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Pediatric gliomas (PGs) are the most common brain tumors in
children and the leading cause of childhood cancer-related
death. The understanding of the immune microenvironment
is essential for developing effective antitumor immunother-
apies. Transcriptomic data from 495 PGs were analyzed in
this study, with 384 as a training cohort and 111 as a validation
cohort. Macrophages were the most common immune infil-
trates in the PG microenvironment, followed by T cells. PGs
were classified into 3 immune subtypes (ISs) based on immuno-
logical profiling: “immune hot” (IS-I), “immune altered” (IS-
II), and “immune cold” (IS-III). IS-I tumors, characterized
by substantial immune infiltration and high immune check-
point molecule (ICM) expression, had a favorable prognosis
and were more likely to respond to anti-PD1 and anti-CTLA4
immunotherapies, whereas IS-III tumors, characterized by
weak immune infiltration and low ICM expression, had a
dismal prognosis and poor immunotherapy responsiveness.
IS-II tumors represented a transitional stage. Immune classifi-
cation was also correlated with somatic mutations, copy
number alterations, and molecular pathways related to tumor-
igenesis, metabolism, and immune responses. Three predictive
classifiers using eight representative genes were generated by
machine learning methods for immune classification. This
study established a reliable immunological profile-based classi-
fication system for PGs, providing implications for further
immunotherapy strategies.

INTRODUCTION
Brain tumors are the most common solid neoplasms in children and
have overtaken leukemias as the leading cause of pediatric cancer-
related death.1–3 Gliomas are among the most common forms of pri-
mary brain tumors arising in childhood.4 Unlike adult gliomas, the
majority of pediatric gliomas (PGs) are classified as World Health
Organization (WHO) grade I or II or low-grade gliomas (LGGs).
Although some pediatric LGGs (pLGGs) are located deep and thus
infrequently resectable, most of them are curable by surgery, with
good clinical outcomes.1,5,6 The remaining PGs progress rapidly
and are classified as WHO grade III or IV or high-grade gliomas
(HGGs), with a dismal prognosis of a 5-year overall survival (OS)
rate <20% despite the best available treatment modalities.7,8 There-
fore, the main therapeutic strategies are to improve quality of life
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and prevent recurrence and late treatment-associated sequelae in
pLGG patients and to prolong life expectancy in pediatric HGG
(pHGG) patients.4 PGs are molecularly heterogeneous entities.5,8–10

Although recent studies on genomic alterations and molecular
biology underlying PGs have expanded our understanding of tumor
development and progression and offered great opportunities for
large-scale therapeutic trials around the globe, improvements in pa-
tient survival are still unsatisfactory.4,6,7,10,11 Moreover, apart from
therapeutic effects, adjuvant treatments involving radiotherapy and
cytotoxic chemotherapy for pHGGs and unresectable/recurrent
pLGGs also have considerable negative effects on children, including
endocrine dysfunction, cognitive disorders, neuropsychologic dis-
eases, and in some cases, secondary tumors.4,6,7 Therefore, there is
an urgent need to explore new therapeutic approaches for PGs.

Recently, immunotherapy has demonstrated remarkable clinical effi-
cacy in adult patients with refractory tumors, such as melanomas and
renal cell carcinomas,12,13 with both satisfactory therapeutic effects
and acceptable tolerability and thus, with potential to serve as a prom-
ising “fourth pillar” of treatment in addition to conventional surgery,
radiotherapy, and chemotherapy in managing PGs.9,14–16 To date,
several immunotherapy trials have been conducted for PGs, including
trials on immune checkpoint blockade (ICB) therapy,14,17,18 chimeric
antigen receptor T cell (CAR-T) therapy,15,19 and vaccination ther-
apy.16,20,21 Although immunotherapy served as a powerful new
approach in these PG studies, it worked only in a select subset of
patients with unique features, e.g., vaccines for those carrying the hu-
man leukocyte antigen (HLA)-A2 allele20,21 and ICB for hypermutant
tumors.14,17 More evidence is still needed from large trials to prove
the population coverage and long-term efficacy of immunotherapy
or(s).
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for PGs.9 A better understanding of the immune microenvironment
of tumors is an essential first step for the rational development of
effective cancer immunotherapy, and tumor classifications based on
immunological profilingmight serve as resources for invigorating tar-
geted studies.22–24 In the field of gliomas, Wu et al.24 classified adult
LGG patients into three groups based on the immune microenviron-
ment, and the newly classified subgroups were correlated with distinct
somatic alterations and patient prognosis. Recently, Plant et al.25

characterized the immune microenvironment of 22 pediatric brain
tumors, including 13 PGs using flow cytometry and 59 PGs using
immunohistochemistry. Despite this study, however, the understand-
ing of the immune microenvironment and phenotype of PGs and
their clinical and molecular relevance is still very limited.

In the current study, we classified PGs into 3 distinct subtypes based
on the unsupervised consensus clustering of the immune-related
transcriptome profiles of 384 tumor samples. We then proved the
stability and reproducibility of this immune classification in an inde-
pendent cohort of 111 PGs. Each subtype of PGs was demonstrated to
be associated with distinct cellular and molecular features, including
intratumoral microenvironment patterns, molecular pathways,
genomic alterations, and immune checkpoint molecule (ICM)
expression, as well as variations in patient survival and potential
responsiveness to immunotherapy. Furthermore, candidate drugs
and potential targeted mechanisms were predicted for PGs of each
subtype. Finally, we constructed three formulas using 8 significant
predictive genes to determine a PG classification for utility in clinical
practice. The identification of immunological profile-based subtypes
may facilitate the optimal selection of patients who are responsive
to immunotherapeutic treatments and promote the further design
of targeted immunotherapy.

RESULTS
Three stable immune subtypes (ISs) of PGs were identified and

correlated with patient OS, tumor histology, and WHO grade

First, the single-sample gene set enrichment analysis (ssGSEA)
enrichment levels of 31 immunemetagene sets in each PGwere quan-
tified as immunoscores to represent the overall immune activity. The
immunoscore is a robust and standardized scoring system used to
quantify intratumoral immune activity and has been proven to be a
reliable prognosis-predicting tool.26 Then, unsupervised consensus
clustering of the immunoscores was performed, and the 384 PGs
from the Children’s Brain Tumor Tissue Consortium (CBTTC)
training cohort were divided into 3 clusters (Figure 1A). The cluster
of gliomas with the highest immunoscores was defined as IS-I (n =
129, 33.6%), consisting of “immune-hot” tumors; the cluster with
the lowest immunoscores was defined as IS-III (n = 90, 23.4%), con-
sisting of “immune-cold” tumors; and the cluster with intermediate
immunoscores was defined as IS-II (n = 165, 43.0%), consisting of
“immune-altered” tumors (Figure 1C).

Kaplan-Meier survival analysis indicated that PGs of different
subtypes were correlated with distinct clinical outcomes (Figure 1B).
Patients with IS-I tumors showed the best OS, whereas those with IS-
III tumors showed the worst OS (p = 6.618� 10�7). The median sur-
vival time of patients with IS-I, IS-II, and IS-III tumors was 29.8, 19.2,
and 14.5 years, respectively.

In the International Cancer Genome Consortium (ICGC) validation
cohort, unsupervised consensus clustering was performed, and the
optimal number of clusters was also determined to be 3 (Figure 1E).
All patients were classified as follows: IS-I, n = 47, 42.3%; IS-II, n = 42,
37.8%; and IS-III, n = 22, 19.8% (Figure 1G). Kaplan-Meier survival
analysis also indicated that patients with IS-I tumors had the best
OS, whereas those with IS-III tumors had the worst OS (p =
9.062 � 10�7; Figure 1F). The median survival time of patients
with IS-I, IS-II, and IS-III tumors was >18, 13.3, and 1.99 years,
respectively. These findings suggest that this classification based on
intratumoral immune activity is robust and reliable in different pa-
tient populations and that greater immune activity in PG is correlated
with more favorable clinical outcomes.

Subsequently, clinicopathological variables were compared among
the three ISs (Table 1). Patients with IS-II tumors were the youngest
at diagnosis, but there was no significant difference in age between
patients with IS-I and IS-III tumors (Figures 1D and 1H). The rate
of mortality (up to the time of this study), diffuse intrinsic pontine
gliomas (DIPGs), and HGGs increased from IS-I to IS-III, as shown
in both the training and validation cohorts (Figures 1D and 1H).

PGs of different ISs had distinct microenvironments

Estimation of Stromal and Immune Cells in Malignant Tumor Tis-
sues using Expression Data (ESTIMATE) was performed to reveal
the composite tumor microenvironment (TME) of PGs. As evaluated
in both the CBTTC (Figure 2A) and ICGC (Figure 2D) cohorts, the
immune and stromal scores were both significantly higher in IS-I
tumors, indicating a high abundance of immune and stromal cells,
and lower in IS-III tumors, indicating a small fraction of immune
and stromal cells. In contrast, the ESTIMATE score decreased,
whereas the tumor purity score increased from IS-I to IS-III (p <
2.2 � 10�16), indicating a high purity in IS-III tumors and a low pu-
rity in IS-I tumors. CIBERSORTwas then applied to quantify in detail
the abundance of 22 types of tumor-infiltrating immune cells (TIICs)
in PGs. M2-type macrophages, CD4 memory resting T cells, and
resting mast cells were among the most common cells in the PG
microenvironment. The majority of TIICs were more abundant in
IS-I tumors but less abundant in IS-III tumors, as validated in both
the training (Figure 2B) and validation (Figure 2E) cohorts.

ISs were correlated with Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathways

Gene set variation analysis (GSVA) was performed to explore the
pathways and molecular mechanisms related to the immune classifi-
cation of PGs. The enrichment scores of KEGG pathways of each IS
were assessed. In the training cohort, 32 differentially enriched KEGG
pathways were identified, including 29 pathways positively correlated
with IS-I tumors and three positively correlated with IS-III tumors
(Figure 2C). In the validation cohort, 44 differentially enriched
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Figure 1. Unsupervised consensus clustering of pediatric gliomas (PGs) based on 31 immune signatures and clinicopathological relevance

(A and E) Consensus matrix for k = 3, which was the optimal cluster number in the CBTTC training cohort (A) and ICGC validation cohort (E). (B and F) Kaplan-Meier survival

analyses of patients with PGs of different immune subtypes (ISs) in the CBTTC training cohort (B) and ICGC validation cohort (F), indicating distinct clinical outcomes. (C and

G) Heatmaps of the 31 immune signatures in the CBTTC (C) and ICGC (G) cohorts, with red indicating high immunoscores and blue indicating low immunoscores. Subtype I

represented immune-hot tumors, subtype II represented immune-altered tumors, and subtype III represented immune-cold tumors. (D and H) Comparisons of clinico-

pathological variables among tumors of the three ISs in the CBTTC (D) and ICGC (H) cohorts.
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pathways were identified, which were all positively correlated with IS-
I tumors (Figure 2F). Finally, 28 KEGG pathways were determined as
the most differentially enriched molecular pathways shared by both
datasets. The GSVA results of PGs revealed positive correlations be-
tween elevated immune activity and molecular pathways related to
tumorigenesis (e.g., apoptosis), metabolism (e.g., N-glycan biosyn-
thesis), and immune responses (e.g., T/B cell receptor signaling
pathway).

PGs of different ISs had distinct types and loads of somatic

mutations and copy number alterations (CNAs)

As shown in Figures 3A�3C, each IS had its specific top mutated
gene, e.g., BRAF (69.6%) in IS-I tumors, SVIL (55.5%) in IS-II tumors,
and CACNA1A (74.2%) in IS-III tumors. Moreover, MUC4, ATRX,
PHLPP1, NF1, AHNAK, and AHNAK2 were among the top 10
36 Molecular Therapy: Oncolytics Vol. 20 March 2021
mutated genes of PGs detected among all subtypes. IS-III tumors
showed a lower somatic tumor mutation burden (TMB) than IS-I
(p = 1.0 � 10�7) and IS-II (p = 8.7 � 10�9) tumors, whereas no sig-
nificant difference was found between IS-I and IS-II tumors (p = 0.40;
Figure 3G). In addition, regarding the representative molecular bio-
markers for gliomas, the mutation frequency of BRAF showed a
declining trend (p < 0.001), whereas that of H3K27M showed an
increasing trend (p = 0.024) from IS-I to IS-III. No significant
difference was found regarding the mutation frequencies of ATRX,
EGFR, IDH, PTEN, TERT, or TP53 among the different subtypes
(Figure 3K).

In terms of CNAs, as shown in Figures 3D�3F, IS-I and IS-II tumors
tended to bear more gains and fewer losses, whereas IS-III tumors
tended to bear more losses and fewer gains. IS-III tumors showed



Table 1. Demographics and clinicopathological characteristics of 495 patients with pediatric gliomas

Variables

CBTTC cohort ICGC cohort

Total (n = 384) IS-I (n = 129) IS-II (n = 165) IS-III (n = 90) Total (n = 111) IS-I (n = 47) IS-II (n = 42) IS-III (n = 22)

Age at diagnosis 9.3 ± 4.8 9.8 ± 5.1 8.7 ± 4.6 9.9 ± 4.7 8.2 ± 3.5 8.5 ± 5.7 6.2 ± 3.7 9.2 ± 4.6

Gender

Female 186 61 74 51 59 23 19 17

Male 198 68 91 39 52 24 23 5

OS status

Dead 107 22 40 45 41 11 16 14

Alive 277 107 125 45 70 36 26 8

Histology

Astrocytoma 368 129 160 79 105 47 39 19

Oligodendroglioma 2 0 1 1 0 0 0 0

DIPG 14 0 4 10 6 0 3 3

WHO grade

Grade II 256 104 119 33 64 33 24 7

Grade III 114 25 42 47 41 14 15 12

Grade IV 14 0 4 10 6 0 3 3

Subtype

LGG 256 104 119 33 64 33 24 7

HGG 128 25 46 57 47 14 18 15

CBTTC, Children’s Brain Tumor Tissue Consortium; ICGC, International Cancer Genome Consortium; IS, immune subtype; OS, overall survival; DIPG, diffuse intrinsic pontine
glioma; LGG, low-grade glioma; HGG, high-grade glioma.
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the lowest CNA burdens, fewest amplifications, and most deletions
compared with IS-I and IS-II tumors (Figures 3H�3J).

Different ISs had varied immune checkpoint expression levels

and immunotherapy responsiveness

The expression levels of six ICMs, including PDCD1 (PD1), CD274
(PDL1), PDCD1LG2 (PDL2), CTLA4, CD80, and CD86, showed a
descending trend among tumors from IS-I to IS-III as estimated in
both the CBTTC (Figure 4A) and ICGC (Figure 4D) cohorts. Tumor
Immune Dysfunction and Exclusion (TIDE) was used to predict the
likelihood of a PG responding to immunotherapy. As shown in the
training set (Figure 4B), the proportion of a response to immuno-
therapy was highest among IS-I tumors (41.1%), followed by IS-II
tumors (24.2%) and IS-III tumors (6.7%) (p < 0.001). Similarly, IS-I
tumors in the ICGC validation set (48.9%) were also more likely to
respond to immunotherapy than IS-II (23.8%) and IS-III
tumors (13.6%) (p = 0.004; Figure 4E). However, no significant
differences were observed in the response rate among tumors of
different WHO grades or between LGGs and HGGs (Figures 4B
and 4E).

Subclass mapping analysis was applied to predict the responsiveness
to ICB therapy of PGs among different ISs. As shown in Figures 4C
and 4F, IS-I tumors were the most sensitive to anti-PD1 and anti-
CTLA4 therapy (p < 0.05). IS-I tumors were likely to respond to
PD1 inhibitors in the CBTTC cohort (p = 0.039), whereas this was
not verified in the ICGC cohort (p = 0.21). Additionally, IS-III tu-
mors, immune-cold tumors, tended to be resistant to ICB therapy,
as shown in both cohorts (p > 0.05).

Candidate drugs and modes of action (MoAs) for PGs of each IS

Following fold-change (FC) analysis and the Kruskal-Wallis test,
245, 154, and 327 genes were determined as representative genes
for IS-I, -II, and -III tumors, respectively (Table S2). Then, Connec-
tivity Map analysis was applied to explore the potential compounds
targeting the molecular pathways and representative genes of each
IS. MoA analysis revealed 35 molecular pathways targeted by 34
compounds in IS-I (Figure 5A), 20 pathways targeted by 20 com-
pounds in IS-II (Figure 5B), and 25 pathways targeted by 38 com-
pounds in IS-III (Figure 5C). Regarding the most critical MoAs
for each subtype, there were 4 compounds sharing the same MoA
as metalloproteinase inhibitors in IS-I, 7 compounds sharing the
same MoA as sodium channel blockers in IS-II, and 8 compounds
sharing the same MoA as calcium channel blockers in IS-III.
Notably, there were no intersections in drugs and corresponding
MoAs among the three subtypes of PGs.

Formulas and representative genes for identifying ISs of PGs

The most representative genes of each IS were used to identify IS-
related features using machine learning methods. A total of 35 genes
and 106 genes were identified by least absolute shrinkage and selec-
tion operator (LASSO), binomial deviance, and Boruta analyses,
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Figure 2. Tumor microenvironment features and functional annotations of the three ISs

(A and D) Comparisons of tumor purity and the immune, stromal, and ESTIMATE scores among the three ISs in the CBTTC (A) and ICGC (D) cohorts. (B and E) Comparisons

of 22 types of immune cells estimated by the CIBERSORT algorithm among the three ISs in the CBTTC (B) and ICGC (E) cohorts. (C and F) Heatmaps of the enrichment

scores of critical molecular pathways of each IS by GSVA in the CBTTC (C) and ICGC (F) cohorts. Red represents high enrichment scores, and blue represents low

enrichment scores.
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respectively (Figures 6A�6C), and the 12 genes shared by both
methods were determined as the specific features of IS-I tumors (Fig-
ure 6D). Similarly, 8 genes (Figure 6J) and 15 genes (Figure 6P) were
determined to be specific features of IS-II and IS-III tumors.
Following univariate and multivariate analyses, 8 significant genes
were selected to construct formulas for calculating predictor scores
of ISs (Table 2).

The formulas for each subgroup were as follows: IS-I predictor score =
1.34 + 4.87 � (expression of CCL18) + 11.19 � (expression of SI-
GLEC6); IS-II predictor score = �1.59 � 1.27 � (expression of
IGFN1) � 7.23 � (expression of SIGLEC6); and IS-III predictor
score = �1.17 � 3.07� (expression of GZMH) � 6.08� (expression
38 Molecular Therapy: Oncolytics Vol. 20 March 2021
of CD2) � 4.26 � (expression of HLA-DQA1) � 3.88 � (expression
of FCER1A). In the training set (CBTTC), the IS-I predictor formula
yielded an area under the curve (AUC) of 0.979 for distinguishing IS-I
tumors from others (Figures 6E and 6F), and patients with an IS-I
predictor score of >45.1 (optimal cutoff value) were considered to
have IS-I tumors. In addition, the IS-I predictor formula also had
an AUC of 0.934 and 0.828 in the CBTTC test set and the ICGC
test set, respectively (Figures 6E and 6F). Similarly, the IS-II predictor
formula yielded an AUC of 0.9996 in the training set (CBTTC), and
patients with an IS-II predictor score of >�40.1 were considered to
have IS-II tumors (Figures 6K and 6L); the IS-III predictor formula
demonstrated an AUC of 0.993, and patients with an IS-III predictor
score of >�3901.6 were considered to have IS-III tumors (Figures 6Q



Figure 3. Somatic variations of the three ISs

(A�C) Waterfall plots showing the top 10mutated genes of each IS. (D�F) Circos plots of each IS revealing the gains and losses of chromosomes, with red dots representing

gains, blue dots representing losses, and black dots representing no significant CNA. (G�J) Comparisons of the TMB, CNA burden, and number of amplifications and

deletions among three ISs. (K) Mutation status of the eight representative molecular biomarkers among the ISs.
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and 6R). Moreover, both the IS-II and IS-III predictor formulas indi-
cated excellent performance in discriminating tumor subtypes as
evaluated in the test sets.

DISCUSSION
Recently, several preliminary studies and ongoing trials of immuno-
therapies have demonstrated good tolerance and clinical benefits for
PGs, especially for progressive pHGGs and recurrent pLGGs resistant
to conventional treatments and associated with uniquely poor out-
comes.14–16 Further, prospective phase 2 or 3 trials to prove the over-
all population coverage and long-term efficacy of immunotherapy are
promising but challenging.9 Characterization of the intratumoral im-
mune microenvironment serves as an initial and critical step for the
design of successful antitumor immunotherapies.22,27 Herein, we
characterized the immunological profiles of PGs and classified the
tumors into three ISs accordingly. Each subtype was associated with
distinct TME patterns, molecular pathways, somatic alterations, pa-
tient outcomes, and immunotherapy responsiveness. These results
were reliable and validated in another PG cohort. This study adds
to our understanding of the immune microenvironment of PGs
and provides implications for further research on optimal immuno-
therapy strategies.

This classification system demonstrated perfect discrimination in
predicting OS. IS-I tumors conferred the most favorable prognosis,
whereas IS-III tumors had the worst clinical outcomes. Different
from the conclusion drawn by Plant et al.25 from a small cohort
that the immunophenotype of pediatric brain tumors had no
correlation with patient survival, most studies have revealed that
the density of TIICs is positively associated with prognosis in other
Molecular Therapy: Oncolytics Vol. 20 March 2021 39
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Figure 4. Expression of immune checkpoint molecules (ICMs) and predictions of immunotherapy responsiveness of PGs

(A and D) Expression levels of six ICMs among ISs in both the CBTTC (A) and ICGC (D) cohorts. (B and E) Comparisons of the proportion of responders to immunotherapy

among different subgroups, including the ISs andWHO grades in both the training (B) and validation (E) sets. (C and F) Subclass mapping analysis for predicting the likelihood

of a response to ICB therapy for the ISs in the CBTTC (C) and ICGC (F) cohorts. R, response to ICB (Bonferroni corrected p value < 0.05); noR, no response to ICB (Bonferroni

corrected p value > 0.05).
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types of cancer.28–30 Our result is in agreement with the majority of
findings in the literature, indicating that immune-hot PGs predicted
a favorable prognosis, whereas immune-cold PGs predicted a dismal
prognosis.
40 Molecular Therapy: Oncolytics Vol. 20 March 2021
Regarding the composition of the intratumoral immune microenvi-
ronment, our results revealed that the major immune infiltrates in
PGs were macrophages and T cells, consistent with the TIIC patterns
reported in adult gliomas.24,31 Furthermore, the fractions of different



Figure 5. Exploration of candidate drugs and molecular pathways for each IS by Connectivity Map analysis

(A–C) MoA analysis revealed 35 molecular pathways targeted by 34 compounds in IS-I (A), 20 pathways targeted by 20 compounds in IS-II (B), and 25 pathways targeted by

38 compounds in IS-III (C).

www.moleculartherapy.org
immune cells showed similar trends but distinct densities among PG
subtypes, with IS-I immune-hot PGs having the highest fractions of
almost all types of TIICs, followed by IS-II tumors, and IS-III PGs
having the lowest TIIC fractions.

Nontumor cells, including stromal cells and immune cells, in the
TME dilute the purity of tumors, and an immune-hot status is always
correlated with low tumor purity.32 Recently, Zhang et al.33 character-
ized the purity of adult gliomas and demonstrated that low-purity
gliomas were correlated with malignant progression and poor prog-
nosis. However, our results in the context of PGs are in contrast
with this conclusion, based on tumors in adults. As shown in our
study, immune-hot PGs showed low tumor purity, high immune ac-
tivity, and favorable clinical outcomes, whereas immune-cold PGs
revealed high tumor purity, low immune activity, and dismal prog-
nosis. One explanation might be that although low-purity adult gli-
omas had intensive immune infiltration (immune hot), they were
“immune suppressive” with considerable proportions of regulatory
T cells and tumorigenic M2-type macrophages and high levels of
immunosuppressive ICMs,24,31,34,35 whereas low-purity PGs were
both quantitatively immune hot and functionally immune active, as
validated in this study.

The increasing proportions of DIPGs and pHGGs in the IS-III sub-
type paralleled the decreasing OS and intratumoral immune activity.
DIPGs are themost devastating pediatric brain tumors, with amedian
Molecular Therapy: Oncolytics Vol. 20 March 2021 41
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Figure 6. Construction and evaluation of three IS predictors based on the most representative genes of each subtype

(A�F) IS-I predictors. (G�L) IS-II predictors. (M�R) IS-III predictors. LASSO regression analysis (A, G, and M): coefficient values at varying levels of penalty. Each curve

represents a gene. (B, H, and N) Ten-fold cross-validation was used to calculate the best lambda, contributing to the minimum mean cross-validated error (cvm). Red dots

represent partial likelihood deviance; solid vertical lines indicate the corresponding 95% confidence interval (95% CI); the left dotted vertical line is the value of lambda that

gives the minimum cvm; and the right dotted vertical line is the largest value such that error is within 1 standard error of the minimum. (C, I, and O) Importance plot of the

genes. Green boxes represent important features (retained), and red boxes represent unimportant features (declined). (D, J, and P) Venn diagram identifying the most critical

IS-specific variables that were shared by the LASSO and Boruta methods. (E, K, and Q) Confusion matrices of binary results of the IS predictors for the training set (CBTTC),

CBTTC test set, and ICGC test set. (F, L, and R) ROC curves of the IS predictors for distinguishing each subtype and other subtypes in the training set and two test sets.
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OS of only 9�11 months.36 As shown in this study, all DIPGs were
classified into IS-II and IS-III subtypes, with more classified into
the latter, showing lower immune infiltration and fewer available
ICMs to be targeted in DIPGs, in agreement with the conclusion in
another study reached using flow cytometry and transcriptome anal-
ysis.37 The study by Lin et al.38 also conveyed a similar conclusion that
DIPG contained few T cells and that intratumoral macrophages were
relatively noninflammatory, indicating low antitumor immune activ-
ity. In terms of the WHO grade, one study with a small sample re-
vealed that the immune classification was not correlated with the
grade of pediatric brain tumors.25 However, our results show that
pHGGs were more likely than pLGGs to be classified as IS-II or IS-
III tumors, exhibiting low immune activity. This finding suggests a
disappointing result for pHGGs and DIPGs, i.e., the relatively low im-
mune infiltration and ICM expression might increase the difficulty of
identifying successful alternative treatment targets. Thus, we propose
that the histology-specific immune microenvironment needs to be
taken into serious consideration when designing immunotherapies
for PGs.

Mutation heterogeneity and high CNA loads are correlated with neo-
antigen abundance, strong immune infiltration, and favorable immu-
42 Molecular Therapy: Oncolytics Vol. 20 March 2021
notherapy responses, as observed in several types of tumors.22,23,39–43

In contrast to adult gliomas, characterized by IDH1/2 mutation,
EGFR amplification, TERT promoter mutation, etc., PGs have unique
genomic alteration patterns.4,5,7 In pLGGs, genetic hits mostly occur
in mitogen-activated protein kinase (MAPK) pathways, including
BRAF fusion, neurotrophic receptor tyrosine kinase (NTRK)-family
fusion, BRAFV600E mutation, FGFR1mutation, andNF1mutation,5,44

whereas in pHGGs, common genomic alterations include mutations
in K27M, G34R/V, TP53,MYC, ATRX, FGFR1, and ACVR1.4,8 In this
study, BRAF, SVIL, and CACNA1A were the most mutated genes in
the IS-I, IS-II, and IS-III subtypes, respectively, and MUC4, ATRX,
PHLPP1, NF1, AHNAK, and AHNAK2 were other top mutated genes
among all subtypes of PGs. Moreover, CNA and TMB were found to
be positively correlated with the immune activity of PGs. The im-
mune-cold PGs were shown to have lower burdens of mutations
and CNAs, whereas immune-hot and immune-altered tumors had
higher genomic alteration burdens, implying as a whole that PGs
with intense mutation and CNA burdens were more likely to have
robust immune infiltration, abundant ICM expression, a favorable
prognosis, and strong antitumor reactions to neoantigens. In addi-
tion, the substantial enrichment of alterations in MAPK pathways
might also contribute to a better prognosis for patients with



Table 2. Univariate and multivariate logistic regression analyses for identifying risk factors and IS predictors for pediatric gliomas

Variables

Univariate analysis Multivariate analysis

B OR (95% CI) p value b OR (95% CI) p value

IS-I

Intercept 1.34 3.81 (1.91�8.37) 3.73e�04a

AC060834.2 0.73 2.09 (1.01�12.10) 0.24

AC113418.1 �1.46 0.29 (0.10�2.37) 0.28

AL353747.4 �2.99 0.14 (0.08�5.39) 0.17

CCL18 1.84 1.53 (1.32�1.73) 0.041a 4.87 1.34 (1.13�1.55) 1.57e�03a

FOXR2 �1.46 0.46 (0.11�3.78) 0.10

GTF3AP6 �3.26 0.79 (0.24�1.35) 0.39

IGHEP1 6.86 9.55 (1.48�1,842) 0.88

IGKV2-29 2.84 17.10 (1.46�605) 0.16

IGKV3-15 0.87 1.09 (0.19�15.6) 0.95

IGLV2-11 0.29 1.34 (0.54�3.69) 0.55

IGKV3D-20 0.38 1.46 (0.68�5.96) 0.46

SIGLEC6 1.49 3.16 (2.38�3.93) 3.48e�06a 11.19 7.31 (4.90�9.52) 1.05e�09a

IS-II

Intercept �1.59 0.20 (0.10�0.37) 1.49e�06a

POU4F1 �0.65 0.53 (0.03�1.01) 0.15

IGFN1 �0.93 0.41 (0.32�0.49) 0.033a �1.27 0.28 (0.09�0.58) 5.30e�03a

IGHV3-7 �0.70 0.79 (0.43�1.16) 0.38

IGKV3-15 �0.20 0.98 (0.67�2.19) 0.98

SIGLEC6 �7.01 0.57 (0.41�0.76) 2.49e�04a �7.23 0.72 (0.62�0.88) 8.37e�06a

WDR72 �6.37 0.90 (0.55�1.27) 0.12

AL020995.1 2.76 1.58 (0.63�7.59) 0.11

GTF3AP6 �2.61 0.84 (0.65�1.10) 0.86

IS-III

Intercept �1.17 0.38 (0.11�0.62) 1.64e�10a

POU4F1 1.06 2.88 (0.33�3.07) 0.37

AL354863.1 1.37 3.02 (0.12�34.81) 0.72

GLOD5 �4.34 0.12 (0.01�3.96) 0.35

DNAJC5G �0.43 0.64 (0.09�20.07) 0.69

CD3D �5.34 0.48 (0.06�14.08) 0.23

GZMH �5.04 0.65 (0.53�0.77) 0.012a �3.07 0.46 (0.11�0.68) 0.036a

CD2 �5.93 0.26 (0.21�0.42) 0.023a �6.08 0.23 (0.15�0.31) 0.021a

HLA-DQA1 �4.31 0.44 (0.30�0.79) 0.027a �4.26 0.14 (0.08�0.21) 4.42e�03a

KRT34 7.23 1.38 (0.33�2.61) 0.64

NEUROD6 3.95 5.19 (0.02�43.34) 0.50

GTF3AP6 1.04 1.95 (0.77�3.45) 0.99

FCER1A �4.82 0.81 (0.73�0.91) 0.003a �3.88 0.21 (0.09�0.36) 0.010a

C7 �0.20 0.82 (0.36�1.13) 0.73

CLEC12A �0.25 0.77 (0.01�16.93) 0.89

MAGEA11 2.13 1.40 (0.60�7.45) 0.86

b, regression coefficient; OR, odds ratio; 95% CI, 95% confidence interval.
ap < 0.05.
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immune-hot PGs.45 Our results differ from those based on adult gli-
omas showing that the mutation burden was correlated with low im-
mune infiltration24,46 but are consistent with those of a study on PGs
revealing that hypermutated tumors had greater lymphocyte infiltra-
tion.10 Detailed analysis and recognition of IS-specific neoplastic an-
tigens caused by gene mutations and CNAs are suggested to promote
the design of CAR-T cell and vaccination therapies for PGs.

In comparison to the confusing two-sided immune microenviron-
ment patterns of adult gliomas that were immune hot but immune
suppressive,24,34,47 PGs of the same subtype showed identical
immune patterns as both immune hot and immune active or both
immune cold and immune suppressive. As shown in our study, im-
mune-hot PGs expressed the highest levels of ICMs and were more
likely to respond to anti-PD1 and anti-CTLA4 therapies, whereas
IS-III immune-cold tumors exhibited the lowest levels of ICMs and
were unlikely to respond to ICM-targeted treatments. This phenom-
enon increases the difficulty of ongoing immunotherapy research,
especially the selection of immune targets for refractory PGs since
more pHGGs and DIPGs, which are in urgent need of promising im-
munotherapies,8,10,36,38 were classified as IS-III.

The expression of ICMs serves as a potential tool in predicting
responsiveness to ICB therapy.48 pHGGs have lower expression levels
of PD1 than atypical teratoid/rhabdoid tumors and ependymomas.49

Responsiveness to immunotherapies was predicted in this study
among different subtypes of PGs using TIDE.50 There existed a signif-
icant descending trend in the ICM expression levels and response
rates from immune-hot to immune-cold tumors (pHGG proportion
from low to high), indicating low immune infiltration and ICM
expression correlated negatively with immunotherapy responsive-
ness. Different ISs of tumors respond differently to ICB therapy.23,24

According to our prediction, IS-I PGs could respond to both anti-
PD1 and anti-CTLA4 therapies, IS-II PGs might respond to anti-
PD1 therapy but not anti-CTLA4 therapies, whereas IS-III PGs
were unlikely to have a favorable response to immunotherapy.
The WHO grading system has been used to predict prognosis for
gliomas.51 However, this system might not be proper for an immuno-
therapy response prediction for PGs. The intratumoral immune
microenvironment and phenotype, but not grade, need to be under-
lined when predicting the response to immunologic treatments in
PGs.

The Connectivity Map, a pharmacogenome-based tool, was used to
explore the potential drugs targeting immunophenotype-associated
molecular pathways and genes and to understand the potential
MoAs.52 The process of exploring candidate drugs and corresponding
mechanisms could provide novel therapeutic options in addition to
immunotherapy for PGs. Notably, no intersections in drugs and
MoAs were found among the subtypes, suggesting that PGs of
different ISs might have different favorable chemotherapy regimens.

To standardize the process of discriminating the ISs of PGs, predic-
tive formulas were constructed and validated using the 8 most repre-
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sentative genes. With sequencing data on these genes, physicians
could easily classify a resected PG into one subtype using the for-
mulas and thus obtain related information on its TME pattern, in-
tratumoral immune activity, predicted OS, and immunotherapy
responsiveness.

In conclusion, the current study classified PGs from an immune
perspective and proposed three subtypes: immune-hot (IS-I), im-
mune-altered (IS-II), and immune-cold (IS-III) tumors. IS-I tumors
had substantial immune infiltration, high ICM expression, a favor-
able prognosis, and proper responsiveness to immunotherapy; this
subtype comprised more pLGGs and no DIPGs. IS-III tumors ex-
hibited weak immune infiltration, low ICM expression, a dismal
outcome, and poor responsiveness to immunotherapy; this subtype
consisted of large fractions of pHGGs and DIPGs. IS-II tumors rep-
resented a transitional stage. Moreover, the immune classification
was correlated with somatic mutations, CNAs, and several molecu-
lar pathways related to tumorigenesis, metabolism, and immune
response. With reliable predictive formulas, the IS of PGs could be
identified and thus assist in the further design of successful immu-
notherapies and the stratification of patients responsive to targeted
therapies.

MATERIALS AND METHODS
Patient population and genomic data acquisition

Level 3 RNA sequencing data of 561 PGs and the corresponding clin-
ical and follow-up information were downloaded from the CBTTC
(https://cbttc.org/) and the ICGC (https://dcc.icgc.org/). Thirteen pa-
tients from the CBTTC and 53 from the ICGC were excluded due to
lack of prognostic data or patient age at diagnosis >19 years. Finally,
384 patients with intact clinical data from the CBTTC dataset were
enrolled and set as the training cohort, and 111 patients from the
ICGC dataset were set as the validation cohort. In addition, somatic
mutation and CNA data of 321 PGs from the CBTTC dataset were
also included.

Informed consent was obtained from all participants by CBTTC and
ICGC member institutions. This study was approved by the Institu-
tional Ethics Committee of Peking Union Medical College Hospital
in accordance with the ethical standards of the Institutional Ethics
Committee and with the 1964 Declaration of Helsinki and its later
amendments or comparable ethical standards.

Immunoscores and unsupervised consensus clustering of PGs

Figure S1 presents the overall workflow of the present study. We
obtained 31 immune metagene sets that represented the immune ac-
tivity of the PGs based on the types, functions, and molecular path-
ways of the TIICs (Table S1).23 By applying the ssGSEA algorithm,
the enrichment levels of the 31 immune signatures of each tumor
were quantified as the immunoscores based on the expression profiles
of the samples.53 Then, unsupervised consensus clustering was
applied to explore a novel immune classification for PGs based on
the immunoscores using the ConsensusClusterPlus package in R.
The clustering procedure with 1,000 iterations was performed by

https://cbttc.org/
https://dcc.icgc.org/
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sampling 80% of the data in each iteration. The optimal number of
clusters was determined by the relative change in the area under
the cumulative distribution function (CDF) curve, the proportion
of ambiguous clustering algorithm, and the consensus heatmap.54

Hence, ISs with different immunoscores could demonstrate distinct
immune characteristics. Kaplan-Meier survival analysis was per-
formed to evaluate the OS of patients with tumors of different ISs.
TME patterns of PGs

PG TME patterns were estimated using the ESTIMATE and CIBER-
SORT algorithms. ESTIMATE was used for predicting tumor purity
and the abundance of intratumoral stromal cells and immune cells
based on the gene-expression profile.32 The algorithm can generate
four scores: the immune score (positively reflecting the abundance
of TIICs), the stromal score (positively reflecting the abundance of
stromal cells), the ESTIMATE score (negatively reflecting tumor pu-
rity), and the tumor purity score (positively reflecting tumor purity).
Then, the CIBERSORT algorithm was applied to quantify in detail the
composition of 22 types of TIICs based on the gene-expression
profile.55
Functional annotations of PG ISs

GSVA, an unsupervised gene set enrichment method, was applied to
estimate the enrichment scores of KEGG pathways of each PG based
on the gene-expression data using the GSVA package in R.39,53 Then,
differential analysis of the enrichment scores of KEGG pathways
among different ISs was performed using the limma package. FC
analysis and the Kruskal-Wallis test were performed to determine
the most differentially enriched KEGG pathways of each IS. KEGG
pathways with |log2FC| >0.2, Benjamini-Hochberg false discovery
rate (FDR) <0.05, and Kruskal-Wallis test p <0.05 were considered
the most differentially enriched molecular pathways.56
Somatic mutation and CNA analysis

Since genomic alterations have been investigated to be correlated with
tumor immunity and immune infiltration,22,57 we performed somatic
mutation analysis and CNA analysis here to explore the distinct
genomic variations of three ISs of PGs. The mutation type and fre-
quency of the top mutated genes in each subtype were visualized by
waterfall plots using the GenVisR package in R.58 The TMB was
defined as the total number of nonsynonymous mutations in the cod-
ing region per megabase.59 Comparisons of the TMB among ISs were
performed by the Kruskal-Wallis test.

Regarding the CNA data, loci with segment-mean values greater than
0.2 were defined as gains (amplifications), and those with values less
than �0.2 were defined as losses (deletions).60 To better exhibit the
gains and losses of chromosomes, CNA summary plots of each IS
were visualized by circos plots using the RCircos package in R.61

The CNA burden was defined as the total number of genes with
copy number changes.59 The CNA burden and number of gains
and losses of chromosomes among ISs were compared by the Krus-
kal-Wallis test.
Prediction of immunotherapy responsiveness

The TIDE (http://tide.dfci.harvard.edu/) algorithm was developed
based on the integration of the expression signatures of T cell
dysfunction and T cell exclusion to model tumor immune evasion.50

The signatures of T cell dysfunction can be determined from large
tumor cohorts by testing how the expression of each gene in tumors
interacts with the cytotoxic T lymphocyte infiltration level to influ-
ence patient survival and response to immunotherapy. The clinical
response to ICB can be predicted by the TIDE algorithm using the tu-
mor transcriptomic profile. In addition, the unsupervised subclass
mapping (https://cloud.genepattern.org/gp/pages/login.jsf) method
was further applied to predict the responsiveness to ICB of different
ISs in PG patients.62

Identification of the most representative genes of each subtype

FC analysis and the Kruskal-Wallis test were performed to determine
the most representative genes in tumors of each IS. The differentially
expressed genes (DEGs) among ISs were screened using the limma
package in R. FDR < 0.05 and |log2FC| >3 were considered the cutoff
criteria for determining DEGs, and subsequently, the DEGs with
Kruskal-Wallis test p <0.05 were considered the most representative
genes of each IS.

Connectivity Map analysis

The Connectivity Map database (https://clue.io/) was applied to
explore potential compounds targeting the molecular pathways and
genes associated with the IS of PGs.52 The Connectivity Map database
not only predicts drugs based on gene-expression signatures but also
reveals the MoA of compounds and related molecular pathways. The
most representative genes of each IS were enrolled in querying the
Connectivity Map database.

Construction and evaluation of predictors for IS identification by

machine learning methods

In this section, the CBTTC dataset was randomly classified as the
training set (n = 278) and the test set (n = 106) at a ratio of 7:3,
and the ICGC dataset was selected as another test set (n = 111).
LASSO regression and the Random Forest and Boruta analyses
were applied to screen the most critical group-relevant features by
calculating the importance score for each variable using the glmnet,
rms, Random Forest, and Boruta packages in R.63,64 The expression
levels of the most representative genes of each IS were selected as
the input variables (independent variables), and the status of each
IS (e.g., one subtype as 1 and other subtypes as 0) was selected as
the outcome (binary dependent variables). Then, the genes intersect-
ing between LASSO and Boruta analysis were considered the most
critical IS-relevant variables for further analysis, which were visual-
ized by a Venn diagram. First, univariate logistic regression analysis
was performed on the most critical variables. According to the results,
those genes with p <0.05 were further analyzed by multivariate logis-
tic analysis to identify the risk factors and construct the predictors for
IS identification.65 Then, the discriminative performance of the IS
predictors was evaluated by receiver operating characteristic (ROC)
curve analysis, and the optimal cutoff values, AUCs, sensitivity,
Molecular Therapy: Oncolytics Vol. 20 March 2021 45
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specificity, and accuracy were determined. Subsequently, the perfor-
mance of the predictors was also validated by the CBTTC and
ICGC test sets in similar ways.

SUPPLEMENTAL INFORMATION
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