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Abstract 

Background: Pancreatic cancer (PC) is a highly fatal and aggressive disease with its incidence and mortality quite 
discouraging. An effective prediction model is urgently needed for the accurate assessment of patients’ prognosis to 
assist clinical decision-making.

Methods: Gene expression data and clinicopathological data of the samples were acquired from The Cancer 
Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Gene Expression Omnibus (GEO) databases. Dif-
ferential expressed genes (DEGs) analysis, univariate Cox regression analysis, least absolute shrinkage and selection 
operator (LASSO) regression analysis, random forest screening and multivariate Cox regression analysis were applied 
to construct the risk signature. The effectiveness and independence of the model were validated by time-dependent 
receiver operating characteristic (ROC) curve, Kaplan–Meier (KM) survival analysis and survival point graph in training 
set, test set, TCGA entire set and GSE57495 set. The validity of the core gene was verified by immunohistochemistry 
and our own independent cohort. Meanwhile, functional enrichment analysis of DEGs between the high and low risk 
groups revealed the potential biological pathways. Finally, CMap database and drug sensitivity assay were utilized to 
identify potential small molecular drugs as the risk model-related treatments for PC patients.

Results: Four histone modification-related genes were identified to establish the risk signature, including CBX8, 
CENPT, DPY30 and PADI1. The predictive performance of risk signature was validated in training set, test set, TCGA 
entire set and GSE57495 set, with the areas under ROC curve (AUCs) for 3-year survival were 0.773, 0.729, 0.775 and 
0.770 respectively. Furthermore, KM survival analysis, univariate and multivariate Cox regression analysis proved it as 
an independent prognostic factor. Mechanically, functional enrichment analysis showed that the poor prognosis of 
high-risk population was related to the metabolic disorders caused by inadequate insulin secretion, which was fueled 
by neuroendocrine aberration. Lastly, a cluster of small molecule drugs were identified with significant potentiality in 
treating PC patients.
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Background
Pancreatic cancer is one of the most lethal malignan-
cies, with a 5-year survival rate of only 10% in the United 
States [1]. According to the latest epidemiological data, it 
is reported that there are 495,773 new cases worldwide 
in 2020, and approximately 466,003 will die of this dis-
ease, ranking 14th and 7th among all cancers respectively 
[2]. In addition to the malignant characteristics of the PC 
itself and the lack of early screening methods, the disap-
pointing prognosis of this disease is largely attributable 
to the lack of effective risk prediction models. Although 
advanced surgical techniques, targeted drugs, radio-
therapy and chemotherapy drugs have been applied, the 
survival benefits of these treatments are questionable and 
side effects occur to varying degrees for each individual 
[3, 4]. The treatment of PC should be individualized and 
systematic, which can ensure a maximum gain and mini-
mum risk. Therefore, an effective prediction model is 
urgently needed for the accurate assessment of patients’ 
prognosis to assist clinical decision-making. In this con-
text, doctors can decide whether a more aggressive treat-
ment regimen is needed, and an efficacious treatment 
with balanced benefits and side effects can be selected.

Traditional risk stratification systems, such as AJCC 
TNM staging, has been proved to have nondiscrimina-
tory predictive efficacy for PC [5, 6]. However, more pre-
dictive models are required to evaluate the prognosis of 
PC in multiple dimensions. With the large-scale appli-
cation of next-generation sequencing and microarray 
technology in disease research, the use of specific gene 
expression levels and mutation status to assess disease 
prognosis has become increasingly accessible [7, 8]. Actu-
ally, a number of studies have demonstrated that specific 
gene expression or mutant characteristics can effectively 
predict the prognosis of tumors [9, 10]. Concomitantly, 
the establishment of prognostic models for PC has also 
been extensively reported, including whole-gene predic-
tion model [11–13], lncRNA-related prediction model 
[14], immune gene-related prediction model [15], and 
ceRNA-related model [16], etc. At the same time, the 
pivotal role of histone modification in the progression of 
PC is gradually revealed in recent years. Histone modifi-
cations, mainly involving acetylation, methylation, phos-
phorylation and ubiquitylation, represent a versatile set 
of epigenetic marks that regulate multiple dynamic cel-
lular processes [17]. Under certain conditions, aberrant 

histone modifications of cancer-related genes may lead 
to abnormal activation or silencing of these genes, lead-
ing to the occurrence and progression of PC. Moreover, 
the changes of histone modifiers tend to regulate the his-
tone modification of a list of genes rather than targeting 
a specific gene. Therefore, it may lead to a series of gene 
expression changes and produce a large-scale genetic 
remodeling in cells, which further demonstrates the piv-
otal role of histone modification in the development of 
PC. For example, the transcription factor FOXA1 pro-
motes PC progression by driving large-scale enhancer 
reprogramming through H3K27ac (acetylation of lysine 
27 of histone 3) modulation [18]. Histone lysine meth-
yltransferases enhancer of zeste homolog 2 (EZH2) has 
been found to act as both an oncogene and a tumor sup-
pressor, since it maintains, rather than specifies, the tran-
scriptional repression state of thousands of target genes 
[19]. In view of the proposed concept of histone code and 
the critical role of histone modification in the progres-
sion of PC [20], we consider a prognosis signature based 
on histone modification-related genes to better predict 
the prognosis of PC patients and optimize the clinical 
decision-making.

In this study, we reported a risk signature model based 
on genes associated with histone modification to predict 
the prognosis of PC patients. Four histone modification-
related genes were identified to construct the risk signa-
ture, which was proved to be an independent risk factor 
and was validated in the training set, testing set, entire 
set and GSE57495 set. Furthermore, functional enrich-
ment analysis showed that the poor prognosis of high-
risk population was related to the metabolic disorders 
caused by inadequate insulin secretion, which was fueled 
by neuroendocrine abnormality. Finally, CMap database 
and drug sensitivity assay were utilized to identify poten-
tial drugs as the risk model-related treatments for PC 
patients.

Methods
Datasets sources and processing
Histone modification-related genes were extracted from 
the in Gene Set Enrichment Analysis (GSEA) website 
(https:// www. gsea- msigdb. org/ gsea/ index. jsp; ≤ Sep 
1, 2020). Gene expression data was downloaded from 
UCSC XENA website (https:// xenab rowser. net/ datap 
ages/; ≤ Sep 1, 2020), which included 167 normal tissues 

Conclusions: Based on a histone modification-related gene signature, our model can serve as a reliable prognosis 
assessment tool and help to optimize the treatment for PC patients. Meanwhile, a cluster of small molecule drugs 
were also identified with significant potentiality in treating PC patients.
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and 179 tumor tissues of pancreas. For all tumor sam-
ples in subsequent analysis gene expression data, clinical 
characteristics, and survival information of the patients 
were downloaded from The Cancer Genome Atlas 
(TCGA) dataset (https:// portal. gdc. cancer. gov/; ≤ Sep 1, 
2020). We matched the sequencing data with the clini-
cal information and removed samples with insufficient 
information of status, life span, age, gender, TNM, AJCC 
stage and grade. Finally, 171 cases with corresponding 
tumor tissues and clinical information were included in 
the study (Table 1, detailed in Additional file 1: Table S1). 
Transcripts Per Kilobase Million (TPM) for each gene 
were calculated, and log2(TPM + 0.01) was used in sub-
sequent analyses. The patients (n = 171) were further 
randomly assigned to a training set and a testing set by 
a ratio of 7:3. Gene IDs from gene expression data were 
converted to gene symbol by using a GFF3 file, which was 
downloaded from GENCODE (https:// www. genco degen 
es. org/).

Meanwhile, one microarray dataset GSE57495 which 
included 63 PC patients with corresponding clini-
cal information (Table  2, detailed in Additional file  2: 
Table S2) was downloaded from GEO (http:// www. ncbi. 

nlm. nih. gov/ geo/) for external validation. It was per-
formed on GPL15048 platform. Expression values were 
calculated using the robust multi-array average (RMA) 
algorithm. The normalized expression matrix of micro-
array data can be directly download from the dataset. 
The probes were annotated by using the corresponding 
annotation files from the dataset as well. The principal 
component analysis (PCA) was used to detect whether 
the dataset had the batch effect. The “sva” R package was 
used to eliminate the batch effect [21].

Construction and assessment of a risk signature associated 
with survival of PC patients
To screen genes for constructing risk signature, DEGs 
between tumor- and non-tumor tissues were identified 
using edgeR package in R [22]. |log2FC| > 1.5 and false 
discovery rate (FDR) < 0.001 were set as the cutoffs for the 
DEGs. And those genes with their P values < 1 ×  10–100 
and |logFC| > 2 were labelled in the volcano plot by ggre-
pel package in R. Meanwhile, univariate Cox regression 
models were performed to select genes that were associ-
ated with overall survival (OS) of PC patients in the train-
ing set. P < 0.05 was considered statistically significant. 

Table 1 Clinical and pathologic information of training set, test set and entire set

Character Training set Test set Entire set

Number % Number % Number %

Risk score

 Median 0.994441 0.843157 0.925682

 Range 0.074169–5.458149 0.186167–2.964505 0.074169–5.458149

Age

 Median 65 64 65

 Range 35–85 39–88 35–88

Gender

 Male 65 55.08 28 52.83 93 54.39

 Female 53 44.92 25 47.17 78 45.61

AJCC_stage

 I + II 112 94.92 52 98.11 164 95.91

 III + IV 6 5.08 1 1.89 7 4.09

Grade

 G1 + G2 88 74.58 33 62.26 121 70.76

 G3 + G4 30 25.42 20 37.74 50 29.24

T

 T1 + T2 20 16.95 10 18.87 30 17.54

 T3 + T4 98 83.05 43 81.13 141 82.46

N

 N0 + NX 37 31.36 13 24.53 50 29.24

 N1 81 68.64 40 75.47 121 70.76

M

 M0 + MX 115 97.46 52 98.11 167 97.66

 M1 3 2.54 1 1.89 4 2.34

https://portal.gdc.cancer.gov/
https://www.gencodegenes.org/
https://www.gencodegenes.org/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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Finally, the union of the above two gene sets was selected 
as candidate genes. LASSO regression and random for-
est screening were used to screen out the optimal gene 
combination for constructing the risk signature. Then 
multivariate Cox regression model was performed to fur-
ther identify the selected genes using step function in R, 
and the risk signature was established according to the 
regression coefficient-weighted pseudogene expression. 
The risk score was calculated as follows: Risk score =  (e
xprgene1 ×  Coefgene1) +  (exprgene2 ×  Coefgene2) + · · · +  (ex
prgenen ×  Coefgenen). Based on the risk score formula, PC 
patients were divided into high risk and low risk groups. 
The Kaplan–Meier (K–M) curve, time-dependent 
receiver operating characteristic (ROC) curve and sur-
vival point diagram were utilized to assess the efficiency 
and independence of the risk signature in training set, 
testing set, entire TCGA set, and GSE57495 set, respec-
tively. Heatmaps of the differential expression of the four 
predicted genes was also used to confirm this result.

In addition, to better predict the 1-, 2-, and 3-year sur-
vival of PC patients, the risk score and clinicopathologi-
cal factors were incorporated to establish a nomogram, 
which was based on the results of the univariate and 
multivariate analysis by using the ‘rms’ package in R lan-
guage. The time-dependent ROC curve and calibration 
curve of 1-, 2-, and 3-year survival were used to evaluate 
the efficiency of the nomogram.

Then we obtained the mutation information of 4 genes 
from the cBioPortal database (http:// www. cbiop ortal. 
org/). The protein interaction network of the four genes 
was also obtained from STRING database (https:// 
string- db. org/) and verified with the ‘corrplot’ package 
in the TCGA dataset. Meanwhile, univariate Cox regres-
sion analyses, multivariate Cox regression analyses and 

hierarchical analysis were conducted to evaluate the 
independency of the risk signature.

Clinical specimens
The specimens with corresponding clinical and patho-
logic data of 81 patients who underwent pancreatic can-
cer surgery in the Peking Union Medical College Hospital 
and Cancer Hospital Chinese Academy of Medical Sci-
ences between 2014 and 2019 were collected. OS was 
calculated from the initial surgery to the date of death or 
the last follow-up. This project was approved by the Eth-
ics Committee of Peking Union Medical College Hospital 
and Cancer Hospital Chinese Academy of Medical Sci-
ences. Written informed consent were obtained from all 
the patients enrolled in this study.

Immunohistochemistry
Tissue paraffin were cut into 4  μm-thick sections and 
then deparaffinized with xylenes and rehydrated, sub-
merged into EDTA buffer (pH 9.0) antigen retrieval 
buffer and microwaved for antigenic retrieval. They were 
treated with peroxidase blocking solution for 30 min and 
then were treated with normal goat serum for 30  min. 
Consequently, the sections were incubated with rabbit 
polyclonal antiDPY30 antibody (1:300) (Sigma-Aldrich, 
St. Louis, USA) for 2  h and then incubated with horse-
radish peroxidase-labeled goat anti-rabbit IgG com-
plex (OriGene Technologies, Inc., Beijing, China) at for 
30  min at room temperature. Bound antibodies were 
detected using diaminobenzidine. Finally, the slides were 
counterstained with haematoxylin. The immunohisto-
chemical evaluation was performed by two experienced 
pathologists who had no knowledge of the clinical sta-
tus of the patients according to the intensity of staining 

Table 2 Clinical information of GSE57495 dataset

Character Total (N = 63) High risk (N = 31) Low risk (N = 32)

Number % Number % Number %

Risk score

 Median 1.202208 1.202208 1.173695

 Range 0.213675–3.129482 1.230773–3.129482 0.213675–1.202208

OS

 Median 21.1 21.1 21.7

 Range 2.9–79.8 3.8–49.5 2.9–79.8

Status

 Alive 21 33.33 7 22.58 14 43.75

 Dead 42 66.67 24 77.42 18 56.25

AJCC_stage

 I 13 20.63 4 12.90 9 28.13

 II 50 79.37 27 87.10 23 71.87

http://www.cbioportal.org/
http://www.cbioportal.org/
https://string-db.org/
https://string-db.org/
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and the percentage of stained tumor cells. Digital images 
were taken and processed using Leica Microsystems and 
Leica Application Suite V4 (Leica, Solms, Germany).

Differential gene analysis, co‑expression network 
construction and functional enrichments analysis 
between high and low risk groups
We also used the edgeR package to perform differential 
genetic analysis of patients between high and low risk 
groups in entire set [22], |log2FC| > 2 and FDR < 0.001 
were considered statistically significant. 50 genes with 
the most significant differences were shown and each 
patient’s clinical information was labeled at the top of 
the heatmap. Afterwards, the co-expression network was 
constructed and visualized with STRING database and 
Cytoscape. We set the minimum required interaction 
score to be high confidence (0.700) and hid disconnected 
nodes in the network, therefore not all genes were repre-
sented. In order to elucidate the molecular mechanisms 
of the prognostic differences between high and low risk 
groups, the ALL ontology of the DEGs was analyzed by 
Gene Ontology (GO) [23], while pathway enrichment 
was analyzed by the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) [24]. In addition, in order to reduce 
the bias, gene set enrichment analysis (GSEA) was per-
formed on all genes [25], whether or not they reached the 
difference threshold. R package clusterProfiler was used 
in this process [26]. P < 0.05 was considered statistically 
significant.

Candidate drugs prediction by CMap database
CMap database (https:// clue. io/) was applied to identify 
novel candidate drugs for the risk signature, which com-
pare the similarity of the differentially expressed gene 
profiles with the expression profiles of various small 
molecular compound treated cell lines. Score was used 
to evaluate the degree of similarity, which ranged from 
− 100 to 100. The results were ordered from low to high. 
The lower the value, the more opposite the gene expres-
sion profile treated with the small molecule drug was to 
the difference gene profile of the high and low risk group, 
which indicated it had a potential therapeutic effect for 
high-risk patients and low-risk patients respectively.

Cell culture
The pancreatic cancer cell lines PANC-1, MIACaPa-2, 
BxPC-3 and CFPAC-1 were purchased from the Ameri-
can Type Culture Collection (ATCC) and tested for 
mycoplasma every two months. PANC-1 and MIACaPa-2 
cells were cultured in high glucose Dulbecco’s modified 
Eagle’s medium (DMEM; CORNING, Manassas, USA), 
BxPC-3 cell line was cultured in RPMI-1640 medium 
(CORNING, Manassas, USA), and CFPAC-1 cell line was 

cultured in Iscove’s Modified Dulbecco Medium (IMDM; 
CORNING, Manassas, USA). All medium was supple-
mented with 10% fetal bovine serum (FBS; HyClone; 
GE Healthcare Life Sciences, Logan, UT, USA). Cells 
were maintained at 37  °C with 5%  CO2 in a humidified 
incubator.

Drug sensitivity assay
Drugs were purchased from MedChemExpress (New 
Jersey, USA), dissolved in dimethyl sulfoxide (DMSO), 
and stock solutions stored at − 80  °C. Pancreatic cancer 
cell lines were seeded at a density of 3000 cells per well 
in 96-well flat-bottomed culture dishes. After overnight 
incubation, each drug was added at the indicated concen-
trations and incubated for three days; assays were per-
formed in triplicate. Samples were evaluated for relative 
cell number using Cell Counting Kit-8 (CCK-8) reagent 
(Dojindo, Tokyo, Japan). Results were quantified using 
a fluorescence microplate reader by measuring fluores-
cence of CCK-8 at an excitation wavelength of 450  nm 
with fluorescence emission at 630 nm. Results were ana-
lyzed using GraphPad Prism 8.0 to determine the IC50 
for each drug.

Statistical analysis
The samples of tumor tissues in TCGA set were ran-
domly divided into two groups using “sample” function 
of R software. All the statistical analyses and visualiza-
tion, including PCA analysis, DEGs analysis, univariate 
and multivariate Cox regression analysis, LASSO regres-
sion and random forest screening, ROC curve analysis 
and K–M survival analyses were performed using Rstu-
dio (version 4.0.2). All statistical tests were two-sided. 
P < 0.05 was considered as statistically significant unless 
otherwise noted.

Results
Four histone modification‑related genes were screened 
out for constructing a risk signature
A flowchart of the analysis workflow was illustrated 
in Fig.  1. A total of 431 histone modification-related 
genes were integrated from the GSEA website (https:// 
www. gsea- msigdb. org/ gsea/ index. jsp) (Additional file  3: 
Table S3). PCA analysis based on these histone modifica-
tion-related genes confirmed the distribution difference 
between normal pancreas and pancreatic cancer in the 
TCGA + GTEx dataset. As shown in Fig. 2a, the clusters 
of tumor group were independent of normal group with-
out obvious intersection (Fig. 2a). To further explore the 
specific histone modification-related differential genes 
between normal samples and tumor samples, we used 
edgeR packages to conduct differential analysis of them 
and made volcano plots and heatmaps. A total of 57 DEGs 

https://clue.io/
https://www.gsea-msigdb.org/gsea/index.jsp
https://www.gsea-msigdb.org/gsea/index.jsp
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were identified, which included 42 upregulated genes and 
15 downregulated genes (Fig. 2b, c). We then performed 
a univariate Cox regression analysis of 397 histone modi-
fication-related genes. Totally, 16 prognosis-related genes 

(HR > 1) and 24 prognosis-related genes (HR < 1) were 
found in the training set (n = 118). Subsequently, we com-
bined the prognostic genes and DEGs to obtain a total of 
82 candidate genes (Additional file 4: Table S4). LASSO 

Fig. 1 Flowchart of the whole study

(See figure on next page.)
Fig. 2 Screening out histone modification-related genes for constructing a risk signature. a PCA based on histone modification-related genes 
between normal pancreas and pancreatic cancer. b Volcano plot of histone modification-related DEGs in PC when compared with normal tissue. c 
Heatmap of histone modification-related DEGs between PC and normal tissue. d Log (Lambda) value of the 21 genes in LASSO regression analysis. 
e The most proper log (Lambda) value in LASSO regression analysis. f Four histone modification-related genes were screened out for constructing a 
risk signature
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regression analysis was performed on the candidate genes 
in order to avoid overfitting problems in risk signature, 
and 21 genes (ACTL6A, CBX8, CENPA, CENPT, DPY30, 
DTX3L, DYDC2, FAM156A, FOXP3, HCFC1, HDAC4, 
ING5, JADE2, KDM8, LRWD1, MSL3P1, NAA50, 
PADI1, PAGR1, TWIST1, WDR5) were retained accord-
ing to the optimal lambda value (Fig. 2d, e, log(lambda.
min) = − 2.787905). Random forest screening and multi-
variate Cox regression analysis were adopted to further 
identify an appropriate gene combination for establishing 
the risk signature for PC patients. Finally, 4 genes (CBX8, 
CENPT, DPY30, PADI1) were selected (Fig. 2f ). Among 
these genes, CBX8 and CENPT were protective factors 
for PC survival with HR < 1, and DPY30 and PADI1 were 
risk factors with HR > 1.

Construction of a risk signature for predicting 1‑, 2‑ 
and 3‑year survival rate of PC
Base on the expression level of four histone modifica-
tion-related genes and the regression coefficient derived 
from the multivariate Cox regression model, we designed 
a risk-score formula for PC patients’ survival predic-
tion in training set. The risk score for each patient was 
calculated as follows: Risk score = (0.1046 × expres-
sion level of PADI1) + (0.7465 × expression level 
of DPY30) + (− 0.5193 × expression level of 
CENPT) + (− 0.5399 × expression level of CBX8). 
According to the median cut-off value of the scores, the 
patients in the training set were divided into high-risk 
group (n = 59) and low-risk group (n = 59). Then DEGs 
analysis and the distribution of survival status illustrated 
the genomic distribution difference and prognostic dif-
ferences between high and low risk groups (Fig.  3a, b). 
And genes with a P value < 1 ×  10–11 and |logFC| > 4 were 
labelled in Fig. 3a. The Kaplan–Meier curves showed that 
patients in the high-risk group suffered worse prognosis 
than the patients in the low-risk group (Fig. 3c, P < 0.001).

To evaluate the competitive performance of the four 
histone modification-related genes signature, time-
dependent ROC curve analysis was measured. As shown 
in the ROC curves, the area under curves (AUCs) of the 
risk signature were 0.693 for 1  year survival, 0.785 for 
2  year survival and 0.773 for 3  year survival (Fig.  3d), 
proving a high prognostic value for survival prediction in 
the training dataset. Compared with the low-risk group, 
the expressions of CBX8 and CENPT in high-risk group 

decreased, while the expressions of DPY30 and PADI1 
increased (Fig.  3e). At the same time, the number of 
deaths increased with the risk scores rising (Fig. 3e).

Effectiveness and independence validation of the risk 
signature for the survival prediction
We next validated our risk signature in testing set 
(n = 53), the entire TCGA dataset (n = 171) and the 
GSE57495 dataset (n = 63) to confirm our findings. By 
calculating the risk scores for each patient based on the 
above-mentioned formula, the patients in these datasets 
were divided into high-risk group (n = 19 in testing set, 
n = 78 in entire set, n = 31 in GSE57495 set) and low risk 
group (n = 34 in testing set, n = 93 in entire set, n = 32 in 
GSE57495 set) using the same criteria. Consistent with 
the results in the training set, patients in the high-risk 
group had significantly poorer prognosis than those in 
the low risk group (Fig. 4a, testing set, P = 0.022; Fig. 4c, 
entire set, P < 0.001; Fig.  4e, GSE57495 set, P = 0.037). 
The AUCs of time dependent ROC curves for predict-
ing 1-, 2- and 3-year survival of PC in the testing set were 
0.702, 0.606 and 0.729, respectively (Fig.  4b), and those 
in the entire set were 0.694, 0.735, 0.775 (Fig. 4d). Mean-
while, the AUCs of time dependent ROC curves in the 
external validation set GSE57495 were 0.638, 0.695, 0.770 
(Fig.  4e). Consistent with the results of the training set, 
the expressions of CBX8 and CENPT were decreased in 
the high-risk groups in three validation sets, while the 
expressions of DPY30 and PADI1 were increased. Con-
comitantly, as the risk score went up, the number of 
deaths increased (Additional file  5: Figure S1A, testing 
set; Additional file  5: Figure S1B, entire set; Additional 
file  5: Figure S1C, GSE57495 set), indicating that the 
risk signature performed well for predicting PC patients’ 
prognosis.

Afterwards, we evaluated whether the survival pre-
diction based on the risk signature was independent of 
clinical factors (Table 1). Univariate Cox regression anal-
yses and multivariate Cox regression analyses were con-
ducted on these factors in the training set, testing set and 
entire set respectively, which proved that the risk signa-
ture was an independent risk factor (Fig. 5a–f, P < 0.001 
in all groups for risk score). We also explored the prog-
nostic value of the risk signature in different cohorts 
stratified by age, gender, tumor grade and T stage (Addi-
tional file 6: Figure S2A–L). Regardless of the subgroup, 

Fig. 3 Construction of a risk signature in the training set. a Volcano plot of DEGs in high risk groups when compared with low risk groups. b Risk 
score comparison between the living and the dead, c Kaplan–Meier analysis of OS of the risk signature in training set. d Time-dependent ROC 
analysis of the risk signature in training set. e Heatmap of the four genes expression, the risk scores distribution and survival status of the patients in 
training set

(See figure on next page.)
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patients in the high-risk group had significantly shorter 
survival times than those in the low-risk group, further 
demonstrating that the risk signature composed of four 
histone modification-related gene was an independent 
prognostic factor of PC.

In order to better optimize the risk signature, we also 
collected 171 PC patients in the TCGA dataset with 
detailed clinical information to construct and validate a 
nomogram. Finally, risk score, gender and N stages were 
incorporated into the construction of nomogram for pre-
dicting 1-, 2- and 3-year survival rate of PC (Additional 
file 7: Figure S3A–C). However, although the calibration 
plot and ROC curve both proved that the nomogram had 
a certain effect on predicting the prognosis of pancreatic 
cancer (Additional file 8: Figure S4A–L), its efficacy was 
not significantly better than that of the simple four gene 
risk signature, which may be related to the uniqueness of 
the risk signature itself and the bias of the sample.

Finally, we explored mutations in four key genes in the 
TCGA dataset (Additional file  9: Figure S5A). Moreo-
ver, in order to explain their mechanism of function, we 

explored their interaction network with the STRING 
database and verified their interaction in the TCGA data-
set (Additional file 9: Figure S5B–E). Meanwhile, Pearson 
correlation analysis between risk scores and other genes 
in TCGA dataset was performed to reflect the compre-
hensive predictive ability of the four target genes (Addi-
tional file 10: Figure S6).

Verification of the core gene of the risk signature 
in an independent cohort
Among the four hub genes, DPY30 was accompanied 
by the smallest P value, the most significant HR, and the 
highest coefficient in the risk calculation formula, indicat-
ing that DPY30 occupied the most core position in the 
risk model. Therefore, we then validated the role of DPY30 
expression in the prognosis of PC patients. We performed 
immunohistochemistry and calculated expression score 
of DPY30 in 81 PC patients. Combined with their clinical 
and pathologic data (Table  3), we further confirmed that 
patients with high DPY30 expression had lower overall sur-
vival (Fig. 6a, b, P < 0.001). Meanwhile, we also found that 

Fig. 4 Validation of the risk signature for the survival prediction in testing set, the entire TCGA set and the GSE57495 set. a, c, e Kaplan–Meier 
analysis of OS of the risk signature in testing set, the entire TCGA set and the GSE57495 set. b, d, f Time-dependent ROC analysis of the risk signature 
in testing set, the entire TCGA set and the GSE57495 set
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the expression of DPY30 in patients with moderately and 
highly differentiated pancreatic cancer was significantly 
lower than that in patients with poorly differentiated pan-
creatic cancer (Fig. 6c, d), further confirming that DPY30 
accelerated the progression of pancreatic cancer.

Differential gene analysis, co‑expression network 
construction and functional enrichments analysis 
between high and low risk groups
Next, we explored the differences in gene expres-
sion between the high risk group (n = 78) and low risk 

groups (n = 93) in order to identify the mechanisms 
underlying the risk signature. DEGs were identified 
between high risk group and low risk group in TCGA 
entire set, |log2FC| > 2 and FDR < 0.001 were consid-
ered statistically significant. 50 genes with the most 
significant differences were shown in the heatmap and 
each patient’s clinical information was labeled at the 
top (Fig. 7a). Then the co-expression network was con-
structed and visualized with STRING database and 
Cytoscape (Fig.  7b). We set the minimum required 
interaction score to be high confidence (0.700) and hid 

Fig. 5 Independence of the risk signature and the other clinical variables, including gender, age, AJCC_stage and grade. a, c, e Univariate Cox 
regression analyses result in the training set, testing set and entire set. b, d, f Multivariate Cox regression analyses result in the training set testing set 
and entire set
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disconnected nodes in the network, therefore not all 
genes were represented.

To further elucidate the molecular mechanism of the 
risk signature, we carried out GO and KEGG analyses 
of the above DEGs using clusterProfiler package in R 
(Fig. 7c, d). The top 10 pathways in the GO analysis and 
the top 20 pathways in the KEGG analysis were shown. 
At the same time, in order to reduce the bias, we per-
formed GSEA analysis on all genes, whether or not they 
reached the difference threshold (Additional file 11: Fig-
ure S7A, B). Collectively, we noted that the main path-
ways enriched in GO analysis and KEGG analysis were 
the pathways associated with neuroendocrine interac-
tion, hormonal regulation and metabolic function.

CMap database analysis and drug sensitivity assay identify 
potential drugs targeting the risk signature
Next, we utilized CMap database to compare the simi-
larity of the DEGs profiles with the expression profiles 
of various small molecular compound treated cell lines 
aiming to identify novel candidate drugs as the risk 
model-related treatments for PC patients (Additional 
file 12: Figure S8). We used the heatmap to illustrate the 
similarity between the differential gene expression after 
drug treatment and the difference in the gene expres-
sion between the high and low risk groups (Fig. 8a, b). 

Figure  8a showed the potential small molecular drugs 
for the high-risk group patients, while Fig. 8b listed the 
potential drugs for the low-risk group patients. The top 
20 small molecule drugs were shown in each figure.

To further validate the efficacy of the drugs, drug 
sensitivity assay was performed on the drugs predicted 
by the CMap database (Fig. 9a). We noted that among 
the predicted drugs, panobinostat, luminespib (NVP-
AUY922), fedratinib (TG-101348) and CI-1040 (PD-
184352) were not only suitable for the treatment of 
PC patients in high-risk group but also in the low-risk 
group, implicating their potentiality in clinical usage. 
Therefore, we decided to verify their efficacy. All pan-
creatic cancer cell lines with expression data in Cancer 
Cell Line Encyclopedia (CCLE) database (https:// porta 
ls. broad insti tute. org/ ccle) were divided into high risk 
group and low risk group according to our risk model 
(Fig. 9b). Two cell lines were selected from each group 
to conduct drug sensitivity assay on the above four 
drugs. The results showed that panobinostat, lumine-
spib and fedratinib exhibited excellent inhibitory effects 
on the growth of pancreatic cancer, especially panobi-
nostat and luminespib, whose IC50 on the four cell 
lines was far less than that of other drugs (Fig.  9c, d). 
However, CI-1040 performed modest inhibitory effects 
PANC-1 cell lines, indicating that its therapeutic effect 
was relatively heterogeneous in patients (Fig. 9c, d).

Table 3 Clinical and pathologic information of the independent cohort

Character Total (N = 81) High expression (N = 43) Low expression (N = 38)

Number % Number % Number %

Age

 Median 63 64 63

 Range 47–83 48–83 47–78

Score

 Median 8 9 6

 Range 1–12 8–12 1–6

OS

 Median 15.5 9.8 20.4

 Range 0.7–68.9 0.8–68.9 0.7–50.2

Gender

 Male 56 69.14 31 72.09 25 65.79

 Female 25 30.86 12 27.91 13 34.21

Differentiation

 Well 10 12.35 4 9.30 6 15.79

 Moderately 27 33.33 10 23.26 17 44.74

 Poorly 28 34.57 22 51.16 6 15.79

 Unknown 16 19.75 7 16.28 9 23.68

https://portals.broadinstitute.org/ccle
https://portals.broadinstitute.org/ccle
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Fig. 6 Verification of the core gene of the risk signature in an independent cohort. a Representative images of low and high expression of 
DPY30. b Kaplan–Meier analysis of OS of the expression of DPY30 in the independent cohort. c Representative images of poorly-, moderately-, 
and well-differentiated pancreatic cancer. d DPY30 expression levels in poorly-, moderately- and well-differentiated pancreatic cancers in the 
independent cohort
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Discussion
PC is a highly lethal tumor due to the lack of early diag-
nosis and effective treatment. Currently, the radical 
surgical resection is still the most effective treatment. 
However, only less than 20% of all cases are resectable, 
and for those who undergo resection followed by adju-
vant therapies, more than 80% will relapse and ultimately 
die of this disease [27]. There are many reasons for this 
dismal status, and one specific reason might be critical, 
the lack of an effective risk assessment models, which 

hinders the development of individualized treatment 
strategies for patients.

Extensive studies have recently revealed the key role 
of histone modification in the development of PC. The 
aberrant expression of histone modifiers may lead to a 
large-scale genetic remodeling in cells which accelerates 
pancreatic cancer occurrence and progression. There-
fore, we explored the role of histone modification-related 
genes in predicting the prognosis of PC patients. In this 
study, we identified four histone modification related 

Fig. 7 Differential gene analysis, co-expression network construction and functional enrichments analysis between high and low risk groups. 
a Heatmap of top 50 DEGs in PC between low and high-risk groups. b Co-expression network of DEGs constructed and visualized with STRING 
database and Cytoscape. c The risk signature-related top 10 GO enrichment based on DEGs between low and high risk groups. d The risk 
signature-related top 20 KEGG signaling pathway based on DEGs between low and high risk groups
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genes (CBX8, CENPT, DPY30, PADI1) associated with 
pancreatic cancer prognosis by a series of bioinformat-
ics methods, including differential gene analysis, univari-
ate and multivariate regression analysis, random forest 
screening, and LASSO regression analysis. Based on the 
expression of four histone modification-related genes 
and the regression coefficient derived from the multivari-
ate Cox regression model, we designed a risk score for-
mula for PC patients’ survival prediction. Furthermore, 

its ideal predictive efficiency was also verified in training 
set, testing set, entire set and external validation set. Fur-
thermore, univariate Cox regression analyses and mul-
tivariate Cox regression analyses were conducted in the 
training set, testing set and entire set respectively, and 
proved that the risk signature was independent of clinical 
factors.

The four histone modification-related genes high-
lighted, including DPY30, CBX8, CENPT, and PADI1, 

Fig. 8 Small molecule drugs prediction by CMap database. a CMap database analysis identifies candidate drugs targeting the low-risk group, and 
the top 20 small molecule drugs with lower score are shown. b CMap database analysis identifies candidate drugs targeting the high-risk group, 
and the top 20 small molecule drugs with lower score are shown
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have been reported to have the potential to regulate the 
occurrence and development of cancer to some extent by 
altering the histone modification of cancer-related genes.

DPY30, regarded as the core unit of the risk signature, 
is a common essential subunit of all Set1/MLL complexes 

and facilitates H3K4 methylation in cells [28, 29]. The 
WDR5, RbBP5, ASH2L, and DPY30 are collectively called 
WRAD, which make Set1/MLL complexes capable of di- 
and tri-methylation activities [30], while MLL by itself 
is a mono-methyltransferase [31]. Multiple studies have 

Fig. 9 Validation of the efficacy of the drugs predicted by CMap database. a Flowchart of the drug validation process. b Risk score of pancreatic 
cancer cell lines and selected cell lines (red box). c Drug sensitivity curves and IC50 values of cell lines in the low-risk group. d Drug sensitivity curves 
and IC50 values of cell lines in the high-risk group
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shown that DPY30 plays a pivotal role under physiologi-
cal condition. Jiang et  al. has demonstrated that DPY30 
directly regulates chromosomal H3K4 trimethylation 
throughout the mammalian genome, which significantly 
alters the differentiation potential of embryonic stem 
cells (ESCs), particularly along the neural lineage [32]. 
And two other studies also revealed that DPY30 played a 
critical role in the proliferation, differentiation and func-
tion of hematopoietic stem cells by affecting the H3K4 
methylation activity of the Set1/MLL complex [33, 34]. 
Therefore, it is reasonable to speculate that the abnormal 
regulation of DPY30 will lead to aberrant methylation 
of histones, which may cause the disturbance of body 
homeostasis and eventually lead to the occurrence of 
cancer. A study of Burkitt lymphoma further confirmed 
our hypothesis. Researchers demonstrated that DPY30 
promoted the expression of endogenous MYC and was 
functionally important for efficient binding of MYC to 
its genomic targets by regulating chromatin accessibil-
ity [35]. In our risk signature, we also screened DPY30 as 
one of the risk factors for predicting the prognosis of PC 
and verified it in our cohort, further supporting previous 
researches.

CBX8, one of the core components of canonical 
polycomb repressive complex 1 (PRC1) [36], has been 
reported in recent years to be involved in the process 
of histone modification, especially histone methyla-
tion, so as to regulate the occurrence and development 
of tumors. For example, EZH2, a catalytic subunit of 
polycomb repressive complex 2 (PRC2) and one of the 
most reported methyltransferases which represses gene 
expression via methylation of lysine 27 of histone 3 
(H3K27) [37, 38], requires the presence of CBX8 for its 
biological actions in driving germinal center formation 
and lymphoma precursor lesions [39]. In addition, CBX8 
recruits KMT2B (lysine methyltransferases 2B) to the 
LGR5 promoter, which maintains H3K4me3 status to 
promote LGR5 expression, resulting in increased cancer 
stemness and decreased chemosensitivity in colon cancer 
[40]. However, the specific mechanism by which CBX8 
interacts with histone methylation is also elusive. On the 
one hand, the CBX8 chromodomains demonstrates the 
weakest histone peptide binding of the five CBX chro-
modomains and no measurable specificity for H3K27me3 
peptides [41]. On the other hand, however, studies also 
revealed that H3K27me3 was crucial for the association 
of CBX8 and chromatin [42–44]. In addition, the role of 
CBX8 in tumors is also paradoxical, which means CBX8 
may also exhibit antitumor effects under certain condi-
tions. In the metastasis of esophageal squamous cell 
carcinoma, CBX8 serves as a tumor suppressor by bind-
ing with the Snail promoter and suppressing the tran-
scription of Snail [45]. And our results also support its 

protective effect for human body. Meanwhile, although 
the role of CBX8 in several cancers is explained such as 
hepatocellular carcinoma and acute myeloid leukemia 
[46, 47], the function and association with histone modi-
fication have not been reported in pancreatic cancer yet, 
which needs a further exploration.

Compared with CBX8 and DPY30, CENPT and PDAI1 
have been less reported on promoting tumor develop-
ment by influencing histone modification. CENPT is a 
histone fold-containing protein, which is able to form a 
heterotetrameric nucleosome-like structure together 
with three other histone fold-containing proteins, 
CENPW, CENPS and CENPX. These tetrameric nucle-
osome-like structures extend the “histone code” beyond 
the canonical nucleosome proteins to provide a new 
mechanism to form contacts with DNA [48]. Meanwhile, 
CENPT is also required for the kinetochore assembly 
function of CENPA [49–51], a CenH3 (centromere-
specific histone H3) variant which replace histone H3 to 
form specialized chromatin that acts as the foundation 
for kinetochore assembly [52]. Another study also identi-
fied the CENPT/CENPW complex as a binding partner 
of the histone chaperone FACT [53]. Therefore, CENPT 
plays an important role in the integrity of the genetic 
material of cells during mitosis, and its aberrant expres-
sion may lead to tumor progression. In our predictive 
signature, CENPT acts as a protective factor, indicating 
that it plays a role in protecting the integrity of genetic 
material in the development of PC. Moreover, another 
study conducted by Giunta et  al. further confirmed our 
view [54].

Finally, the PADI1 gene is a member of the peptidy-
larginine deiminases (PADIs) family, which contains a 
cluster of calcium dependent enzymes that catalyzes the 
conversion of arginine residues to citrulline residues via 
a hydrolytic process termed citrullination in proteins 
including histone [55, 56]. However, while a growing 
number of researches have shown that PADI-mediated 
histone citrullination is highly associated with cancer 
development [57–59], PADI1 has been the one that is 
overlooked. Although the role of PADI1 in cancer pro-
gression has also been elucidated [60], and PADI1-medi-
ated histone citrullination is crucial in early embryonic 
development [61], it remains to be explored whether 
PADI1-mediated histone citrullination play a role in can-
cer development.

Histone modification-related proteins functions mainly 
through the histone modification of tumor-related 
genes in cancer occurrence and development. There-
fore, their relationship with each other is actually the 
cross-linking interaction between various histone modi-
fications. Among the four target genes, CBX8 is involved 
in the ubiquitination of H2AK119 as part of polycomb 
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repressive complex 1 (PRC1) [36], DPY30 is involved in 
the methylation of H3K4 as part of SET1/MLL complex 
[28, 29], and PADI1 is involved in the citrullination of 
H4R3 and H3R2/8/17 [61]. They are one of the factors 
that maintain the homeostasis of histone modifications 
in the body, or near certain tumor-related genes. When 
one of these changes, it will directly or indirectly lead to 
abnormal changes in the other several modifications. For 
instance, Beta-Hydroxybutyrate enhances brain-derived 
neurotrophic factor (BDNF) expression by increasing 
H3K4me3 and decreasing H2AK119ub occupancy at 
the BDNF promoters in hippocampal neurons [62]. In 
addition, the ubiquitination of H2AK119 in cancer cells 
recruits PRC2 for H3K27 methylation, thereby antago-
nizing the H3K4me3-mediated MHC class I (MHC-I) 
activation [63, 64]. Moreover, CENPT, as one of the four 
target gene members, seems have little correlation with 
the other three genes according to the researches so far. 
CENPT plays a central role in assembly of kinetochore 
proteins, mitotic progression and chromosome segrega-
tion [49–51], thus ensuring the stability and integrity of 
the genetic material of cells during mitosis. These find-
ings suggest that CBX8, DPY30, and PADI1 may be 
used as a cluster to predict pancreatic cancer prognosis. 
And the relationship between CENPT and them is still 
unclear, either as an individual predictor or because cur-
rent studies have not fully revealed its role.

To further demonstrate whether these four target genes 
and the risk signature they constitute are indeed prog-
nostic factors, we further explored their association with 
other genes, especially cancer-related genes. Regarding 
the four target genes, we explored their interaction net-
work with the STRING database and verified their cor-
relation according to Pearson correlation analysis in our 
TCGA dataset. We found that two risk genes, DPY30 and 
PADI1, were significantly positively associated with sev-
eral identified cancer-related genes. For example, DPY30 
was significantly positively correlated with SETD1A, 
SETDB1 and RBBP5, which have been reported to pro-
mote the occurrence and progression of cancers [65–67]. 
Meanwhile, PADI1 also showed a similar trend, and its 
expression was also positively correlated with a series of 
tumor promoting genes, such as STAP2 and DOCK1 [68, 
69], etc. As for the other two protective genes, we also 
found that they were positively associated with a number 
of tumor suppressor genes. A significant positive correla-
tion between CENPT and ITGB3BP was observed, while 
a positive correlation between CBX8 and PCGF2 was 
found. And ITGB3BP and PCGF2 have been reported to 
inhibit the occurrence, proliferation, metastasis and drug 
resistance of tumors [70–72].

In order to reflect the comprehensive predictive abil-
ity of the four target genes, we also performed Pearson 

correlation analysis between risk scores and other genes 
in TCGA dataset (see Additional file  9: Figure S5). A 
number of widely reported cancer related genes have 
been revealed, including DPY30, EREG, PLA2G16, 
ZNF185, PADI1, CDK3, INPP4B, DPH1, AP1S3 and so 
on. Among them, DPY30, EREG, PLA2G16, ZNF185, 
PADI1, INPP4B and AP1S3 have been reported to be 
involved in tumor genesis and progression [60, 73–78], 
and they were significantly positively correlated with risk 
score. In addition, CDK3 and DPH1, which have been 
reported to inhibit or have the potential to inhibit tumor 
development [79, 80], was observed to be markedly nega-
tively correlated with risk scores.

Subsequently, differential gene analysis, PPI network 
mapping and functional enrichment analysis were per-
formed for patients in the high and low risk group. Col-
lectively, we noted that the main pathways enriched 
in GO analysis and KEGG analysis were the pathways 
associated with neuroendocrine interaction, hormo-
nal regulation and metabolic function. Moreover, in 
order to reduce the bias, we performed GSEA analy-
sis on all genes, whether or not they reached the differ-
ence threshold. And the result of GSEA analysis was also 
consistent with the results above. Therefore, we specu-
lated that the mechanism of poor prognosis in high-risk 
patients may be related to the insufficient insulin secre-
tion caused by neuroendocrine abnormality, which medi-
ates metabolic disorders in vivo. We can assume that in 
high-risk group, neuroendocrine abnormalities lead to 
impaired endocrine function in the pancreas, particu-
larly the production of insulin. Mechanically, the neuro-
active ligand-receptor interaction, the calcium signaling 
pathway and cAMP signaling pathway are significantly 
down-regulated, which have been proved to be the main 
mechanisms of insulin secretion [81–83]. Insufficient 
insulin secretion will lead to a series of metabolic disor-
ders in vivo such as hyperglycemia, and further aggravate 
the progression of pancreatic cancer [84, 85]. This effect 
is also exacerbated by the fact that most pancreatic can-
cer patients suffer cancer-related or -unrelated diabe-
tes [86]. Although most pancreatic cancer patients are 
treated with glucose-lowering drugs or insulin, it is still 
different from their natural physical condition, and insu-
lin is also an essential factor in promoting the develop-
ment of PC [87, 88]. Taken together, we hypothesized 
that the primary cause of poor prognosis of pancreatic 
cancer, at least in our study, was metabolic disorders 
caused by inadequate insulin secretion, which was fueled 
by neuroendocrine aberration. At the same time, a list of 
studies has reported that the prognosis of patients with 
pancreatic cancer complicated with diabetes is signifi-
cantly worse than that of patients without diabetes [89, 
90], further confirming our opinion.
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More importantly, utilizing CMap database, we identi-
fied a range of small molecule compounds, which might 
ultimately pave the way for implementation of target-
ing the risk model-related treatments for PC patients. 
Among them, the most common compounds are HDAC 
inhibitors, including panobinostat, scriptaid, trichos-
tatin-a, ISOX and THM-I-94. Notably, the potential of 
HDAC inhibitors in the treatment of pancreatic cancer 
has received increasing attention in recent years [91–93], 
and relevant clinical trials have been carried out [94]. 
These results further highlight the critical role of histone 
modification in the prognosis of PC.

Meanwhile, through drug sensitivity experiments, we 
further confirmed the inhibitory effect of panobinostat, 
luminespib, fedratinib and CI-1040 on pancreatic can-
cer growth. Although some effects have been reported 
[95, 96], we selected cell lines with different risk levels for 
verification according to our constructed risk signature, 
which further confirmed the wide coverage of drug effec-
tiveness and laid a solid foundation for further in-depth 
mechanism studies and clinical trials in the future.

Nevertheless, several limitations in our study should 
be acknowledged. First, because of the extremely poor 
prognosis of PC, the survival time of the sample is rarely 
longer than 3  years, which may lead to the inaccurate 
results when we want to predict the long-term out-
come of the patients. Second, due to the limited clinical 
information in the GSE57495 dataset, we are unable to 
verify the independence of the risk model and validate 
the nomogram in this dataset. Third, although we tried 
our best to avoid it through Short Tandem Repeat (STR) 
identification and mycoplasma detection, the use of the 
algorithm based on clinical samples on immortalized cell 
lines may cause some deviation due to the fact that the 
immortalized cell lines have undergone a certain amount 
of passage and may have altered genetic signatures.

Conclusions
In summary, a risk signature consisting of four histone 
modification-related genes was constructed in our study, 
including CBX8, CENPT, DPY30 and PADI1. We further 
validated its predictive performance and proved it as an 
independent prognostic factor. Mechanically, functional 
enrichment analysis showed that the risk signature pre-
diction might be relevant to the metabolic disorders 
caused by insufficient insulin secretion, which was fueled 
by neuroendocrine abnormality. Finally, a cluster of small 
molecule drugs were identified as the risk model-related 
treatments for PC patients by CMap database and drug 
sensitivity assay. Our findings will help to accurately 
assess the prognosis of PC patients and optimize the clin-
ical decision-making.
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sion of tumor-related genes through Pearson correlation analysis in TCGA 
dataset.

Additional file 11: Figure S7. Gene Set Enrichment Analysis (GSEA) 
based on all genes between low and high risk groups. The top 3 GO 
enrichments (A) and KEGG enrichments (B) are displayed on the top 
respectively.

Additional file 12: Figure S8. Differential gene expression in the high- 
and low-risk group compared with the normal group. (A) Heatmap of 
DEGs (Top50) between the low-risk pancreatic cancer group and the 
normal group. (B) Volcanic map of the DEGs between the low-risk pan-
creatic cancer group and the normal group. (C) Heatmap of DEGs (Top50) 
between the high-risk pancreatic cancer group and the normal group. (D) 
Volcanic map of the DEGs between the high-risk pancreatic cancer group 
and the normal group
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