
fcell-09-631699 February 15, 2021 Time: 15:7 # 1

MINI REVIEW
published: 18 February 2021

doi: 10.3389/fcell.2021.631699

Edited by:
Charlotta Boiers,

Lund University, Sweden

Reviewed by:
Mihaela Crisan,

University of Edinburgh,
United Kingdom
Thierry Jaffredo,

Centre National de la Recherche
Scientifique (CNRS), France

Brandon Hadland,
Fred Hutchinson Cancer Research

Center, United States

*Correspondence:
Georges Lacaud
georges.lacaud@

cruk.manchester.ac.uk

Specialty section:
This article was submitted to

Stem Cell Research,
a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 20 November 2020
Accepted: 22 January 2021

Published: 18 February 2021

Citation:
Neo WH, Lie-A-Ling M,

Fadlullah MZH and Lacaud G (2021)
Contributions of Embryonic

HSC-Independent Hematopoiesis to
Organogenesis and the Adult

Hematopoietic System.
Front. Cell Dev. Biol. 9:631699.
doi: 10.3389/fcell.2021.631699

Contributions of Embryonic
HSC-Independent Hematopoiesis to
Organogenesis and the Adult
Hematopoietic System
Wen Hao Neo, Michael Lie-A-Ling, Muhammad Zaki Hidayatullah Fadlullah and
Georges Lacaud*

Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield,
United Kingdom

During ontogeny, the establishment of the hematopoietic system takes place in
several phases, separated both in time and location. The process is initiated extra-
embryonically in the yolk sac (YS) and concludes in the main arteries of the embryo
with the formation of hematopoietic stem cells (HSC). Initially, it was thought that
HSC-independent hematopoietic YS cells were transient, and only required to bridge
the gap to HSC activity. However, in recent years it has become clear that these
cells also contribute to embryonic organogenesis, including the emergence of HSCs.
Furthermore, some of these early HSC-independent YS cells persist into adulthood as
distinct hematopoietic populations. These previously unrecognized abilities of embryonic
HSC-independent hematopoietic cells constitute a new field of interest. Here, we aim
to provide a succinct overview of the current knowledge regarding the contribution
of YS-derived hematopoietic cells to the development of the embryo and the adult
hematopoietic system.

Keywords: yolk sac, lineage tracing, embryonic hematopoiesis, organogenesis, macrophage, hematopoietic
waves, HSC-independent hematopoiesis

INTRODUCTION

In mammals, the hematopoietic system is established during embryogenesis in three consecutive
overlapping waves (Dzierzak and Bigas, 2018). In mice, the first wave, also termed primitive
hematopoiesis, is initiated around embryonic day (E)7 and produces unipotent precursors that
give rise to either primitive-erythrocytes, -megakaryocytes, or -macrophages (Palis et al., 1999;
Tober et al., 2007). The primitive macrophage precursors have also been named primitive myeloid
precursors (pMP). Furthermore, it has also been reported that the first wave may give rise to c-Myb
independent erythroid–myeloid progenitors (early EMP) (Hoeffel et al., 2015). However, so far,
macrophage (microglia) but not erythrocyte potential has been experimental confirmed for these
so-called early EMP (Wittamer and Bertrand, 2020). Henceforth, we will refer to wave 1 myeloid
cells as pMP/early EMP. The second wave of hematopoiesis marks the onset of definitive (erythroid)
hematopoiesis and sees the emergence of both EMPs around E8.25 (late-EMPs) (McGrath et al.,
2015; Palis, 2016), and lymphoid–myeloid progenitors (LMPs) (Adolfsson et al., 2005; Boiers et al.,
2013) around E9.5. Around E10.5 the third wave generates both hematopoietic stem and progenitor
cells (HSPC) (Figure 1A). The hematopoietic stem cells (HSCs) subsequently play a central role in
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maintaining the hematopoietic system for the lifetime of
the organism (Medvinsky et al., 1993; Muller et al., 1994).
Hematopoietic cells of all waves are generated from the
mesoderm, which is known to give rise to both endothelial and
hematopoietic lineages (Davidson and Zon, 2000; Dzierzak and
Bigas, 2018). For the definitive hematopoietic waves (waves 2
and 3), it is now well established that hematopoiesis occurs
via an endothelial-to-hematopoietic transition (EHT) from a
specialized endothelial subpopulation known as hemogenic
endothelium (HE) (Jaffredo et al., 1998; Zovein et al., 2008;
Chen et al., 2009; Eilken et al., 2009; Lancrin et al., 2009; Boisset
et al., 2010; Lacaud and Kouskoff, 2017; Garcia-Alegria et al.,
2018; Ottersbach, 2019). The cellular origin of the first wave of
primitive hematopoiesis is still disputed. It is unclear whether
primitive hematopoiesis emerges directly from mesoderm, a
hemangioblast, a HE, or another type of precursor (Amaya, 2013;
Myers and Krieg, 2013). However, several recent studies suggest
that primitive hematopoiesis (wave 1) is generated through
a HE(-like) intermediate that has been termed hemogenic
angioblast (Lancrin et al., 2009; Stefanska et al., 2017; Garcia-
Alegria et al., 2018). Despite this potential common cellular
origin, not all waves originate from the same anatomical site.
The first two waves arise extra embryonically in the yolk sac
(YS). In contrast, the third wave mainly takes place in the dorsal
aorta within the aorta-gonad-mesonephros (AGM) region of
the embryo, where HSC arise within so-called intra-aortic
hematopoietic clusters (IAHC) (Boisset et al., 2010; Dzierzak
and Bigas, 2018; Ottersbach, 2019). The HSC mature and
amplify in the fetal liver (FL) before taking up residence in the
bone marrow (BM).

Initially, the YS waves of hematopoiesis were thought to
provide an essential but transient blood supply for the embryo
destined to be replaced by HSC-derived cells. However, there
is accumulating evidence that HSC-independent blood cells can
make significant contributions to the adult hematopoietic system.
Furthermore, it is also becoming evident that in the embryo,
the HSC-independent hematopoietic waves can play essential
roles beyond erythrocyte-mediated oxygen exchange and early
immune surveillance. These roles have been mainly assigned to
myeloid-derived populations that have been shown to play crucial
roles in embryonic organogenesis.

Here we provide a concise overview of the recent findings
obtained in mouse models regarding the contribution of HSC-
independent hematopoiesis to embryonic organogenesis and the
adult hematopoietic system.

RESOLVING THE ROLE AND ORIGIN OF
HEMATOPOIETIC POPULATIONS

The overlapping and transient nature of the different
hematopoietic waves makes it challenging to determine
their individual contributions towards organogenesis and
the adult hematopoietic system. Transgenic mouse knockout
(KO) and fate mapping models have been instrumental in
shaping our current understanding of the contribution of
the different hematopoietic waves towards the hematopoietic

system (Table 1). KO models (via gene deletion/mutation
or lineage-specific activation of diphtheria toxin) provide
functional information for specific populations, while lineage
tracing models (typically using fluorescent proteins) highlight
the contribution of specific populations. However, the perfect
model to delineate the hematopoietic waves does not exist,
and it is important to consider the target cell type, wave
specificity and labeling efficiency of the models used when
interpreting results.

Knockout mouse models have demonstrated specific
dependencies of (wave-specific) hematopoietic populations
on distinct transcription factors and signaling pathways. Csf1r
(Colony Stimulating Factor 1 Receptor, cytokine receptor)
KO mainly disrupts the early EMP differentiation (wave 1)
and to a lesser extent the late-EMP differentiation (wave 2)
(Dai et al., 2002). Although these mice are viable, they display
drastically reduced levels of microglia and YS macrophages
(Ginhoux et al., 2010; Hoeffel et al., 2012). Csf1 (Marks and
Lane, 1976) (Colony Stimulating Factor 1, cytokine) null mice
display a similar but milder phenotype, with varying degrees
of microglia and YS macrophages depletion, due to partial
compensatory effects of the alternative CSF1R ligand IL-34
(Wiktor-Jedrzejczak et al., 1990; Cecchini et al., 1994; Kondo
and Duncan, 2009; Greter et al., 2012; Wang et al., 2012;
Easley-Neal et al., 2019). Myb (Mucenski et al., 1991) (MYB
Proto-Oncogene, transcription factor) KO disrupts late-EMP
and HSC differentiation (wave 2 and wave 3) and results in
anemia and embryonic lethality around E15.5 (Schulz et al.,
2012; Hoeffel et al., 2015). A similar phenotype is observed in
KitL (KIT Ligand, cytokine) KO mice which die perinatally
(Ding et al., 2012). Nur77 (Lee et al., 1995) (Nuclear Receptor
Subfamily 4 Group A Member 1, nuclear receptor) KO is viable
but lacks circulating monocytes due to disrupted BM HSC
differentiation (Hanna et al., 2011). Disrupting cell migration
has also emerged as a useful strategy. Plvap (Rantakari et al.,
2015) (Plasmalemma Vesicle Associated Protein, membrane
protein) and CCR2 (Boring et al., 1997) (C-C Motif Chemokine
Receptor 2, chemokine receptor) KOs are viable but respectively
show impaired FL and BM monocyte migration (Rantakari et al.,
2016). Cx3cr1 (Jung et al., 2000) (C-X3-C Motif Chemokine
Receptor 1, chemokine receptor) KO is viable but shows
impairment of leukocyte migration (Imai et al., 1997; Jacquelin
et al., 2013) regardless of their wave of origin. There are
several other models which disrupt all waves of hematopoietic
development. Pu.1 (Scott et al., 1994; McKercher et al., 1996)
(Spi-1 Proto-Oncogene, transcription factor) KO mice have
defective YS myelopoiesis and HSC maintenance and die
shortly after birth (Olson et al., 1995; Kim et al., 2004; Kierdorf
et al., 2013). Deletion of Runx1 (Okuda et al., 1996; Wang
et al., 1996a; North et al., 1999) (RUNX Family Transcription
Factor 1, transcription factor) or its essential co-factor Cbfβ
(Sasaki et al., 1996; Wang et al., 1996b; Niki et al., 1997)
(Core-Binding Factor Subunit Beta, transcription factor) is
embryonically lethal and results in the complete absence of
hematopoiesis apart from primitive erythroid cells. These KOs
are useful when coupled with targeted approaches. For example,
the Cbfβ KO model can be used to deplete EMP or HSC by
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TABLE 1 | Mouse model for studying the contribution of different hematopoietic waves to hematopoietic system.

Knockout models Function Affected wave Major impact on hematopoietic
waves

References

Csf1r (Dai et al., 2002) Early/Late-EMP differentiation 1, 2 Lack of early EMP and reduced
late-EMP contribution to TRM

Ginhoux et al., 2010; Hoeffel et al.,
2012

Csf1 (null mutation) (Marks and
Lane, 1976)

Early EMP differentiation 1 Reduced early EMP contribution to
TRM

Cecchini et al., 1994; Kondo and
Duncan, 2009; Easley-Neal et al.,
2019

Myb (Mucenski et al., 1991) Late-EMP and HSC differentiation 2, 3 Lack of late-EMP and HSC
contribution to TRM

Schulz et al., 2012; Hoeffel et al.,
2015

Nur77 (Lee et al., 1995) BM monocytes differentiation Reduced BM
monocytes/macrophages
contribution to TRM

Hanna et al., 2011

Plvap (Rantakari et al., 2015) FL macrophage migration Reduced FL
monocytes/macrophages
contribution to TRM

Rantakari et al., 2016

Ccr2 (Hanna et al., 2011) BM monocytes/macrophages
migration

Reduced BM
monocytes/macrophages
contribution to TRM

Boring et al., 1997

KitL (Ding et al., 2012) Late-EMP and HSC maintenance 2, 3 Reduced late-EMP and HSC
contribution to TRM

Ajami et al., 2007; Azzoni et al.,
2018

Cx3cr1 (Jung et al., 2000) Mediates monocyte retention in the
BM

None Imai et al., 1997; Jacquelin et al.,
2013

Pu.1 (Scott et al., 1994; McKercher
et al., 1996)

YS myeloid differentiation and HSC
maintenance

1, 2, 3 Lack of EMP and HSC contribution
to TRM

Scott et al., 1994; Olson et al.,
1995; McKercher et al., 1996; Kim
et al., 2004; Iwasaki et al., 2005;
Kierdorf et al., 2013

Runx1 (Okuda et al., 1996; Wang
et al., 1996a; North et al., 1999)

Master regulator of hematopoiesis,
expressed from HE onwards

1, 2, 3 Lack of EMP and HSC Okuda et al., 1996; Wang et al.,
1996a; North et al., 1999

Cbfβ (Sasaki et al., 1996; Wang
et al., 1996b; Niki et al., 1997)

Essential RUNX1 co-factor 1, 2, 3 Lack of EMP and HSC Sasaki et al., 1996; Wang et al.,
1996b; Niki et al., 1997

Cbfβ (Tie2-Cbfβ) (Miller et al., 2002) Essential RUNX1 co-factor 1, 2, 3 Lack of HSC Chen et al., 2011

Cbfβ (Ly6a-Cbfβ) (Chen et al., 2011) Lack of EMP Chen et al., 2011
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TABLE 1 | Continued

Constitutive fate
mapping models

Relevance Labeling efficiency (assay time point) References

LMP (Wave 2) pMP/Early EMP (Wave 1) Late-EMP (Wave 2) HSC (Wave 3)

S100a4 (Bhowmick et al.,
2004) (Transgene)

Active in FL monocytes and
not in FL macrophages

Not done ∼20% (5wo) 64.5 ± 6.7% (5wo) Not done Hoeffel et al., 2015

Not done ∼20% (Adult) ∼60% (Adult) ∼100% (Adult) Hashimoto et al., 2013

Flt3 (Benz et al., 2008) (KI) Active in HSC progeny Not done Not done Not done ∼80% (NB) Hoeffel et al., 2015

Not done Not done ∼20% (Adult) ∼80% (Adult) Hashimoto et al., 2013

Not done <2% (P8 onwards) 10–30% (P8 onwards) ∼80% (P8 onwards) Gomez Perdiguero et al., 2015

Not done Not done 10–20% (4wo) ∼80% (4wo) Schulz et al., 2012

Ms4a3 (Liu et al., 2019) (KI) Active in GMP Not done None (NB onwards) Trace (NB onwards) BM GMP: 68.7 ± 1.58% (Adult) Liu et al., 2019

Tnfrs11a (Maeda et al.,
2012) (KI)

Essential for osteoclast
development. Tracks YS
progenitors.

Not done ∼80% (E14.5) ∼90% (6wo) ∼10% (E14.5 onwards) Mass et al., 2016

Tnfrs11a (Percin et al.,
2018) (KI)

Not done Not done ∼90% (Adult) None (Adult) Percin et al., 2018

Rag1 (McCormack et al.,
2003) (KI)

Lymphoid-specific activity ∼100% (E14.5) Trace (E14.5) <5% (E14.5) Not done Boiers et al., 2013

(Continued)
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TABLE 1 | Continued

Inducible fate mapping
models

Relevance Pulse timepoint Labeling efficiency (assay time point) References

pMP/Early EMP (Wave 1) Late-EMP (Wave 2) HSC (Wave 3)

Csf1r (Qian et al., 2011)
(Transgene)

Mainly a myeloid marker E8.5 63.2 ± 5.6% (E13.5) Trace (E13.5) Not done Hoeffel et al., 2015

∼60% (E11.5) Marked (E12.5) Not done Gomez Perdiguero et al.,
2015

Cx3cr1 (Yona et al., 2013)
(KI)

Mainly a myeloid marker E9.0 ∼40% (E16.0); ∼30% (NB onwards) Trace (6wo onwards) Trace (6wo) Hagemeyer et al., 2016

Runx1 (Samokhvalov et al.,
2007) (KI; driven by
P2/Runx1b promoter)

Master regulator of
hematopoiesis, expressed
from HE onwards

E7.25-E7.5 ∼30% (E10.5) <5% (8wo) <3% (8wo) Ginhoux et al., 2010

Not done Not done none (9–12mo) Samokhvalov et al., 2007

∼30% (E10.5); ∼20% (E13.5) Not done Not done Hoeffel et al., 2012

E7.5 22.2 ± 0.9% (E13.5) < 5% (E13.5); <10% (E16.5) Trace (E13.5) Hoeffel et al., 2015

Not done ∼10% (8wo) ∼10% (8wo) Ginhoux et al., 2010

Not done Not done 1–10% (9–12mo) Samokhvalov et al., 2007

Not done ∼12.5% (8wo) ∼7.5% (8wo) Hoeffel et al., 2012

E8.5 ∼15% (E13.5); <5% (E16.5) ∼25% (E13.5); ∼30% (E16.5) 1–3% (E11.5); <5% (E13.5) Hoeffel et al., 2015

Not done ∼30% (8wo) ∼30% (8wo) Ginhoux et al., 2010

Not done Not done 1–50% (9–12mo) Samokhvalov et al., 2007

Not done ∼30% (8wo) ∼30% (8wo) Hoeffel et al., 2012

E9.5 <5% (E13.5) ∼15% (E13.5) ∼30% (E13.5) Hoeffel et al., 2015

Not done ∼20% (8wo) ∼30% (8wo) Ginhoux et al., 2010

Not done Not done 50–100% (9–12mo) Samokhvalov et al., 2007

Not done ∼25% (8wo) ∼30% (8wo) Hoeffel et al., 2012

Tie2 (Gomez Perdiguero
et al., 2015) (KI)

Endothelial marker
(including HE) also
expressed in subset of
HSC and myeloid cells

E7.5 ∼60% (E12.5) ∼40% (6–8wo) ∼40% (E12.5) Gomez Perdiguero et al.,
2015

E8.5 ∼30% (E12.5) ∼20% (6–8wo) ∼75% (E12.5)

E9.5 trace (E12.5) ∼10% (6–8wo) ∼80% (E12.5)

E10.5 none (E12.5) ∼5% (6–8wo) ∼40% (E12.5)

Kit (Sheng et al., 2015) (KI) Express in early HSPC and
YS HE cells

E7.5 ∼70% (E13.5) Trace (E13.5) Trace (6wo) Sheng et al., 2015

E8.5 ∼70% (E13.5) ∼40% (E13.5) ∼60% (6wo)

E9.5 ∼50% (6wo) ∼50% (6wo) ∼40% (6wo)

Cdh5 (Sorensen et al.,
2009) (Transgene)

Endothelial marker
(including HE)

E7.5 ∼80% (E10.5); ∼90% (E14.5) ∼80% (E10.5) <10% (E14.5) Gentek et al., 2018a

E10.5 Trace (E14.5) Not done ∼80% (E14.5)

EMP, erythroid–myeloid progenitors; HSC, hematopoietic stem cells; TRM, tissue-resident macrophages; FL, fetal liver; BM, bone marrow; pMP, primitive myeloid precursors; HSPC, hematopoietic stem and progenitors;
YS, yolk sac; LMP, lymphomyeloid progenitors; GMP, granulocyte-macrophage progenitors; HE, hemogenic endothelium; KI, knock-in; NB, new born; wo, week old; mo, month old.
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combination with respectively Ly6a-Cbfβ or Tie2-Cbfβ rescue
alleles (Chen et al., 2011).

Constitutive lineage tracing models rely on lineage-specific
promoter activity to drive Cre recombinase expression, which
in turn irreversibly activates or deletes a target gene (Hoess
and Abremski, 1984; Sauer and Henderson, 1988). Such models
have been established to trace long term lineage contribution
of HSC- and YS-derived hematopoietic cells. Flt3-Cre, Ms4a3-
Cre, S100a4-Cre predominantly track HSC progeny, albeit with
several restrictions. Flt3-Cre (Schulz et al., 2012; Hashimoto et al.,
2013; Gomez Perdiguero et al., 2015; Hoeffel et al., 2015) and
S100a4-Cre (Hashimoto et al., 2013; Hoeffel et al., 2015) mark
the majority of HSC-derived cells (>80%). However, both also
mark some YS-derived hematopoietic cells (Table 1). In contrast,
Ms4a3-Cre does not mark any YS cells from the first or second
wave and only marks HSC-derived GMPs (∼70%) (Liu et al.,
2019). The Tnfrs11a-Cre model is currently best suited to track
YS hematopoiesis with little (Maeda et al., 2012; Mass et al.,
2016) or no (Percin et al., 2018) HSC labeling. However, this
model cannot distinguish the two YS waves of hematopoiesis.
Currently, the only option to track LMP progeny is the Rag1-Cre
fate mapping model (Boiers et al., 2013) which marks all FL B and
T cells alongside a small number of myeloid cells.

Inducible tracing models [tamoxifen-inducible Cre-mediated
recombination (Metzger et al., 1995; Feil et al., 1997)] add an
extra layer of specificity that can overcome certain limitations
of the constitutive models. This approach allows not only for
reporter activation or gene deletion in specific cell types but also
during a defined developmental time window. The latter has
allowed for the specific marking of the first hematopoietic wave
in the YS (pMP/early EMP) using multiple models (Table 1).
In this context, a caveat of the Csf1r-Mer-iCre-Mer and Cx3cr1-
CreER based systems is that they only label myeloid progeny
(Gomez Perdiguero et al., 2015; Hoeffel et al., 2015; Hagemeyer
et al., 2016). In contrast, Tie2-Mer-iCre-Mer, Kit-Mer-Cre-Mer,
Runx1-Mer-Cre-Mer, and Cdh5-CreERT2 provide less restricted
marking. Distinguishing progeny from late-EMP (wave 2) and
HSC (wave 3) is still challenging, as illustrated in Table 1
(Samokhvalov et al., 2007; Ginhoux et al., 2010; Hoeffel et al.,
2012, 2015; Gentek et al., 2018a).

HSC-INDEPENDENT HEMATOPOIETIC
CELLS CONTRIBUTE TO THE ADULT
HEMATOPOIETIC SYSTEM

In the adult hematopoietic system, several hematopoietic
populations have been shown to consist of cells with an HSC-
independent embryonic origin (Figure 1B). This has been best
studied for tissue-resident macrophages (TRM), which were
traditionally thought to be continuously replenished by BM
HSC-derived monocytes. However, this view was challenged
by the discovery of radiation-resistant and self-repopulating
Langerhans cells (Merad et al., 2002), microglia (Ajami et al.,
2007; Ginhoux et al., 2010), and alveolar macrophages (Guilliams
et al., 2013; Hashimoto et al., 2013; Jakubzick et al., 2013) in
BM transplantation and parabiosis studies. Subsequent lineage

tracing studies have convincingly demonstrated that microglia
are the progeny of myeloid cells produced during the first wave
of hematopoiesis. Csf1r-Mer-iCre-Mer, Cx3cr1-CreER, Runx1-
Mer-Cre-Mer, and Kit-Mer-Cre-Mer lineage tracing models
all support the pMP/early EMP origin of microglia (Gomez
Perdiguero et al., 2015; Hoeffel et al., 2015; Sheng et al., 2015;
Hagemeyer et al., 2016). This has been further strengthened by
the analysis of KitL and c-Myb KO models in which the number
of late-EMP and HSC (waves 2 and 3) is drastically decreased,
while the microglia population remains unaffected (Ding et al.,
2012; Schulz et al., 2012; Azzoni et al., 2018).

It is now widely accepted that TRM populations do not have
a unified common origin. Some tissues retain and maintain
YS-derived cells while in others they are replaced or co-exist
with BM-HSC-derived cells (for review Ginhoux and Guilliams,
2016; Mass, 2018; Wittamer and Bertrand, 2020). Below, we
highlight recent findings concerning the persistence of YS-
derived embryonic hematopoietic cells in adults.

HSC-Independent Origin of Adult TRM
Alveolar macrophages (AM) and interstitial macrophages (IM)
are two major subsets of lung TRM (Lehnert et al., 1985;
Liegeois et al., 2018). Around E10.5, YS pMPs/early EMPs
(Tan and Krasnow, 2016) seed in the primordial lung buds.
Parabiosis, adoptive transfer, and lineage tracing experiments
have shown that a subset of pMP/early EMP-derived IM (Hoeffel
et al., 2012, 2015; Guilliams et al., 2013; Gomez Perdiguero
et al., 2015; Tan and Krasnow, 2016; Liu et al., 2019) and
AM (van de Laar et al., 2016; Li et al., 2020) persist into
adulthood. The functional significance of these sub-populations,
if any, is currently unknown. However, it has been shown
that FL monocyte-derived TRM possess enhanced mitochondrial
respiratory and glycolytic capacity (Li et al., 2020) versus their
HSC-independent counterparts.

Adipose tissue macrophages (ATM), are the most abundant
immune cells in adipose tissues and play a prominent role
in regulating inflammation and insulin sensitivity (Russo and
Lumeng, 2018). ATM, which can proliferate and self-renew,
are partially derived from embryonic HSC-independent cells
(E9.0 pulsed Cx3Cr1-CreER) (Hassnain Waqas et al., 2017;
Waqas et al., 2017). Further studies using the Ms4a3-Cre fate-
mapping model, which traces BM-HSC monocyte-derived cells
(Jaitin et al., 2019; Liu et al., 2019), demonstrated that half
of the white adipose tissue ATM is Ms4a3 positive under
normal physiological conditions. Interestingly, a high-fat diet
increases the proportion of HSC-derived monocytes within ATM
population (Jaitin et al., 2019).

The Ms4a3-Cre fate-mapping model has also revealed that
adult renal macrophages (RM) are of mixed origin (Schulz
et al., 2012; Epelman et al., 2014; Gomez Perdiguero et al.,
2015; Hagemeyer et al., 2016; Mass et al., 2016; Liu et al.,
2019; Munro et al., 2019). Furthermore, YS-derived RM (E9.5
pulsed Cx3cr1-CreER) are more proliferative than their HSC-
derived counterpart and their contribution to the kidney TRM
population expands with age (Ide et al., 2020).

Osteoclasts are multinucleated myeloid cells that resorb bone
tissue and are critical for the development, repair, and remodeling
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FIGURE 1 | The hematopoietic system is established in developmental waves that differentially contribute to embryonic organogenesis and the adult hematopoietic
system. (A) Schematic representing the timing and embryonic sites of hematopoietic activity during mouse development. The three waves of hematopoiesis are
represented in Blue (wave 1: primitive erythrocytes, megakaryocytes, macrophages and Early EMP), Orange (wave 2: Late EMP and LMP) and Green (wave 3:
HSPC). Wave 1 is known as the primitive wave while waves 2 and 3 constitute the definitive waves of hematopoiesis. Waves 1 and 2 which do not generate HSCs
originate in the Yolk Sac while wave 3, which generates the HSPCs, is initiated in the AGM region of the embryo proper. Cells from both waves 2 and 3 can colonize
the fetal liver where they can mature and expand before moving to their final destination. (B) (Left) HSC-independent macrophages which originate from the first two
hematopoietic waves have been shown to play important roles during embryonic development of several tissues and organs. (Right) In addition to the wave 3
(Green) HSC-derived hematopoietic cells, the HSC-independent hematopoietic cells generated during wave 1 (Blue) and 2 (Orange) persist, to varying degrees, in
adult tissues and organs. Waves that contribute most of the hematopoietic cells are depicted in bold and waves for which the contribution increases overtime are
circled. Blue: hematopoietic wave 1 (primitive), Orange: hematopoietic wave 2 (Late-EMP/LMP), Green: hematopoietic wave 3 (HSC). E, embryonic day; Mϕ,
macrophage; HSC, hematopoietic stem cell; EMP, erythroid–myeloid progenitor; LMP, lymphoid–myeloid progenitor; HSPC, hematopoietic stem and progenitor cell;
P-Sp, para-aortic splanchnopleura; AGM, aorta-gonad-mesonephros.
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of the skeleton (Udagawa et al., 1990; Takahashi et al., 1994).
The HSC-independent origin of osteoclast was first suggested
by ex vivo co-culture experiments (Thesingh, 1986) and has
been recently confirmed in vivo using Csf1r-Mer-iCre-Mer and
Cx3cr1-CreER models (Jacome-Galarza et al., 2019; Yahara et al.,
2020). Early/late EMP-derived osteoclasts not only persist but
also expand in the adult BM (Yahara et al., 2020). Furthermore,
a subpopulation of early/late EMP-derived osteoclasts was found
to reside in the spleen. Interestingly, this spleen population can
fuse with BM-derived monocytes creating long-lived osteoclast
syncytia with a mixed origin (Jacome-Galarza et al., 2019; Yahara
et al., 2020).

Based on CD206 and MHCII expression, three testis
subpopulations of TRM can be distinguished. These populations
possess different levels of phagocytic capacity (Lokka et al., 2020).
Tracing (E8.5 pulsed Csf1r-Mer-iCre-Mer, E13.5 pulsed Cx3cr1-
CreER) and KO (Ccr2, Nur77, Plvap) studies have shown that
all three waves of hematopoiesis contribute to adult testis TRM.
Strikingly, antibody-based macrophage depletion experiments
have demonstrated that adult BM-derived cells play no part in
testis TRM maintenance (Lokka et al., 2020).

Finally characterization of Csf1 KOs, the Csf1r-EGFP
constitutive tracing model, and E8.5 pulse-labeled Csf1r-Mer-
iCre-Mer mice point to an HSC-independent origin for part of
the TRM in adult cochlea (Kishimoto et al., 2019), ovaries (Jokela
et al., 2020), and mammary glands (Gouon-Evans et al., 2000;
Jappinen et al., 2019; Stewart et al., 2019).

Beyond Tissue Resident-Macrophages:
Mast- and Lymphoid-Cells
Mast cells (MC) can be classified into two groups. Connective
tissue MC (CTMC) populate the skin, tongue, trachea, esophagus,
adipose tissues, and peritoneal- and pleural cavities while
mucosal MC (MMC) are found in the gut and respiratory
mucosa. The exclusive BM HSC-derived (van Furth and Cohn,
1968) origin of MC was first challenged by transplantation assays
that showed BM only minimally contributes to MC repopulation
in MC-depleted hosts (Kitamura et al., 1977, 1978). Subsequent
fate-mapping studies using Csf1r-Mer-iCre-Mer and Runx1-
Mer-Cre-Mer suggested that the majority of MMC are derived
from HSC, whereas CTMC are largely derived from the HSC-
independent EMP (Li Z. et al., 2018). Interestingly, EMP-derived
and HSC-derived MC have distinct transcriptional profiles
suggesting distinct biological functions (Gentek et al., 2018a; Li Z.
et al., 2018). If the CTMCs derived from HSC-independent cells
can persist in significant numbers in the adult is unclear. Csf1r-
Mer-iCre-Mer and Runx1-Mer-Cre-Mer fate-mapping studies
suggest that they can, while Cdh5-CreERT2 based lineage tracing
suggests a mostly fetal HSC origin of adult CTMC (Gentek et al.,
2018a). These contradictory findings highlight that data from
fate-mapping models should be interpreted with caution and that
currently, no model can definitively distinguish the progeny of
late-EMP from fetal HSC.

Finally, YS-derived lymphoid cells have also been found to
persist into adulthood. Early B and T-cells [B1a (Yoshimoto
et al., 2011; Kobayashi et al., 2014) and γδ T (Boiers et al., 2013;
Gentek et al., 2018b) cells], a primary source of innate immunity

in early embryo development (Yoshimoto et al., 2012), persist
into adulthood and remain functionally distinct from their HSC-
derived counterparts. The ontogeny and contribution of these
YS-derived lymphocytes has been reviewed previously (Yamane,
2018; Ghosn et al., 2019). Finally, the existence of EMP-derived
NK cells, possessing a potent degranulation response, has been
reported recently (Dege et al., 2020). This is particularly striking
as NK cells are considered to be of lymphoid origin. However,
it is unclear whether these EMP-derived NK cells are part of
the myeloid lineage or if these findings have revealed lymphoid
potential in EMP. Similarly, it is not clear to what extent EMP-
derived NK cells persist into adulthood (Sun et al., 2011; Wu et al.,
2014; Corat et al., 2017; Schlums et al., 2017).

HSC-INDEPENDENT MACROPHAGES
PARTICIPATE IN EMBRYONIC
ORGANOGENESIS

The role of macrophages in tissue remodeling is an exciting
field of ongoing research (Hoeffel and Ginhoux, 2018; Wittamer
and Bertrand, 2020). The discovery of adult YS-derived TRM
populations with an M2-like non-inflammatory phenotype,
associated with wound healing and tissue repair, hints at potential
roles in embryonic organogenesis (Takahashi et al., 1998; Rae
et al., 2007; Pucci et al., 2009; Fantin et al., 2010; DeFalco et al.,
2014; Italiani and Boraschi, 2014; Munro et al., 2019; Shigeta
et al., 2019). However, identifying unique and specific roles of
HSC-independent cells is complicated by the fact that embryonic
organ development spans across all hematopoietic waves. Below
we highlight the instances where specific roles for HSC-
independent macrophages have been identified (Figure 1B).

HSC-Independent Embryonic
Macrophages Guide Vascular Network
Organization in Developing Organs
Vascular networks are established by tip- and stalk- endothelial
cells. Endothelial tip-cells, guided by vascular endothelial growth
factor (VEGF) gradients, drive the direction of the vessel while
the endothelial stalk-cells follow and establish the vessel lumen
(Herbert and Stainier, 2011). During embryonic organogenesis,
macrophages have been shown to play an essential role in
organizing endothelial networks. A role for HSC-independent
macrophages in blood vessel anastomosis was first described in
detail in the mouse embryonic hindbrain where it is entirely
dependent on pMP/early EMP-derived macrophages (Fantin
et al., 2010; Rymo et al., 2011). These macrophages invade
the brain in a CSF1-dependent manner. Subsequently, upon
brain vascularization, the macrophages closely associate with
tip-endothelial cells. Macrophage depletion in the brain [Pu.1
(Scott et al., 1994; McKercher et al., 1996) and Csf1 KO
(Wiktor-Jedrzejczak et al., 1990; Cecchini et al., 1994)], but
not specific depletion of FL-derived macrophages (Lysm-Cre-
mediated diphtheria toxin) (Clausen et al., 1999), significantly
reduces the number of vessel intersections and thereby limits the
overall complexity of the brain vascular network (Fantin et al.,
2010; Rymo et al., 2011).
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Hematopoietic stem cells-independent macrophages also play
a role in kidney and testis vascular network formation. In mouse
embryos, the mesonephros (a temporary kidney structure) and
the gonads (which will give rise to the testis in males) are
established near the extending nephric ducts around E9. Further
extension of the nephric duct results in the generation of uretic
buds and the metanephros (precursor to the adult kidneys)
around E10-E11.5 (Takasato and Little, 2015). Proliferating
primitive pMP/early EMP-derived macrophages (E7.5 pulsed
Csf1r-Mer-iCre-Mer) are first detected in the gonadal region
around E10.5 (DeFalco et al., 2014). By E11.5-E13.5, these
macrophages closely associate with and engulf EC of the
mesonephros vascular plexus and testis vasculature. Depletion
of fetal macrophages (Cx3cr1-Cre-mediated diphtheria toxin)
results in an enlarged mesonephros vascular plexus, reduced
migration of EC into the testis, and impaired development
of the coelomic artery. Blood vessels start entering the
metanephros between E11.5-E12, and YS-derived macrophages
are consistently found perivascular at developing vascular fronts
(Rae et al., 2007; Hoeffel et al., 2015; Munro et al., 2019).
Analysis of macrophage depleted E12.5 kidney explants (anti-
CSF1R depletion) showed increased numbers of unconnected
endothelial structures and a reduction in vascular network size,
consistent with a role for macrophages in vessel anastomosis.

The developing heart harbors macrophages derived from
both the HSC-independent and HSC-dependent hematopoietic
waves (Ccr2-GFP, Cx3cr1-GFP) (Leid et al., 2016). HSC-
independent macrophages (E7.5 pulsed Rosa26-tdCsf1r-MerCre)
appear in the heart around E12.5 and predominantly populate
the myocardium where they accumulate near perfused coronary
vessels. Genetic depletion of macrophages (Csf1op/op) results
in retarded primitive coronary plexus development. However,
specific depletion of HSC-derived macrophages (Ccr2 KO) does
not affect primitive coronary plexus development, indicating
that HSC-independent macrophages are responsible for the
modulation of the myocardial vascular network.

Finally, recent RNA-seq of a human Hofbauer cells (Zulu
et al., 2019), a fetus-derived macrophage population found in the
placenta, suggests that they may play a role in angiogenesis and
remodeling (Thomas et al., 2021). Although Hofbauer cells have
also been identified in mice (Takahashi et al., 1991), their role has
not yet been investigated in vivo.

It is tempting to postulate a generalized role for HSC-
independent macrophages in the establishment of vascular
networks during embryonic organogenesis. In support of this,
HSC-independent macrophages have a similar role in organizing
vascular networks in zebrafish, independently of specific organs
(Fantin et al., 2010).

HSC-Independent Macrophages Directly
Support Organogenesis
Hematopoietic stem cells-independent macrophages have also
been directly implicated in embryonic organ development.
The central nervous system is arguably one of the best-
studied systems in this context, with YS-derived microglia
playing a role in multiple perinatal brain developmental
events (Li and Barres, 2018; Low and Ginhoux, 2018).

Around E14.5, microglia accumulate near developing
axonal tracts and their genetic (Pu.1 KO)/antibody-based
depletion (anti-CSF1R) or their inappropriate activation
(E13.5 lipopolysaccharide maternal immune activation),
affects the development of interneuronal connections and
dopaminergic axon outgrowth (Squarzoni et al., 2014). Similarly,
in the peripheral nervous system, macrophages/microglia
are found in close contact with developing sensory neurons
in dorsal root ganglia from E11. Genetic (Pu.1 KO) or
antibody-based depletion (anti-CSF1R) of these macrophages
alters the developmental trajectory of the sensory neurons
(Angelim et al., 2018).

During gonad development, macrophages associate with
and engulf mislocated germ (E10.5–E11.5) and Sertoli (E12.5)
cells, and their absence (Cx3cr1-Cre/diphtheria toxin) results
in irregularly branched and shortened testis cords (DeFalco
et al., 2014). Furthermore, depletion of macrophages during
embryogenesis (Csf1op/op, anti-CSF1R depletion) but not
postnatally (Ccr2 KO, anti-CSF1 depletion at birth) results
in impaired spermatogenesis after birth (Lokka et al., 2020).
Similar observations have been made in kidney development
where the clearance of rostral nephrogenic cells and uretic
bud formation are delayed in the absence of YS-macrophages
(Cx3cr1-Cre/diphtheria toxin) (Munro et al., 2019). These
results suggest that embryonic macrophages are participating in
gonad/testis and kidney development.

Yolk sac-derived osteoclasts are essential for normal skeletal
development in the embryo and their absence (Csf1r KO
model and Csf1-Cre-mediated Tnfrsf11a KO) disrupts tooth
eruption, skull formation, long bone formation, and their
timely hematopoietic colonization (Yoshida et al., 1990;
Dougall et al., 1999; Dai et al., 2002; Jacome-Galarza et al.,
2019). This phenotype is not observed when HSC-derived
macrophages are deleted (Flt3-Cre-mediated and Csf1r KO)
(Jacome-Galarza et al., 2019).

Finally, heart development also depends on HSC-independent
macrophages which, interestingly, originate locally from HE cells
populating the endocardium (Nakano et al., 2013; Yzaguirre
and Speck, 2016; Shigeta et al., 2019). An important phase
in heart development is the establishment and remodeling of
the heart valves which starts around E9.5 and concludes after
birth. Specific depletion of endocardial macrophages (Nfatc-Cre-
mediatedCsf1r KO) demonstrated that they are essential for heart
valve development and that macrophages of other sources cannot
compensate for their loss (Shigeta et al., 2019).

HSC-Independent Macrophages Support
HSC Formation
Arguably the most striking function of HSC-independent
macrophages is that they can affect HSC ontogeny. This
has been studied in detail in zebrafish. HSCs generated
in the dorsal aorta of zebrafish enter the circulation via
the postcardinal vein (PCV) (Bertrand et al., 2010; Kissa
and Herbomel, 2010; Lam et al., 2010). This requires
newly formed HSC to traverse the mesenchyme separating
the two vessels. Primitive macrophages accumulate in this
subaortic mesenchyme and, via metalloproteinases mediated
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extracellular matrix degradation, create tracks for the HSC to
enter the subaortic mesenchyme. These primitive macrophages
then join the PCV from where they migrate to the zebrafish
FL equivalent, known as the caudal hematopoietic tissue
(CHT; Travnickova et al., 2015). Once the HSC reaches the
CHT, a specific set of primitive VCAM+ macrophages (usher
macrophages) interact with and “capture” passing HSPC and
guide them into the CHT (Li D. et al., 2018).

In mice, HSC-independent macrophages also play an
important role in HSC ontogeny. At E10.5, HSC-independent
macrophages are found in close association with EC and IAHC
in the AGM, where they possibly participate in moving KIT+
IAHC cells towards the aortic lumen (Mariani et al., 2019). The
CXCL3 chemokine (expressed amongst others by HE and IAHC)
is important for the macrophage accumulation in the AGM
(Mariani et al., 2019). The deletion of its receptor, Cxcr3, results
in increased numbers of macrophages in the YS and reduced
numbers in the AGM. Reduction of the number of macrophages
in the AGM, either by genetic (Cxcr3 KO) or chemical
(clodronate and CSF1R inhibitor BLZ945) depletion, negatively
affects HSC generation in the AGM (Mariani et al., 2019).
Furthermore, both direct and indirect (transwell) co-culture
experiments of AGM-derived aortic endothelial cells (including
HE) with aortic macrophages result in an increase of the
hematopoietic colony-forming capacity of the endothelial cells
(Mariani et al., 2019). These results indicate an essential role for
macrophage secreted factors in AGM EHT. RNA-seq of the aortic
macrophages revealed that despite having an immune phenotype
associated with anti-inflammatory or M2 type phenotype, they
have a distinct pro-inflammatory transcriptome (Mariani et al.,
2019). Currently, it is unclear if these macrophages promote
emergence of all, or only subsets, of HSC.

CONCLUDING REMARKS

In the last decade, it has become clear that HSC-independent
hematopoietic cells have previously unanticipated roles in both
embryos and adults. They have been found to participate in
organogenesis and persist in adults as distinct hematopoietic
populations. There are however still many open questions about
their exact role, origin, and contributions. In this context,
the development of more precise and efficient genetic tracing
models would be beneficial. Specifically, models that can
efficiently differentiate wave 2 (late-EMP and LMP) from wave
3 (HSC) are needed.

It is also essential to acquire more detailed knowledge of
the different hematopoietic waves, both mechanistically and in
terms of their exact sites of origin. Indeed, the observation
that heart-specific HE can give rise to a specialized population
of macrophages, raises the question whether other specialized

hematopoietic cells are produced in a site or organ-specific way.
Both in the AGM and the YS, multiple sites of hematopoietic
emergence have been described (Muller et al., 1994; Medvinsky
and Dzierzak, 1996; de Bruijn et al., 2000; Li et al., 2012; Frame
et al., 2016; Kasaai et al., 2017). Closer investigation of these
known sites as well as the identification of new sites could
reveal the existence of new, functionally unique, hematopoietic
populations. Furthermore, understanding if and how the distinct
hematopoietic cells generated by the different waves interact to
optimize blood production is equally fascinating. Altogether such
knowledge could provide cues to develop better strategies for
in vitro generation of HSCs and/or specific blood lineages from
embryonic- and induced pluripotent stem cells (ES and IPSC).
IPSC generated from different cellular sources may be inherently
primed towards specific hematopoietic lineages. Additionally,
it may be beneficial to incorporate mature hematopoietic cells
into in vitro blood production protocols. Along these lines,
it has been recently reported that macrophages can support
the in vitro production of mature enucleated erythroid cells
(Lopez-Yrigoyen et al., 2019).

Finally, findings in animal model systems are starting to
be confirmed in humans. Macrophages have been found to
accumulate in the human AGM at the time of HSC formation
(Travnickova et al., 2015), and single-cell sequencing indicates
that human microglia are also derived from HSC-independent
hematopoietic waves (Bian et al., 2020). In conclusion, it is now
well established that HSC-independent hematopoiesis is essential
for embryonic organogenesis and its progeny can, and does,
persist after birth. This has opened up a new and fascinating field
of hematopoietic research.
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