site reported in ocular EMZL [35].
These results support the notion that NMZL is an independent entity with a distinct pathogenesis.

The results of upstream regulator analyses showed that IRF4 was significantly inhibited in NMZLs,
consistent with the GSEA results. IRF4 plays diverse context-specific roles at different stages of B-cell
development [36]. A previous study using IRF4-knockout mice showed that IRF4 deficiency enhanced
the activation of the NOTCH2 pathway, which is critical for MZ differentiation, thereby causing aberrant
accumulation of follicular B-cells in the MZ area [37]. We also found increased proliferative drive in
NMZLs, which was caused by various oncogenic signaling pathways (e.g., MYC, NOTCH, NF-κB,
and STAT3) and B-cell specific TFs (e.g., POU2F2). Therefore, the combined effects of aberrant MZ
differentiation, caused by an altered IRF4-NOTCH2 axis, and additional oncogenic drive, may explain
the lymphomagenesis of NMZL.

An unsupervised clustering analysis suggested the existence of a distinct subgroup (NMZL3,
4 and 5) from the other NMZL samples. Based on GSEA and IPA, subgroup 1 showed enrichment of
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memory B-cell signature; a previous microarray-based GEP analysis of NMZL also suggested that
NMZL resembles normal MZ B-cells and memory B-cells [9]. Our data provide additional evidence for
the postulated cell-of-origin of NMZLs. Subgroup 2 harnessed MTORC1-pathway, implying more
active BCR-signaling, and a broader repertoire of oncogenic regulators.

With reference to additional proliferative pressure in subgroup 2 compared with subgroup 1,
we defined both subgroups in the validation set according to the Ki-67 proliferative index. Digitally
assessed Ki-67 labeling index showed a bimodal distribution, which enabled the two subgroups
to be distinguished. An NMZL subset with an increased Ki-67 proliferation index was previously
suggested [4], although the biological implications were unclear. We showed that subgroup 2 had a
more aggressive clinical presentation and a significantly shorter PFS. Moreover, the higher expression
of MYC in subgroup 2, in agreement with its association with MYC-regulated pathways, could be the
mechanism underlying the distinct clinical presentation and prognosis of subgroup 2. Although MYC
is a master regulator involved in the lymphomagenesis of diverse lymphoid tumors [38], few studies
have reported its role in low-grade B-cell NHL. A series of EMZLs suggested that higher expression of
MYC is associated with an elevated risk of high-grade transformation [39]. In accordance with this,
we provide an evidence that MYC could be a key factor in high-risk subset NMZL.

The proper grading of NMZL based on histologic features has long been an unresolved issue.
Nathwani et al. suggested that NMZL cases with large cells in more than 20% of the tumor are related
to more aggressive behavior [40]; however, biological significance of the large cell component was
unclear. In this study, cases with a large cell proportion more than 20% was associated with a higher
Ki-67 (subgroup 2) but not related to MYC expression, PFS, and other clinicopathological features.
Taken together, the findings suggest that categorizing NMZL based on Ki-67 index could be more
clinically meaningful than a proportion of the large cell component.

Nevertheless, the different treatment approaches and underlying medical conditions of the patients
may have had impact on the disease course. To specifically analyze whether the survival difference
could be attributed to the subgroup regardless of the treatment strategies or co-morbidities, further
validation studies on a larger number of samples are warranted. Due to the rarity of this disease,
this study was performed on a small discovery set; however, we established an extended validation set
to confirm our findings and strengthen the level of evidence. The careful review of histologic features
was performed by experienced hematopathologists to confirm diagnosis. Though NMZL2 harbored
MYD88 L265P mutation, CXCR4 mutation was not detected, histopathologic features were not typical
for LPL, and the patient did not show any clinical evidence suggestive of LPL. Since MYD88 L265P
mutation alone does not meet the diagnostic criteria of LPL and considering that the mutation was also
reported in a previous study on patients with NMZL6, we decided to include this case. Furthermore,
the functional consequences of the novel mutations found in our study should be tested in the future
to gain further insights into this disease.

In summary, using WES and RNA-seq, we identified novel mutations with potential biological
implication and cellular pathways harnessed by NMZLs, and defined subgroups of this entity.
Our findings enhance our understanding of NMZL and suggest that it is an independent disease entity
with distinct genetic and transcriptional features.

4. Materials and Methods

4.1. Patients and Samples

The discovery set included eight patients with NMZL diagnosed at Seoul National University
Hospital (SNUH) from 2014 to 2017, and the validation set consisted of 16 patients with NMZLs
from SNUH and 14 patients with NMZL diagnosed at Seoul National University Bundang Hospital
(SNUBH) from 2002 to 2018. All NMZL cases were diagnosed according to the revised 4th World
Health Organization (WHO) classification [41]. All samples were acquired at the initial diagnosis,
except NMZL7, as the initial sample of this patient failed the quality assessment for next-generation
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sequencing; therefore, the sample acquired at the progression was used; therefore, NMZL7 was
excluded from all subsequence analyses regarding progression-related variables. Hematoxylin–eosin
(H&E) stained slides of all cases with CD3, CD20, BCL2, BCL6, CD10, cyclin D1, CD5, CD21, CD23,
MUM1 and Ki-67 immunostainings and EBV in situ hybridization were reviewed by five experienced
hematopathologists (J.K., C.L., J.H.P., C.W.K. and Y.K.J.). Cases with evidence of extranodal disease
were excluded, as were cases showing overt high-grade transformation. The large cell component
was assessed as the proportion of large cells in the tumor area. The complete blood counts (CBC),
BM examination, and serologic test results of all patients were also carefully reviewed to exclude
chronic lymphocytic leukemia (CLL) and lymphoplasmacytic lymphoma (LPL). Clinicopathologic
characteristics including serum LDH levels were retrieved from the medical records; according to
the reference range values in the clinical laboratories in SNUH and SNUBH, patients who had
serum LDH levels above 225 IU/L were regarded as having increased LDH levels. Formalin-fixed,
paraffin-embedded (FFPE) tissue samples of discovery and validation sets were retrieved. Matched
non-neoplastic samples from two patients in the discovery set, and thee non-related FFPE samples of
non-neoplastic lymph nodes (LNs) were also included. This study was approved by the Institutional
Review Boards (IRB) of SNUH (1809-143-977) and SNUBH (B-1306-208-301).

4.2. WES and Processing of Variants

Tumor genomic DNA from eight patients with NMZL from the discovery set and matched germline
DNA from two of these patients (NMZL3 and NMZL5) were used to construct sequencing libraries
using SureSelectXT Human All Exon V5 (Agilent Technologies, Santa Clara, CA, USA). Sequencing
was performed on the Illumina HiSeq platform with the paired-end 2 × 101 bp read option. All steps
were performed at Theragene ETEX Bio Institute (Suwon, Korea).

Sequencing reads from tumor and germline samples were aligned to the reference human genome
hg19/NCBI GRCh 37 using the Burrows-Wheeler Aligner (BWA) (v.0.7.12) [42], achieving a mean
on-target depth of 106.21× with at least 75.3% of the target exome covered at 50×. Deduplication
and local re-alignment were performed using Picard (v.1.92) and Genome Analysis Tool Kit (GATK,
v.2.3-9) [43]. Single-nucleotide variants (SNV) were called using MuTect (v.1.1.4) [44], and short
insertions and deletions (indels) were identified by indelocator (v.2.3-9). Variant annotation was
performed using SnpEff (v.4.2). Stringent variant filtering was performed to reduce contamination by
low-quality or germline variants, as described in the Supplementary information.

Visual inspection was carried out in 10 selected genes previously reported to exhibit structural
variation in B-cell NHLs: BCL2, BCL3, BCL6, BCL10, BIRC3, CCND1, FOXP1, MALT1, C-MYC, and
PAX5 (Table S11). Aligned reads were visually inspected using Integrative Genomics Viewer (IGV),
and we tried to identify the regions that had at least one read containing a possible fusion breakpoint,
or in which the mate pair was aligned with over a 10,000-bp gap or mapped to a different chromosome.

4.3. RNA-seq and Gene Expression Analysis

RNA-seq was performed on NMZL cases in the discovery set and three non-related non-neoplastic
LN samples. Sequencing libraries were prepared using the TruSeqTM RNA Exome kit, and sequencing
was performed on the Illumina HiSeq platform at Theragene ETEX Bio Institute (Suwon, Korea) using
the paired-end 2 × 100 bp option for tumor samples and the 2 × 150 bp option for normal samples.

Pearson correlation coefficients between transcripts per million (TPMs) of genes from each sample
were calculated to estimate sample-to-sample correlations. Genes other than those with a TPM ≥ 1.0 in
more than three NMZL tumor samples were filtered out; however, genes with a TPM ≥ 1.0 in all three
normal LN samples were included. Differentially expressed genes (DEGs) between the NMZL and
normal LN samples were defined as those with a log2 fold-change (FC) value >2.0 or <−2.0. Gene set
enrichment analysis (GSEA) by gene set permutation [45], and knowledge-based network analysis
by Ingenuity Pathway Analysis (IPA®, Qiagen, Hilden, Germany, Spring 2019 Release) [46] were
performed. The details are described in the Supplementary Information.



Cancers 2020, 12, 1669 14 of 17

4.4. Direct Sequencing and Immunohistochemistry (IHC)

Direct sequencing of NFKBIE, ITPR2, CD70, CD79B and CARD11 was conducted (Table S12).
To validate gene expression data, IHC analyses of IRF4 (MUM1), MYC, Ki-67 and CD70 were performed
on 4-µm-thick whole sections of FFPE tissue samples and assessed manually or using image analyzer.
The details are described in the Supplementary Information.

4.5. Statistical Analysis

Chi-squared, linear-by-linear and Fisher’s exact tests were performed to compare categorical
variables, and the Mann–Whitney test to compare continuous variables. The log-rank test was
used for survival analysis. The false discovery rate (FDR) for GSEA was calculated using the gene
permutation version of multiple hypothesis testing method [45]. Statistical significance was defined
as p < 0.05 or q < 0.25. Statistical analysis was performed using the R statistical package 3.6.0
(http://www.r-project.org).

5. Conclusions

We found that NFKBIE 4-bp deletion and ITPR2 mutations affecting the MIR domain are novel
genetic alterations of NMZL. The transcriptomic profiles of NMZL suggested the presence of subgroups
distinguished by proliferative activity, which appear to have distinct clinical, histopathological and
genetic features.
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