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Rate-limiting steps in transcription 
dictate sensitivity to variability in 
cellular components
Jarno Mäkelä1,4, Vinodh Kandavalli1 & Andre S. Ribeiro1,2,3

Cell-to-cell variability in cellular components generates cell-to-cell diversity in RNA and protein 
production dynamics. As these components are inherited, this should also cause lineage-to-lineage 
variability in these dynamics. We conjectured that these effects on transcription are promoter 
initiation kinetics dependent. To test this, first we used stochastic models to predict that variability 
in the numbers of molecules involved in upstream processes, such as the intake of inducers from the 
environment, acts only as a transient source of variability in RNA production numbers, while variability 
in the numbers of a molecular species controlling transcription of an active promoter acts as a constant 
source. Next, from single-cell, single-RNA level time-lapse microscopy of independent lineages of 
Escherichia coli cells, we demonstrate the existence of lineage-to-lineage variability in gene activation 
times and mean RNA production rates, and that these variabilities differ between promoters and 
inducers used. Finally, we provide evidence that this can be explained by differences in the kinetics 
of the rate-limiting steps in transcription between promoters and induction schemes. We conclude 
that cell-to-cell and consequent lineage-to-lineage variability in RNA and protein numbers are both 
promoter sequence-dependent and subject to regulation.

Single-cell measurements have shown that, even in monoclonal bacterial populations, cells differ widely in com-
ponent numbers1–6. Most cell-to-cell variability in, e.g. RNA and protein numbers, in the regime of low molecule 
numbers, can be explained by the stochastic nature of biochemical reactions. Meanwhile, in the high molecule 
numbers regime, most variability is due to cell-to-cell variability in the numbers of molecules involved in gene 
expression1.

Fluctuations in molecular species numbers in a cell propagate through direct and indirect interactions 
between species7, 8. Also, noise from cellular processes such as DNA replication, and partitioning of molecules 
in cell division, also contribute significantly9, 10. Importantly, these fluctuations have non-negligible timescales, 
often longer than cells’ lifetime1, 11, 12, causing differences between sister cells to propagate to the timescale of cell 
lineages13–15.

Molecule number fluctuations likely affect most cellular processes. One process susceptible to these fluctua-
tions is gene expression, as it depends on molecular species existing in small numbers (e.g. transcription factors) 
as well as on a cell’s abundance of polymerases, ribosomes, and σ factors3, 14–19.

At the single gene level, fluctuations in specific regulatory or uptake molecule numbers generate noise in 
the rates and timing of gene expression4, 5, 13. For example, gene expression activation rates by external inducers 
depend on the number of uptake membrane proteins5. As these differ in number between cells, so will intake 
times. Meanwhile, active transcription initiation rates (i.e. the main regulator of RNA production kinetics) differ 
due to, e.g., differences in the number of available RNA polymerases. It is expected that the effects of these noise 
sources in transcription will differ with the stage of gene expression affected.

Relevantly, the cell-to-cell variability in the kinetics of a chemical process depends not only on the variability 
in the numbers of the molecules involved, but also on the complexity of the process. For example, in a multi-step 
process such as transcription6, 20–23, the degree to which the cell-to-cell variability in RNA polymerase numbers 
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(or another molecule involved in the process) affects the RNA numbers’ cell-to-cell variability, depends on the 
kinetics of all steps of the process. In particular, it is expected that only the duration of the first step (closed com-
plex formation) will depend on the RNA polymerase numbers. As such, the larger the fraction of time in tran-
scription initiation taken by the closed complex formation, the higher will be the effects of cell-to-cell variability 
in RNA polymerase numbers on the variability in RNA production kinetics. For example, if the closed complex 
formation takes only a small fraction of the overall duration of the process, even large deviations in its kinetics 
due to high variability in the numbers of the molecules involved (RNA polymerase, transcription factors, etc.) will 
not to cause major variability in the overall RNA production kinetics.

Thus, we hypothesize that promoters that differ in their sequence-dependent rate-limiting steps  
kinetics21, 23–26, will differ in their susceptibility to variability in molecule numbers. In addition, as the kinet-
ics of the rate-limiting steps in transcription initiation are usually subject to regulation, e.g., by transcription  
factors21, 27, 28, we further hypothesize that the effects of cell-to-cell variability in molecule numbers can be tuned. 
Finally, as the time scale of fluctuations in molecule numbers and, thus cell-to-cell differences, can last longer 
than cell lifetimes and therefore propagate to cell lineages1, 12, 13, we expect that different promoters and different 
induction schemes will result in different lineage-to-lineage variability in RNA numbers.

To test these hypotheses, we combine stochastic modeling and time-lapse, single-cell, single-RNA level meas-
urements of cell lineages to analyze the effects of variability in cellular components on transcription dynamics. 
Namely, we dissect the variability at each stage, from the external intake of inducers to the production of RNA 
molecules. For this, we first model transcription in cells accounting for the variability in numbers of the molecules 
involved in inducers intake and in transcription initiation rate constants, and study how these sources of variabil-
ity contribute to the RNA variability over time. Next, to validate the model predictions, we measure differences 
in transcription dynamics between cell lineages. For this, we follow independent lineages for several generations 
under the microscope and measure RNA production in each lineage with single-cell, single-RNA sensitivity, to 
assess how the variability in gene activation rates following the introduction of inducers and in RNA production 
intervals in active promoters contribute to the lineage-to-lineage variability in RNA numbers over time. This 
variability is assessed and compared when inducing the same promoter, Plac/ara-1, with different inducers (IPTG 
and arabinose), and when inducing different promoters (Plac/ara-1 and Plac) with the same inducer (IPTG). Finally, 
we use different inducer concentrations to regulate the kinetics of the rate-limiting steps in transcription initia-
tion, and study how this can be used to tune the propagation of noise in cellular component numbers into RNA 
numbers.

Results
Cell-to-cell variability in cellular components are expected to generate cell-to-cell variability in 
gene activation times and in active transcription kinetics.  As in ref. 29, in each cell, we model gene 
activation and subsequent active transcription as stochastic multistep processes. Here, in addition, we impose 
that the rate of each step is dependent on the molecule number of specific molecular species (Fig. 1A and B). 
Specifically, the inducers’ intake kinetics from the environment differs with the number of uptake proteins5, while 
the rate of closed complex formation in transcription initiation differs with the numbers of free RNA polymerases 
(RNAp), as most active promoters are not saturated with holoenzymes17, 30. Thus, in this model, the cell-to-cell 
variability in uptake protein and RNAp numbers affect the variability in gene activation and subsequent transcrip-
tion initiation rates, respectively, thus contributing to the cell-to-cell variability in RNA numbers.

Gene activation is the passage of a promoter from a non-producing to a producing state, following the appear-
ance of an inducer in the media. It includes subsequent events such as diffusion of inducers in the extracellular 
and intracellular environments, crossing of the cell membranes, and finding and binding to a promoter or its 
repressor.4, 31–33 As these steps differ widely between genes, to model the dynamics of activation, we consider only 
the rate-limiting steps and model it as a two-step stochastic process as in refs 4, 29 (Supplementary Information):

⟷ ⟶I I S (1)
K k
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Here, I1 is a promoter in a non-producing state, I2 is an intermediate state, and S0 is a producing state, in which 
the promoter is available for transcription.

Active transcription in E. coli is a multi-step process, with the closed complex and open complex formation 
being, in most promoters, the most rate-limiting steps21–23. Transcription can thus be formulated as22:
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In (2), transcription initiates when an RNA polymerase holoenzyme (RNAp) binds to a promoter (Pro) and 
forms a closed complex (RPc). This step is reversible and thus, it takes several attempts, until one of them even-
tually successfully forms a stable open complex (RPo). Finally, the holoenzyme forms an elongation complex and 
synthesizes an RNA. The first-passage time distribution to produce an RNA is observationally equivalent to the 
distribution generated by a simplified version of the models in (1) and (2), shown in Fig. 1B (Supplementary 
Information)26, 34.

Each model cell contains a number of uptake proteins and RNAps that are drawn from negative binomial 
distributions of measured molecular species numbers1 (Supplementary Information). To attain RNA production 
dynamics in each cell, we used the finite state projection algorithm35, in which a finite set of linear ordinary differ-
ential equations is formulated for the truncated state space of the system to predict the time-varying probability 
distributions. From this, we obtain the RNA number distribution of a cell population over time.

To quantify and compare the effects of cell-to-cell variability in uptake protein and RNAp numbers, the vari-
ability in RNA numbers is described as36:
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Here, ni is the number of RNAs in cells of a sub-population of cells with parameter values i (i.e. number of 
uptake proteins and RNAps); the bracket operator ⋅( )  represents averaging over all cells with parameter values 
i; and the bar operator ⋅( ) represents averaging over all values of i.

As the number of uptake proteins and RNAps are the features that can differ between cells, they are used 
here as the features that define the ‘phenotype’ of a cell. Overall variability in RNA numbers is generated by the 
process’ stochasticity (CV2

proc) and by the differences in the cells’ propensities to produce RNAs (CV2
phe), due to 

‘phenotypic’ variability.
Note that the kinetics of gene activation and transcription do not differ between the cells. Effects of variability 

in these processes were studied in26, 29. Here, we focus on the effects of the ‘phenotypic’ variability (CV2
phe) on the 

kinetics of activation and active transcription.
First, we studied the effects of cell-to-cell variability solely in uptake protein numbers. For that, the model 

cells do not differ in RNAp numbers. From Fig. 1C and E, this source of variability contributes to RNA numbers 
diversity mostly at the early stages of a time series. Once transcription becomes active in most cells, the uniform 
process of RNA degradation across the cell population causes its effects to gradually dissipate.

Next, we assumed no variability in numbers of uptake proteins and studied the effects of variability in RNAp 
numbers. Here, the initial stages of the time series exhibit much less cell-to-cell variability in RNA numbers 
(CV2

phe) than the previous model. However, as transcription is activated throughout the cell population, its con-
tribution to RNA numbers diversity becomes evident (Fig. 1D and E), being maximized when equilibrium is 
reached between RNA production and degradation.

Finally, we considered model cells where cell-to-cell diversity in both uptake protein and RNAp numbers are 
present. In these, in agreement with the above, the early stage of the time series is dominated by the variability in 
the gene activation process, while the latter stages are dominated by the variability in the transcription process 

Figure 1.  In Silico prediction of variability in RNA numbers from variability in molecule numbers in gene 
activation and in active transcription. (A) Schematic representation of unspecified intracellular processes 
affecting the kinetics of gene activation by external inducers and subsequent transcription that generate cell-
to-cell variability in RNA numbers over time (CV2

phe). (B) Gene activation (whose duration is represented by 
tact) is modeled as a stochastic 2-step process, while subsequent transcription events (whose overall duration 
is represented by Δt) are modeled as a stochastic 3-step process. The rates k1, k2, and k3 are proportional to the 
molecule numbers drawn from negative binomial distributions. (C,D) show the resulting median (gray) and the 
quartiles (blue in (C) and green in (D)) of the RNA numbers over time in cells differing in (C) uptake molecule 
numbers or (D) RNAp numbers. (E) CV2

phe resulting from differences in RNAp (green) or in uptake protein 
numbers (blue), and from differences in both (black). The dashed vertical line is the crossing time. From this 
figure, we find that cell-to-cell variability in uptake protein numbers contributes to RNA numbers diversity 
mostly at the early stages of a time series and then gradually dissipates, while noise in transcription is a constant 
source to RNA numbers diversity that dominates the latter stages of a time series. (F,G) show the effects on the 
crossing time of changing (F) the mean duration of the activation period (blue) and subsequent transcription 
events (green) and (G) the CV2 of uptake proteins (blue) and RNAp (green) numbers.
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(Fig. 1E). The moment when the latter overtakes the former is defined here as ‘crossing time’, and provides infor-
mation about the duration of the influence from upstream processes. Importantly, the crossing time is often 
greater than a cell’s generation time, as shown in previous studies4, 29.

In addition, we quantified the dependence of the crossing time on the dynamics of activation and subsequent 
active transcription (Fig. 1F). We find that increasing the mean duration of gene activation increases the crossing 
time, as expected, while changing the active transcription initiation rate has only minimal effects. Also, the vari-
ability in RNAp and uptake protein numbers (measured by the CV2) affects the crossing time (Fig. 1G). Namely, 
increasing the CV2 of RNAp numbers decreases the crossing time, while increasing the CV2 of uptake protein 
numbers increases it.

Variability in RNA numbers between lineages differs between promoters and their induction 
scheme.  E. coli cells have been shown to behave more similarly in protein production kinetics when sharing a 
common ancestor due to inheritable epigenetic factors13. These factors are propagated to the progeny for several 
generations1, 11, 12, and thus cell lineages are expected to differ in these factors.

Given this, here we consider each independent lineage as a distinct phenotype, with a specific RNA produc-
tion rate and inducer intake rate. To validate this assumption, we studied how individual cell lineages respond to 
transcription induction by measuring, over the course of several generations, the RNA production in each cell 
with single molecule sensitivity following the introduction of an inducer in the media.

We grew lineages from individual cells under the microscope, induced the reporter and target gene, and then 
measured the RNA production dynamics in each cell once the lineages reached a size of 40–50 cells (Fig. 2A). 
All data of each condition is from the same experiment to avoid differences between overnight cultures, gel 
properties, etc. We detected production of RNA molecules by MS2-GFP tagging method (Fig. 2B, Fig. S1, 
and Supplementary Information), which protects the target RNA from degradation for the duration of the  
measurements37–39. Parameters for the detection of the target RNA were kept the same between lineages to avoid 
biases in detection.

Figure 2.  Variability in RNA production between lineages. (A) Cells are placed under the microscope at 
t = −240 min and continuously supplemented with fresh medium. At t = −60 min, the induction of the 
reporter system (MS2d-GFP) is initiated. At t = 0 min, with the cells already flooded with MS2d-GFP proteins 
for accurate RNA detection, the induction of the target RNA for MS2d-GFP is initiated. (B) Phase contrast 
image of an induced lineage and corresponding fluorescence image with tagged RNA molecules. (C) CV2

phe 
of the RNA numbers between lineages, 2 hours after induction. Shown are Plac/ara−1 induced with 1 mM IPTG 
(29 lineages) and with 1% Arabinose (14 lineages), and Plac induced with 1 mM IPTG (60 lineages). Error 
bars are the standard errors determined by bootstrapping of the cells in the lineages (Fig. S3). Differences 
between conditions suggest that promoter sequence and transcription factors can regulate the CV2

phe in RNA 
production. (D) MI (solid line), sMI (dashed line) and 1-tailed 0.01 p-value (dotted line) between a cell’s lineage 
and the number of RNAs of each cell for Plac/ara-1 induced with 1 mM IPTG (black), Plac/ara-1 induced with 1% 
Arabinose (blue), and Plac induced with 1 mM IPTG (green). In all conditions, the significant variability in the 
CV2

phe in RNA numbers arises during the induction process. (E) Illustration of RNA production events (circles) 
over time in individual cells of lineages. The waiting times for the first RNAs to appear in lineages (t0) and the 
subsequent time intervals between consecutive RNA production events (Δt) in single cells are shown. The 
dotted line depicts the start of induction of the target promoter.

http://S1
http://S3
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Measurements were conducted for differing inducers and promoters. Namely, we used a single copy Plac/ara-1 
(inducible by arabinose and/or IPTG)20 and a single copy Plac (inducible by IPTG)37. For Plac/ara-1 induced by 
1 mM IPTG, Plac/ara-1 induced by 1% arabinose, and Plac induced by 1 mM IPTG (in all cases for 2 hours), the cells 
exhibited, after 2 hours of induction, on average, 2.3, 0.4, and 3.0 RNAs, respectively, in agreement with previous 
in vivo measurements1, 6 (Supplementary Information, section ‘RNA numbers in cells’). It is noted that the strain 
used here was modified to contain a very high copy number of lac repressors (~3000 vs. ~20 in wild type)20 and to 
not code for lactose permease, which transports lactose into the cell. The first feature allows greatly increasing the 
fold change with induction when compared to the natural system. The second feature allows studying this system 
without the interference of feedback systems. In Plac/ara-1 promoter, the CRP/cAMP site has been replaced by the 
AraC binding sites of the PBAD promoter to avoid pleiotropic effects and allow further activation of transcription20. 
Fig. S2 shows the topologies and sequences of the mentioned promoters.

To quantify the variability in RNA production dynamics between lineages, we obtained the CV2
phe of the line-

ages in each condition (Fig. 2C, Fig. S3). We find differences between all conditions, indicating that possibly both 
the intake (which differs with the inducer molecule) and the active transcription (which differs with the promoter 
sequence) processes affect the CV2

phe in RNA production of the lineages. Note that the CV2
phe is independent of 

the mean transcription initiation rate (Fig. S4).
Due to being limited to observe a finite number of cells and lineages, it is possible that these values differ solely 

due to random chance. To test this, we measured the mutual information (MI)40, which quantifies how much a 
variable informs about another, between the lineage and the RNA numbers of each cell. For comparison, we ran-
domly permuted cells between lineages for 105 times and calculated the average spurious MI (sMI), along with 
the 1-tailed p-value. The results are: Plac/ara-1 induced by IPTG (MI: 0.336, sMI: 0.258, p-value < 10−5); Plac/ara-1  
induced by arabinose (MI: 0.138, sMI: 0.072, p-value < 10−5); Plac induced by IPTG (MI: 0.185, sMI: 0.120, 
p-value < 10−5). Thus, in all conditions, the hypothesis of having obtained the measured variability in RNA num-
bers between lineages by random chance can be rejected. Also, to test whether the difference between the MI and 
sMI increases during the activation period of transcription following the addition of inducers, we obtained the 
MIs for each condition every 5 min for 2 hours (Fig. 2D). Initially, the MI and sMI are very similar but, as time 
advances, the MI increases rapidly, becoming significantly above the average sMI (and 1-tailed p-value of 0.01)
(see also mean values for lineages in Fig. S5).

To test for the possibility that the inducer was not reaching all cells under observation, we calculated the 
correlation between the distance between a cell and the colony edge and its RNA numbers. In all conditions, we 
found only very weak, not statistically significant, spatial correlations (Table S1), meaning that the induction is 
approximately uniform in space. Also, we tested for reproducibility of the lineage variability from independ-
ent measurements by conducting three independent measurements for cells with Plac/ara-1 induced by IPTG. We 
observed no statistically significant differences between the measurements (Figs S6 and S7).

We conclude that, in all conditions, the variability between lineages in mean RNA numbers is significantly 
above chance. Further, it differs with both the promoter, which should affect the kinetics of active transcription, 
as well as with the inducer, which should affect the kinetics of both intake and active transcription.

Contributions of gene activation and active transcription to lineage variability differ over time, 
with the former being transient and the latter being a constant source of variability.  The 
observed lineage-to-lineage variability in RNA numbers can arise from gene activation, active transcription, or 
both. To assess the contribution of each process over time, we observed the waiting times for the first target RNA 
appearance (t0; which includes both tact and Δt) in each cell present at the start of induction29, along with the time 
intervals between consecutive RNA production events in each cell (Δt)29 (Fig. 2E, Supplementary Information, 
Figs S1, S8 and S9). We extracted information from the same time-lapse experiment so as to minimize potential 
differences in environmental conditions. We also limited the observations to ~10 lineages per experiment to 
obtain sufficient time sampling. Results show that the CV2

phe in both gene activation times and transcription 
intervals between lineages differs between conditions (Table S2).

To validate that the time series data are representative of large populations of lineages, we compared the 
lineage-to-lineage variability in mean RNA numbers of the time series measurements to that of two independent 
measurements for the condition of Plac/ara-1 induced by IPTG. We observed no statistically significant differences 
(Figs S6 and S7).

To estimate the contributions of each process to the observed lineage variability in RNA numbers 
over time, we fitted the measured t0 and Δt to the model of gene activation and transcription (Fig. 1B, 
Supplementary Information). We show results when assuming both activation (tact) and active transcription 
(Δt) (referred to as ‘full model’), and when assuming only active transcription (‘Δt model’) (Fig. 3A–C). In 
all conditions, the Δt model reaches a plateau, i.e. a constant CV2

phe faster than the full model. The height 
of this plateau is determined by the CV2

phe of Δt and is independent of the mean transcription initiation 
rate (Fig. S4, Table S2). The two conditions that differ the most in the time to reach the plateau are Plac/ara-1 
induced by IPTG and Plac/ara-1 induced by arabinose. Further, under arabinose induction, the CV2

phe of the 
Δt model is initially higher, due to differences in the mean values of tact and Δt. Over time, the two quanti-
ties will become similar (Fig. S10).

To compare with the model predictions, we calculated the empirical CV2
phe in RNA numbers over time. For 

this, we only considered branches of lineages where RNA productions occurred. The outcomes of the full models 
are expected to be representative of these measurements. Meanwhile, to obtain empirical values comparable with 
the Δt model, we synchronized the first production moment of RNA in each lineage to t = 0 and then disregarded 
that first production event. To avoid biases due the reduced number of cells in the later parts of the time series, we 
only considered the first 80 minutes of the synchronized time series.
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The empirical lineages CV2
phe are shown for each condition, with and without synchronization (Fig. 3D–F). 

As predicted by the models, the CV2
phe of the synchronized lineages exhibits a plateau. Also, in Plac/ara-1, the CV2

phe 
of synchronized lineages reaches the plateau faster than the CV2

phe of non-synchronized lineages. Meanwhile, Plac 
does not exhibit significant influence by the gene activation process on the lineages’ CV2

phe. We expect that this 
is due to the higher leakiness of this promoter (Table S2). To test this notion, we studied the expected impact of 
leakiness on CV2

phe using a model that allows transcription in the absence of inducers. This leakiness was mod-
elled as a Poisson process, and various rates of leakiness were tested. The results show that increasing leakiness 
decreases the lineages’ CV2

phe (Fig. S11).
Overall, these results confirm that the contributions from gene activation kinetics and from active transcrip-

tion dynamics to the lineages CV2
phe in RNA numbers differ over time, and that the former has only a transient 

effect. Importantly, fluctuations in transcription kinetics act as a constant source of variability in RNA numbers 
between lineages that differs between conditions (i.e. between promoters and between induction mechanisms of 
the same promoter).

Rate-limiting steps in transcription regulate the effects of cell-to-cell variability in cellular com-
ponents on transcription kinetics variability.  Why do the three conditions differ in variability between 
lineages (CV2

phe) in the same strain? Promoter sequences have been shown to differ widely in the kinetics of the 
rate-limiting steps in transcription initiation6, 21, 23, 24. Also, depending on the molecular species whose numbers 
fluctuate, different stages of transcription are expected to be affected. For example, different transcription factors 
act at different stages and variability in their numbers affect mostly the variability in the kinetics of those stages 
alone.

Given this, we hypothesized that differences in the kinetics of the rate limiting steps as well as in which rate 
limiting steps are affected by differences in the numbers of transcription factors could be the source for the 
observed differences in CV2

phe between the conditions studied here. Let τcc represent the stages of transcription 
initiation whose kinetics depends on RNAp concentration, while τoc represents subsequent stages, which are inde-
pendent of RNAp concentration22, 26, 30, 41. Given these definitions, we considered 4 different stochastic multi-step 
models of transcription (Fig. 1B) with the variability in molecule numbers affecting different rate-limiting steps: 
(1) variability in molecule numbers affecting only τcc; (2) variability in molecule numbers affecting only τoc; (3) 
variability in molecule numbers affecting both τcc and τoc equally; (4) variability in numbers of two molecular 
species (with different variabilities) affecting τcc and τoc independently. The extent of variability was set to be the 
same in all models (CV2 = 0.5) (except model 4, in which one molecular species has lower variability (CV2 = 0.1)) 
to reflect the empirical values reported in7. The overall RNA production rate was identical in all cases and does 
not affect the CV2

phe (Fig. S4). We studied the effects on CV2
phe of RNA numbers as a function of τcc relative to the 

overall duration of the transcription intervals, Δt.
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Figure 3.  Lineages CV2
phe in RNA numbers over time. (A–C) CV2

phe in RNA numbers between lineages 
predicted for the full model (both t0 and Δt processes) and the Δt model over time. (A) model Plac/ara-1 induced 
with IPTG, (B) model Plac/ara-1 induced with arabinose and (C) model Plac induced with IPTG. (D–F) CV2

phe in 
RNA numbers of measured and synchronized (sync) lineages. Branches of lineages without RNA production 
are discarded and, in the sync data, the last 40 minutes are not used due to the need for synchronization (D) Plac/

ara-1 induced with IPTG (15 lineages), (E) Plac/ara-1 induced with arabinose (10 lineages), and (F) Plac induced with 
IPTG (8 lineages). Error bars are standard errors determined by bootstrapping of the lineages. As predicted by 
the models, in all cases, the contributions from gene activation kinetics and from active transcription dynamics 
to the CV2

phe in RNA numbers differ over time, that the former has only a transient effect.
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The results (Fig. 4) show that CV2
phe varies with τcc/Δt in models 1, 2, and 4, where the variability in molecule 

numbers affect τcc and τoc differently. In general, if variability in molecule numbers affects the longer lasting step, 
it results in higher CV2

phe in RNA numbers. This does not occur in model 3, because the variability in molecule 
numbers affects both rate-limiting steps equally. Overall, we conclude that it is possible to tune the effects of var-
iability in molecular species affecting transcription by tuning the ratio between the durations of the rate-limiting 
steps in transcription initiation.

To provide empirical validation, we first measured the extent to which τcc/Δt of Plac/ara-1 can be tuned by var-
ying the IPTG concentration, as it has been shown that the kinetics of the rate-limiting steps can be regulated by 
inducers21, 26. The τcc/Δt is obtained from τ-plots, as in ref. 26. For that, the inverse of the RNA production rate is 
plotted as a function of inverse of the relative RNAp concentration. Next, it is extrapolated for an “infinite” RNAp 
concentration, so as to obtain the relative value of τcc (Supplementary Information).

To alter RNAp concentrations in live cells, we used media with different concentrations of specific compo-
nents, as described in ref. 26, and measured relative RpoC levels (i.e. the β’ subunit, which is the limiting fac-
tor in the assembly of the RNAp holoenzyme) in each condition by Western Blotting (Fig. S12, Supplementary 
Information). Importantly, it has been shown by qPCR and plate reader measurements that the inverse of the 
RNA production rate of Plac/ara-1 change linearly with the inverse of the total RNAp concentration within the range 
of media richness used in our measurements26.

Next, we measured by qPCR the fold-change in RNA production rates in each media compared to the control 
condition. Following this, τcc/Δt was extracted from the τ-plot for each inducer condition (Fig. S13). Finally, for 
each condition, from microscopy measurements, we measured the lineages CV2

phe in RNA numbers after 2 hours 
of induction.

We show (Fig. 4) the experimental lineages CV2
ext for Plac/ara-1 for different IPTG concentrations (10 µM, 

100 µM, and 1 mM) as a function of τcc/Δt. Also shown are the results for Plac/ara-1 induced with 1% arabinose and 
Plac induced with 1 mM IPTG. Notably, in Plac/ara-1, as τcc/Δt increases, the lineages CV2

phe decreases. This behav-
ior fits models 2 and 4, i.e., in this case the variability in molecule numbers influences mostly τoc. Interestingly, in 
this regard, it is known that a bound lac repressor prevents open complex formation27. Similarly, AraC also affects 
the open complex formation21. This suggests that, in Plac/ara-1, the cell-to-cell variability in lac repressor and AraC 
numbers might be the sources of the lineages CV2

phe in RNA numbers.
Plac, on the other hand, exhibits much lower lineages CV2

phe (Fig. 4.) than those of Plac/ara-1, suggesting that its 
regulatory mechanisms and/or noise sources differ significantly from Plac/ara-1. Congruently, Plac has fewer LacI 
binding sites than Plac/ara-1, and a CAP binding site, which facilitates closed complex formation20, 21, 28, 42 (Fig. S2). 
As such, Plac is expected to have different contributions to transcriptional variability from the transcription factor.

We conclude that transcription factors can be used to indirectly control the propagation of variability from 
molecular species numbers, given their ability to tune the kinetics of the rate-limiting steps in transcription initia-
tion. In addition, we expect that different promoters, differing in regulatory mechanism and/or noise sources21–23, 
will differ in responsiveness to molecular fluctuations.
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Figure 4.  CV2
phe in RNA numbers as a function of τcc/Δt as predicted by models and assessed by 

measurements. Lines are CV2
phe from stochastic models with variability in molecule numbers affecting τcc 

(green), τoc (blue), and both simultaneously (dashed line), as a function of τcc/Δt. Also shown is a model with 
variability in numbers of two molecular species (with different variabilities) affecting τoc and τcc (black). Circles 
are the measured lineages CV2

phe as a function of τcc/Δt. Plac/ara-1 induced with 10 µM IPTG (61 lineages), 
100 µM IPTG (54 lineages), 1 mM IPTG (29 lineages), and 1% Arabinose (14 lineages). Also shown is Plac 
induced with 1 mM IPTG (60 lineages). Error bars are standard errors determined by bootstrapping of the 
lineages. The same promoter subject to different induction levels influences its τcc/∆t and will consequently 
differ in CV2

phe in a way that is predictable by our model of transcription. Also, different transcription factors 
result in different CV2

phe.
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Discussion
It is well-known that the variability in cellular components, particularly in core regulators of gene expression, 
such as RNA polymerases, transcription factors, and ribosomes does not affect all genes uniformly (see e.g. ref. 
19). i.e., the resulting degree of phenotypic variability is known to be genetic-background dependent. However, 
the causes for this dependency remain unclear. Here, we provided one likely molecular mechanism responsible 
for the gene-specific phenotypic variability. In particular, we considered that gene expression is a multi-step pro-
cess, that genes differ in the duration of each step, and that each step is affected differently by changes in the num-
bers of the core regulators. Based on this, we hypothesized that genes have unique, tunable levels of susceptibility 
to the variability in cellular components and, particularly, to variability in the core regulators numbers.

Moreover, as the molecular components affecting transcription are inherited, cell-to-cell variability in RNA 
numbers should result in lineage-to-lineage variability in the same numbers. Consequently, transcription dynam-
ics diversity between cells should result in transcription dynamics diversity between lineages whose degree, sim-
ilarly to the cell-to-cell diversity, should differ between genes and with induction schemes.

In support of our hypothesis, we first showed that the lineage-to-lineage variability in mean RNA numbers dif-
fers between promoters and when inducing the same promoter with different inducers. Also, we showed that the 
former is due to differences in initiation kinetics between promoters, while the latter is due to different inducers 
leading to different active transcription initiation kinetics.

Aside from these sources of lineage-to-lineage variability, which have a constant effect over time, we further 
showed that the process of gene activation by an inducer acts as a transient source. Namely, we showed that differ-
ences in the kinetics of inducer intake during gene activation causes tangible differences in the lineage-to-lineage 
variability in mean RNA numbers, which gradually dissipate as all cells of the lineages become activated.

Next, to support our hypothesis that differences in the kinetics of the rate-limiting steps in transcription 
initiation allow genes to be affected differently by fluctuations in the numbers of molecular species involved in 
transcription, we showed that changing the inducer or its concentration, which changes the initiation kinetics of a 
promoter, changes the lineage-to-lineage variability. Also, different promoters subject to the same inducer exhibit 
different lineage-to-lineage variability. In particular, we showed that a source acting on the first step alone will 
have weak effects on promoters where this step is relatively fast, but will have strong effects on promoters where 
this step is the most rate-limiting one. These results indicate that the effects of variability in molecular species 
in the dynamics of transcription at the single cell level are subject to regulation and, in agreement with previous 
studies7, are evolvable at the single gene level.

In this regard, it is of interest to mention a recent study showed that selection on expression noise can have a 
stronger impact on sequence variation than mean expression level43. As such, it is of importance to identify which 
mechanisms cells can use to evolve noise levels of individual genes. The main contribution of our study, aside 
from the direct quantification and better understanding of the degree of diversity in RNA production kinetics 
between cells and lineages, is the identification of a mechanism, namely, the multi-step nature of transcription ini-
tiation, that allows the effects of extrinsic noise sources to be tunable by transcription factors and by the promoter 
sequence, which makes it both adaptable and evolvable.

Given the substantial fluctuations and cell-to-cell diversity known to exist in cellular components in E. coli 
cells1, we expect the promoter-level sensitivity to molecule number fluctuations to be a key factor for a reliable 
dynamics of small genetic circuits and cellular functioning in general. Also, given the evolvability and adaptability 
of the kinetics of the rate-limiting steps of transcription initiation, we expect that E. coli is constantly adjusting 
these features at the single gene level in order to reach optimal levels of functioning. Namely, we expect a global 
reduction of cell-to-cell and lineage-to-lineage diversity in RNA numbers when in stable environments, and, 
following a bet-hedging strategy, its rapid enhancement when exploring new environments.

In addition to this, since, in general, the intake kinetics of gene expression regulators is itself subject to regu-
lation, it may be that this and the above regulatory mechanisms act and evolve in a combined fashion. Variability 
in molecules responsible for gene activation and activity can be generalized as a “signaling” level of regulation 
in individual cells that can affect the response and sensitivity of the transcriptional circuits to perturbation. 
Importantly, the differences in the initiation kinetics of the promoters of a small circuit, should allow these cir-
cuits to exhibit ‘circuit state-dependent’ or signal-specific reactions. For example, consider a genetic switch where 
the initiation kinetics of promoter 1 is mostly spent in closed complex formation, while in promoter 2 it is mostly 
spent in open complex formation. In such a system, the outcome of fluctuations in RNA polymerase numbers (or 
transcription factors controlling closed complex formation) will depend on the switch’s present state. I.e. if the 
gene 2 is ‘ON’, the effects will be weak, but if it is gene 1 that is ‘ON’, the effects will be strong (more likely cause 
a switch in dynamics to occur). Future studies are needed to investigate how properties of genetic switches and 
genetic circuits are differentially sensitive to particular changes in the cellular composition.

Finally, we expect our results to be of value in the field of synthetic biology, which aims to engineer genetic 
networks with desired level of responsiveness to environmental cues by, among other, tuning the sensitivity to 
fluctuations in cellular component numbers at the single gene level. We expect our results to provide valuable 
information in this effort. For example, we believe that our results provide valuable clues on how to reduce present 
toggle switches’44 susceptibility to perturbations in cell physiology or in how to, alternatively, make the dynamics 
of a genetic circuit more responsive to changes in cellular physiology, in order to incorporate a cell’s current state 
into the circuit’s decision making process13.

Materials and Methods
Strains and plasmids.  Experiments were conducted in E. coli strain DH5α-PRO, generously provided by 
I. Golding (Baylor College of Medicine, Houston, TX). It contains two genetic constructs: (a) pPROTet-K133 
carrying PLtetO1-MS2d-GFP, and (b) a single-copy F-based vector, pIG-BAC with a Plac/ara-1 promoter controlling 
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the production of mRFP1 followed by a 96 MS2d binding site array (Plac/ara-1-mRFP1-MS2d-96BS)37. We also use 
a modified system, with Plac controlling the expression of an RNA with the 96 MS2d binding site array (named 
‘Plac-MS2d-96BS’)42. Detailed information is provided in the supplementary information.

Growth-conditions and microscopy.  Cells were grown overnight at 30 °C with aeration and shaking 
in lysogeny broth (LB) medium, supplemented with appropriate antibiotics, diluted 1:1000 fold into fresh LB 
medium and allowed to grow at 37 °C at 250 RPM until an optical density of OD600 ≈ 0.3. Afterwards, a few µL of 
cells were placed between a 3% agarose gel pad and a glass coverslip, before assembling the FCS2 imaging cham-
ber (Bioptechs). Cells were dispersed on the agarose gel pad, to give each the progeny of each cell enough space 
grow in numbers during the experiment. Prior to starting the experiment, the chamber was heated to 37 °C and 
placed under the microscope.

A flow of fresh (pre-warmed to 37 °C) LB medium containing the appropriate antibiotics was provided to 
cells under microscope observation by a peristaltic pump (Bioptechs) at a rate of 0.5 mL min−1. At first, cells were 
perfused with media for ~4 hours to grow colonies from individual cells. Next, we perfused the cells with 100 ng 
ml−1 anhydrotetracycline (aTc) to induce PLtetO1 for MS2d-GFP production. Finally, after 1 hour (usually, at this 
stage, each colony, i.e. lineage, reached a size of ~40 cells), we perfused cells with 1 mM IPTG (or 1% L-arabinose) 
and 100 ng ml−1 aTc.

Cells were visualized in a Nikon Eclipse (Ti-E, Nikon) inverted microscope with C2 + (Nikon), a point scan-
ning confocal microscope system, using a 100x Apo TIRF (1.49 NA, oil) objective. Fluorescence images were 
acquired using a 488 nm argon ion laser (Melles-Griot) and a 514/30 nm emission filter (Nikon). The fluorescence 
images were acquired once per minute during the last 2 hours of the microscopy measurements. The laser shutter 
was open only during the exposure time to minimize photobleaching. Meanwhile, an external phase contrast 
system (Nikon) was used with a DS-Fi2 CCD camera (Nikon) to obtain phase contrast images once per every 
5 minutes. All images were acquired with NIS-Elements software (Nikon).

Data and image analysis.  Data was analyzed using custom software written in MATLAB 2014a 
(MathWorks). Cells in phase contrast images were segmented using ‘CellAging’ (Fig. S1A)45. Alignment of the 
phase contrast images with the confocal images was done by selecting several landmarks in both images and 
using thin-plate spline interpolation for the registration transform. Fluorescent MS2d-GFP-RNA spots in each 
cell, at each frame, were detected with the Kernel Density Estimation (KDE) method using a Gaussian kernel 
(Fig. S1B)46. Cell background corrected spot intensities were then calculated by subtracting the mean cell back-
ground intensity multiplied by the area of the spots from the total fluorescence intensity of the spots. RNA num-
bers of individual cells at the different time moments as in37. From the distribution of background-corrected 
total spots intensity in cells, the first peak is set to correspond to the intensity of a single RNA molecule and 
the number of tagged RNAs in each spot is estimated by dividing its intensity by that of the first peak (Fig. S1C, 
Supplementary Information). To calculate the waiting times for the first production, the time intervals between 
consecutive production events and the total number of production events in lineages, the background-corrected 
total spots intensity over time in each cell was fitted to a monotone piecewise-constant function by least squares46. 
The number of terms was selected using the F-test with a p-value of 0.01. Each jump corresponds to the produc-
tion of a single RNA (Fig. S1D). This method relies on the fact that, once tagged with MS2d-GFP, the RNA does 
not degrade and its fluorescence does not decay for several hours39. Waiting times for the first production of RNAs 
in each lineage were calculated by selecting cells without spots at the beginning of induction (i.e., without leaky 
expression), and detecting when the first production occurred in each branch of each lineage. Time intervals 
between consecutive RNA productions in individual cells were obtained by extracting the time between consec-
utive jumps in the total spots intensity (Fig. S1)46.

References
	 1.	 Taniguchi, Y. et al. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329, 

533–538 (2010).
	 2.	 Bakshi, S., Siryaporn, A., Goulian, M. & Weisshaar, J. C. Superresolution imaging of ribosomes and RNA polymerase in live 

Escherichia coli cells. Mol. Microbiol. 85, 21–38 (2012).
	 3.	 Yang, S. et al. Contribution of RNA polymerase concentration variation to protein expression noise. Nat. Commun. 5, 1–9 (2014).
	 4.	 Megerle, J. A., Fritz, G., Gerland, U., Jung, K. & Rädler, J. O. Timing and dynamics of single cell gene expression in the arabinose 

utilization system. Biophys. J. 95, 2103–2115 (2008).
	 5.	 Choi, P. J., Cai, L., Frieda, K. & Xie, X. S. A stochastic single-molecule event triggers phenotype switching of a bacterial cell. Science 

322, 442–446 (2008).
	 6.	 Jones, D. L., Brewster, R. C. & Phillips, R. Promoter architecture dictates cell-to-cell variability in gene expression. Science 346, 

1533–1537 (2014).
	 7.	 Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002).
	 8.	 Paulsson, J. Models of stochastic gene expression. Phys. Life Rev. 2, 157–175 (2005).
	 9.	 Huh, D. & Paulsson, J. Non-genetic heterogeneity from stochastic partitioning at cell division. Nat. Genet. 43, 95–100 (2011).
	10.	 Peterson, J. R., Cole, J. A., Fei, J., Ha, T. & Luthey-Schulten, Z. A. Effects of DNA replication on mRNA noise. Proc. Natl. Acad. Sci. 

USA 112, 15886–15891 (2015).
	11.	 Hensel, Z. et al. Stochastic expression dynamics of a transcription factor revealed by single-molecule noise analysis. Nat. Struct. Mol. 

Biol. 19, 797–802 (2012).
	12.	 Rosenfeld, N., Young, J. W., Alon, U., Swain, P. S. & Elowitz, M. B. Gene regulation at the single-cell level. Science 307, 1962–1965 

(2005).
	13.	 Robert, L. et al. Pre-dispositions and epigenetic inheritance in the Escherichia coli lactose operon bistable switch. Mol. Syst. Biol. 6, 

357 (2010).
	14.	 Kiviet, D. J. et al. Stochasticity of metabolism and growth at the single-cell level. Nature 514, 376–379 (2014).
	15.	 Yun, H. S., Hong, J. & Lim, H. C. Regulation of Ribosome Synthesis in Escherichia coli Effects of Temperature and Dilution Rate 

Changes. Biotechnol. Bioeng. 52, 615–624 (1996).

http://S1A
http://S1B
http://S1C
http://S1D
http://S1


www.nature.com/scientificreports/

1 0ScIEnTIFIc REPOrtS | 7: 10588  | DOI:10.1038/s41598-017-11257-2

	16.	 Klumpp, S., Zhang, Z. & Hwa, T. Growth Rate-Dependent Global Effects on Gene Expression in Bacteria. Cell 139, 1366–1375 
(2009).

	17.	 Liang, S. et al. Activities of constitutive promoters in Escherichia coli. J. Mol. Biol. 292, 19–37 (1999).
	18.	 Bremer, H. & Dennis, P. Modulation of chemical composition and other parameters of the cell by growth rate. Neidhardt, F. (ed.). 

Washington, DC Am. Soc. Microbiol. Press 1553 (1996).
	19.	 Kandavalli, V. K., Tran, H. & Ribeiro, A. S. Effects of σ factor competition are promoter initiation kinetics dependent. Biochim. 

Biophys. Acta - Gene Regul. Mech. 1859, 1281–1288 (2016).
	20.	 Lutz, R. & Bujard, H. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and 

AraC/I1-I 2 regulatory elements. Nucleic Acids Res. 25, 1203–1210 (1997).
	21.	 Lutz, R., Lozinski, T., Ellinger, T. & Bujard, H. Dissecting the functional program of Escherichia coli promoters: the combined mode 

of action of Lac repressor and AraC activator. Nucleic Acids Res. 29, 3873–3881 (2001).
	22.	 McClure, W. R. Mechanism and control of transcription initiation in prokaryotes. Annu. Rev. Biochem. 54, 171–204 (1985).
	23.	 Saecker, R. M., Record, M. T. & DeHaseth, P. L. Mechanism of Bacterial Transcription Initiation: RNA Polymerase - Promoter 

Binding, Isomerization to Initiation-Competent Open Complexes, and Initiation of RNA Synthesis. J. Mol. Biol. 412, 754–771 
(2011).

	24.	 McClure, W. R. Rate-limiting steps in RNA chain initiation. Proc. Natl. Acad. Sci. USA 77, 5634–5638 (1980).
	25.	 Friedman, L. J. & Gelles, J. Mechanism of transcription initiation at an activator-dependent promoter defined by single-molecule 

observation. Cell 148, 679–689 (2012).
	26.	 Lloyd-Price, J. et al. Dissecting the stochastic transcription initiation process in live Escherichia coli. DNA Res. 23, 203–214 (2016).
	27.	 Sanchez, A., Osborne, M. L., Friedman, L. J., Kondev, J. & Gelles, J. Mechanism of transcriptional repression at a bacterial promoter 

by analysis of single molecules. EMBO J. 30, 3940–3946 (2011).
	28.	 Busby, S. & Ebright, R. H. Transcription activation by catabolite activator protein (CAP). J. Mol. Biol. 293, 199–213 (1999).
	29.	 Mäkelä, J. et al. In vivo single-molecule kinetics of activation and subsequent activity of the arabinose promoter. Nucleic Acids Res. 

41, 6544–6552 (2013).
	30.	 Ehrenberg, M., Bremer, H. & Dennis, P. P. Medium-dependent control of the bacterial growth rate. Biochimie 95, 643–658 (2013).
	31.	 Schleif, R. Regulation of the L-arabinose operon of Escherichia coli. Trends Genet. 16, 559–565 (2000).
	32.	 Skerra, A. Use of the tetracycline promoter for the tightly regulated production of a murine antibody fragment in Escherichia coli. 

Gene 151, 131–135 (1994).
	33.	 Weickert, M. J. & Adhya, S. The galactose regulon of Escherichia coli. Mol. Microbiol 10, 245–251 (1993).
	34.	 Moffitt, J. R. & Bustamante, C. Extracting signal from noise: Kinetic mechanisms from a Michaelis-Menten-like expression for 

enzymatic fluctuations. FEBS J. 281, 498–517 (2014).
	35.	 Munsky, B. & Khammash, M. The finite state projection algorithm for the solution of the chemical master equation. J. Chem. Phys. 

124, 44104 (2006).
	36.	 Lu, T., Shen, T., Bennett, M. R., Wolynes, P. G. & Hasty, J. Phenotypic variability of growing cellular populations. Proc. Natl. Acad. 

Sci. USA 104, 18982–18987 (2007).
	37.	 Golding, I., Paulsson, J., Zawilski, S. M. & Cox, E. C. Real-time kinetics of gene activity in individual bacteria. Cell 123, 1025–1036 

(2005).
	38.	 Peabody, D. S. The RNA binding site of bacteriophage MS2 coat protein. EMBO J. 12, 595–600 (1993).
	39.	 Tran, H., Oliveira, S. M. D., Goncalves, N. & Ribeiro, A. S. Kinetics of the cellular intake of a gene expression inducer at high 

concentrations. Mol. Biosyst. 11, 2579–2587 (2015).
	40.	 Shannon, C. E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 27(379–423), 623–656 (1948).
	41.	 Patrick, M., Dennis, P. P., Ehrenberg, M. & Bremer, H. Free RNA polymerase in E. coli. Biochimie 119, 80–91 (2015).
	42.	 Golding, I. & Cox, E. C. RNA dynamics in live Escherichia coli cells. Proc. Natl. Acad. Sci. USA 101, 11310–11315 (2004).
	43.	 Metzger, B. P. H., Yuan, D. C., Gruber, J. D., Duveau, F. & Wittkopp, P. J. Selection on noise constrains variation in a eukaryotic 

promoter. Nature 521, 344–347 (2015).
	44.	 Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000).
	45.	 Häkkinen, A., Muthukrishnan, A.-B., Mora, A., Fonseca, J. M. & Ribeiro, A. S. CellAging: a tool to study segregation and partitioning 

in division in cell lineages of Escherichia coli. Bioinformatics 29, 1708–9 (2013).
	46.	 Häkkinen, A. & Ribeiro, A. S. Estimation of GFP-tagged RNA numbers from temporal fluorescence intensity data. Bioinformatics 

31, 69–75 (2015).

Acknowledgements
Work supported by Academy of Finland (295027 and 305342 to ASR), Jane and Aatos Erkko Foundation (610536 
to ASR), and TUT President’s Graduate Programme (JM).

Author Contributions
J.M. and A.S.R. conceived the study. J.M. and V.K. performed the microscopy experiments. J.M. performed the 
modeling and analysis. V.K. executed qPCR and Western Blotting. All authors performed research. J.M. and 
A.S.R. drafted the manuscript which was revised by all authors.

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-11257-2
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://dx.doi.org/10.1038/s41598-017-11257-2
http://creativecommons.org/licenses/by/4.0/

	Rate-limiting steps in transcription dictate sensitivity to variability in cellular components

	Results

	Cell-to-cell variability in cellular components are expected to generate cell-to-cell variability in gene activation times  ...
	Variability in RNA numbers between lineages differs between promoters and their induction scheme. 
	Contributions of gene activation and active transcription to lineage variability differ over time, with the former being tr ...
	Rate-limiting steps in transcription regulate the effects of cell-to-cell variability in cellular components on transcripti ...

	Discussion

	Materials and Methods

	Strains and plasmids. 
	Growth-conditions and microscopy. 
	Data and image analysis. 

	Acknowledgements

	Figure 1 In Silico prediction of variability in RNA numbers from variability in molecule numbers in gene activation and in active transcription.
	Figure 2 Variability in RNA production between lineages.
	Figure 3 Lineages CV2phe in RNA numbers over time.
	Figure 4 CV2phe in RNA numbers as a function of τcc/Δt as predicted by models and assessed by measurements.




