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Abstract
Constitutive activation of the Rearranged during Transfection (RET) proto-oncogene leads

to the development of MEN2A medullary thyroid cancer (MTC). The relatively clear geno-

type/phenotype relationship seen with RET mutations and the development of MEN2A is

unusual in the fact that a single gene activity can drive the progression towards metastatic

disease. Despite knowing the oncogene responsible for MEN2A, MTC, like most tumors of

neural crest origin, remains largely resistant to chemotherapy. Constitutive activation of

RET in a SK-N-MC cell line model reduces cell sensitivity to chemotherapy. In an attempt to

identify components of the machinery responsible for the observed RET induced chemore-

sistance, we performed a proteomic screen of histones and associated proteins in cells with

a constitutively active RET signaling pathway. The proteomic approach identified DNA-

PKcs, a DNA damage response protein, as a target of the RET signaling pathway. Active

DNA-PKcs, which is phosphorylated at site serine 2056 and localized to chromatin, was ele-

vated within our model. Treatment with the RET inhibitor RPI-1 significantly reduced s2056

phosphorylation in RET cells as well as in a human medullary thyroid cancer cell line. Addi-

tionally, inhibition of DNA-PKcs activity diminished the chemoresistance observed in both

cell lines. Importantly, we show that activated DNA-PKcs is elevated in medullary thyroid

tumor samples and that expression correlates with expression of RET in thyroid tumors.

These results highlight one mechanism by which RET signaling likely primes cells for rapid

response to DNA damage and suggests DNA-PKcs as an additional target in MTC.

Introduction
Medullary thyroid carcinoma (MTC) arises from neural crest-derived parafollicular C-cells lo-
cated in the basal layer of thyroid follicles and accounts for 5–10% of thyroid cancers. 20–30%
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of MTC are a hereditary form known as multiple endocrine neoplasia type 2A or B (MEN2A,
2B) and familial medullary carcinoma (FMTC) [1, 2]. Total thyroidectomy and lymph node
dissection is the curative treatment for MTC. However, advanced metastatic MTC is inoperable
with a 5-yr. survival rate less than 28% (American Cancer Society, 2010). Additional investiga-
tion into the cellular mechanisms driving MTC chemoresistance is warranted.

98% of MEN2A cases are caused by germline mutations in the RET (REarranged during
Transfection) proto-oncogene that encodes for a receptor tyrosine kinase, which exists in one
of two alternatively spliced variants, RET 9 or RET 51 [2,3]. Although the two variants differ
by the addition of either 9 or 51 residues at the C-terminal, they display similar downstream
signaling effects. Upon dimerization with its ligand, glial cell line–derived neurotrophic factor
(GDNF) family ligand (GFL), RET is activated through autophosphorylation of intracellular
tyrosine residues. Activation results in stimulation of signaling pathways involved in cell motil-
ity, proliferation, differentiation and survival via the mitogen activated protein kinase (RAS/
MAPK) and phosphoinositide 3-kinase (PI3K)/AKT pathways [4]. RET mutations found in
MEN2A are dominant gain of function mutations that allow for RET to self-dimerize and be
constitutively active [2]. Activation leads to tumorigenesis by upregulating cell division and
proliferative processes. The RET signaling program has been studied extensively and multiple
clinical trials have been carried out using receptor tyrosine kinase inhibitors or RET small mol-
ecule inhibitors to treat MEN2A. Although there is a clear genotype/phenotype relationship
seen with RET mutations and the development of MEN2A, these drugs only resulted in mar-
ginal response and advanced metastatic MEN2A remained largely resistant [5, 6]. We are inter-
ested in investigating the mechanism by which those cells executing a RET oncogenic program
increase their capacitance to absorb genotoxic stress.

Evidence suggests that changes to chromatin structure are the earliest events to occur in the
transformation of a normal cell [7]. We hypothesized that the constitutive activation of RET
drives the formation of MEN2A by altering chromatin machinery (e.g., DNA damage repair)
to favor the generation of a highly drug resistant cell population. This work set out to elucidate
responsible mechanisms.

Materials and Methods

Cell culture
SK-N-MC cells stably expressing either a RET expression construct containing the extracellular
and transmembrane domains of the EGF receptor linked to either the RET9 isoform, RET51
isoform intracellular domains or an empty vector were kindly provided by Dr. Michael Skinner
(UT Southwestern Medical Center, Dallas, TX). Unmodified SK-N-MC cells are an established
cell line obtainable from ATCC (Manassas, VA). Cells were maintained at 95% air and 5%
CO2 at 37°C and grown in MEMS medium (Life Technologies, Grand Island, NY) supple-
mented with 10% FBS (Atlanta Biologicals, Flowery Branch, GA), pen/strep, and 400 μg of
G418 (Hyclone, Logan, UT) for continued selection. Cells were routinely checked for RET ex-
pression by western blot analysis. TT cells (CLR-1803) were obtained from ATCC and main-
tained in F-12K medium with 10% FBS and pen/strep.

Nuclei isolation
TT cells were grown in 6-well plates for nuclei isolation. Cells were washed twice with ice cold
PBS, scraped and centrifuged at 3000 rpm for ten minutes. PBS was removed and pellets were
resuspended in hypotonic lysis buffer (10 mM Tris-HCL pH 7.9, 1.5 mMMgCl2, 5 mM KCl,
protease inhibitors and phosphatase inhibitors (Roche, Indianapolis, IN)) and incubated on ice
for ten minutes. Lysates were centrifuged for five minutes at 6000 rpm at 4°C. Supernatant
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containing the cytoplasmic fraction was removed and the pellets were resuspended in nuclear
extraction buffer (50 mM Tris-HCL pH 7.9, 0.5 M NaCl, 2mM EDTA, 10% sucrose, 10% glu-
cose, protease inhibitors and phosphatase inhibitors) and incubated on ice for 30 minutes with
vortexing every ten minutes. Lysates were centrifuged for 30 minutes at 14,000 rpm and the su-
pernatant containing nuclei were stored at -20°C until they were used for western blot.

Western blot
Cells were plated in 6-well culture dishes (6X105 cells/well) and allowed to adhere overnight.
Protein lysates were obtained by rinsing cells once with PBS and lysing cells with a Triton X-
100 lysis buffer (40 mM Tris pH 7.4, 120 mMNaCl, 0.5% Triton X-100, 0.3% SDS, protease in-
hibitors and phosphatase inhibitors (Roche, Indianapolis, IN). Lysates were resuspended in 2x
BME sample buffer and boiled for five minutes prior to being separated on SDS-PAGE Tris-
glycine 4–20% gradient gels (Bio-Rad, Hercules, CA). For analysis of DNA-PKcs, nuclear ly-
sates were separated on NuPage 3–8% Tris-Acetate gels (Bio-Rad). Gels were transferred onto
nitrocellulose membranes for 3 hours at 30 V (Tris-Acetate gels were transferred overnight in
the cold room at 15 V). Immunoblotting was performed using the following antibodies: RET 9,
RET (C-19) sc-167 (Santa Cruz, Dallas, TX), RET 51, RET (C-10) sc-1290 (Santa Cruz), p-RET
(Tyr 1062)-R sc-20252-R (Santa Cruz), Akt1 (C73H10) #2938 (Cell Signaling, Danvers, MA),
p-Akt (ser473) (193H12) #4058 (Cell Signaling), GAPDH (14C10) #2118S (Cell Signaling),
DNA-PKcs ab53701 (Abcam, Cambridge, MA), p-DNA-PKcs (p-S2056) ab18192 (Abcam),
Lamin B1 ab16048 (Abcam) and pERK 4370S (Cell Signaling). All HRP-conjugated secondary
antibodies were from Jackson Immuno Laboratories and used at 1:25000. For treatment with
the RET inhibitor, RPI-1 (R8907, Sigma-Aldrich) at 50 μM (RET cells) and 5 μM (TT cells)
was supplemented in the media for 24 hours prior to harvesting cells for western blot analysis.

Cell Viability Assay
To monitor the sensitivity of RET cells or TT cells to chemotherapy cell viability assays were
performed. Empty vector (EV, control) cells along with cells containing RET 9 and RET 51 iso-
forms were plated in 96-well plates (10K/well) and allowed to adhere overnight. Medium was
replaced with medium containing doxorubicin (DOX) (D1515, Sigma Aldrich, St. Louis, MO)
at 0 nM, 100 nm, 250 nM and 500nM. TT cells were also plated in 96-well plates (10K/well)
and allowed to adhere overnight before DOX was added to fresh medium at 100nM. In assays
looking at the effect of DNAPKcs inhibition, cells were treated with NU7441 inhibitor (KU-
57788, Selleckchem, Houston, TX) with or without DOX at 1.0 and 2.0 μM (1 μM for TT cells).
After 24 hours, plates with RET cells were removed from the incubator and measured for cell
viability using the CellTiter-Glo Luminescent Cell Viability Assay kit (# G7572 Promega,
Madison, WI) according to the manufacturer’s protocol. Due to the slow growth rate of TT
cells, the assays were performed 4 days after drug was applied. Luminescence was measured on
a Perkin Elmer Victor 3V 1420 Multilabel plate reader. The assay was performed in triplicate
and statistical analysis performed by standard ttests.

Histone extraction from isolated nuclei
Histones and chromatin binding proteins were isolated from EV, RET 9 and RET 51 cells by
H2SO4 extraction. Nuclei were isolated from 1X107 cells of each cell line and washed in 1X
PBS then centrifuged for five minutes at 2000 rpm. Cells were resuspended in 1 ml of hyptonic
lysis buffer (10 mM Tris-HCL pH 8.0, 1 mM KCl, 1.5 mMMgCl2, 1 mM DTT, 0.4 mM PMSF,
protease and phosphatase inhibitors). Cell lysis mix was rotated for 30 minutes at 4°C. Follow-
ing lysis, samples were centrifuged for ten minutes at 10,000 rpm and the nuclei were
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resuspended in 200 μl of 0.4N H2SO4. Samples were allowed to mix overnight at 4°C. The next
day, samples were centrifuged for ten minutes at 13, 000 rpm at 4°C and extracted histone pel-
lets were resuspended in 66 ul of 100% TCA and incubated on ice for 30 minutes. Histones
were centrifuged for ten minutes at 13,000 rpm and washed twice in ice cold 100% acetone. Pel-
lets were allowed to completely air dry before being resuspended in H20. Extraction was per-
formed in biological triplicate for mass spectrometry analysis.

Mass Spectrometry
Preparation of protein samples and analysis of data was performed as previously reported by
our laboratory and detailed in [8–10]. In short, ten μg of histones were separated on a 4–12%
Bis-Tris gradient gel (Life Technologies) and stained with Coomassie Blue (manufacturer’s
protocol, Bio-Rad) to visualize proteins. Bands were cut out of the gel and gel pieces containing
histones and nuclear associated proteins were diced into smaller pieces for in-gel trypsin digest.
Gel pieces were destained in 50% methanol, 100 mM ammonium bicarbonate, followed by re-
duction in 10 mM Tris[2-carboxyethyl] phosphine and alkylation in 50 mM iodoacetamide.
Gel slices were then dehydrated in acetonitrile, followed by addition of 100 ng porcine trypsin
(Promega) in 100 mM ammonium bicarbonate and incubation at 37°C for ~14 hours. Peptide
products were then acidified in 0.1% formic acid. Tryptic peptides were analyzed by nanoflow
LC-MS/MS with a Thermo Orbitrap Velos mass spectrometer equipped with a Waters
nanoACQUITY LC system. A total of 486 proteins were identified by a Mascot human data-
base search. Mascot results were uploaded into Scaffold 4 (version 4.00.01) for viewing the pro-
teins and peptide information. A false discovery rate of 1% was used as the cut off value. In
order to identify proteins significantly altered between our control lines and those overexpres-
sing RET 9 and 51, we used spectral counting normalized by the Normalized Spectral Abun-
dance Factor (NSAF) method described previously by Byrum S. et al. [8]. Following log
transformation of NSAF values, standard Ttests were performed to identify significant pro-
teins. A p-value of< 0.05 was the cutoff for significance.

Immunocytochemistry
EV, RET 9 and RET 51 cells were plated in 8-well chamber slides (Fisher Sci., Pittsburgh, PA)
at 5 X 104 and allowed to adhere overnight. The following day medium was removed and cells
washed once in PBS. Cells were fixed in acetone for twenty minutes at -20°C. Cells were washed
once in PBS and blocked in 5% FBS/PBS for one hour at room temperature. Following block-
ing, primary antibody was added to cells (p-DNA-PKcs (p-S2056) ab18192 (Abcam)) at 1:50
dilution and incubated overnight at 4°C. Primary antibody was removed and cells were washed
gently with PBSt 3 X 5 minutes at room temperature. Secondary antibody (Cy3-AffiniPure
donkey anti-rabbit antibody, Jackson ImmunoResearch, 711-165-152) at a 1:1000 dilution was
applied for one hour at room temperature. Cells were washed 3 X 5 minutes in PBSt and coun-
terstained with DAPI (Prolong Gold antifade, P36931, Life Technologies) then coverslipped.
Images were taken with a Zeiss AxioImager Z1 microscope and an attached Zeiss AxioCam
MRc5 camera fitted with a Cy3 filter. Ten 20X images were taken of each condition. A blind
observer recorded the total number of nuclei along with the number of positive nuclei. Data is
displayed as % positive nuclei. Standard Ttests were performed for statistical analysis.

Immunohistochemistry
Parafin-embedded formalin-fixed human thyroid tissue microarrays were purchased from US
BioMax Inc. (Rockville, MD). Staining was performed by the UAMS Pathology Core following
standard staining methods. Antibodies used were p-DNA-PKcs (p-S2056) ab18192 (Abcam),
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p-RET (Tyr 1062)-R sc-20252-R (Santa Cruz), pERK 1/2 (Thr 202/Tyr 204) sc-16982 (Santa
Cruz), pAKT (phospho S473) ab66138 (Abcam). Images were taken using a Zeiss AxioImager
Z1 microscope and an attached Zeiss AxioCamMRc5 camera. The level of staining was graded
by a blinded pathologist and scaled from 0–3 (0—no staining, 1—light, 2-moderate, 3-high).
Chi tests were performed to determine the significance of our findings. p values of� 0.05 were
considered significant.

Results
The RET signaling pathway has previously been analyzed in a modified SK-N-MC cell line that
does not naturally express the RET receptor but does contain most of the known components
of the RET signaling pathway [11–14]. This cell line was made to stably express a chimeric vec-
tor containing the EGF extracellular binding domain linked to the RET 9 isoform intracellular
signaling domain or the RET 51 intracellular signaling domain. Published data show that when
the RET signaling pathway is activated in these cells by binding of EGF present in the media,
they become resistant to doxorubicin therapy [15]. Although a chimeric and artificial signaling
molecule, this cell line, provided us with a cost effective option for identifying components of
the RET pathway that are involved in chemoresistance. GDNF, the natural RET ligand, is not
easily used in recombinant form nor is it easily added to the media in the quantities required
for a proteomic screen. In Fig 1A it is apparent that in our standard growth conditions the cy-
toplasmic domain of both isoforms of RET are phosphorylated indicating activation of the
pathway. In Fig 1B, all three cell lines were exposed to increasing concentrations of doxorubi-
cin, a common chemotherapeutic agent utilized clinically and known to cause double stranded
DNA breaks (DSB). Consistent with previous results [15], the presence of activated RET signal-
ing reduces cell death despite identical cell growth and survival rates under non-genotoxic con-
ditions (Fig 1B). These results suggest that RET signaling confers an increased capacitance to
withstand DNA damage. We next sought to investigate differences in chromatin and associated
proteins upon activation of RET signaling.

Fig 1. Increased expression of RET isoforms increases resistance to chemotherapy. A) Western blot
analysis of RET lines show expression and phosphorylation of either RET 9 or RET 51 isoforms only in
overexpressing lines and not in the control EV cells. B) RET expression causes cells to be resistant to
doxorubicin treatment (DOX). *p� 0.01, error bars = s.d.

doi:10.1371/journal.pone.0127943.g001
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As an initial approach to investigate alterations in chromatin-templated activities in RET
stimulated cells, we performed a proteomic screen on acid extractable proteins from nuclei iso-
lated from both our control and RET activated cell lines. A simple protein extraction from cells
using 0.4M sulfuric acid provides for extraction of histones as well as other basic nuclear associ-
ated proteins, e.g. HMG proteins, nucleosome binding proteins [16]. Proteins isolated from
our nuclear preps were resolved by SDS-PAGE, visualized by Coomassie-staining, and sub-
jected to in-gel trypsin digestion as previously reported in our laboratory [16–18]. Tryptic pep-
tides were analyzed with high resolution tandem mass spectrometry (Thermo Velos Orbitrap
mass spectrometer coupled to a Waters nanoACQUITY LC system) and identified with Mascot
software as previously reported [8–10]. Since we were interested in chromatin-templated activ-
ities, we first looked for differences in levels of histone posttranslational modifications (PTMs)
including acetylation and methylation. A quantitative analysis of histone PTMs in the three
cell lines did not uncover bulk changes in PTM levels (data not shown). Of note, we were un-
able to identify phosphorylation sites by this method. We next analyzed the proteomic data for
proteins, other than histones, that change nuclear levels in response to RET signaling. Using a
quantitative analysis of the proteomic data [8–10], we identified a series of chromatin-associat-
ed proteins (486 proteins in total) with altered expression (108 of 486 showing altered expres-
sion) in RET stimulated cells—one of which was DNA-PKcs. The amount of DNA-PKcs
isolated from nuclear associated protein preps was increased by ~24-fold in RET 9 and
~14-fold in RET 51 lines. Table 1 highlights proteins identified with a significant change in ex-
pression in both RET 9 and RET 51. A complete list is provided in S1 Table. Given the ability
of RET signaling to promote chemoresistance, we were particularly interested in immediately
investigating the effect DNA-PKcs was having in our model system of genotoxic stress.

The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is a 460 kDa polypep-
tide member of the PI3k family that was initially discovered to be a key component in the dou-
ble stranded DNA break repair pathway, non-homologous end-joining (NHEJ). The protein is
ubiquitously expressed in cells and localizes to sites of DSB with the Ku70/80 heterodimer [17].
Upon recruitment to chromatin, DNA-PKcs becomes activated via autophosphorylation at

Table 1. List of proteins found to be significantly altered in RET 9 and RET 51 lines compared to control lines.

Protein Name RET 9 RET 51 Fold Change
9–51

Expression Known Fxn

Nucleosome-binding protein1 9.954E-
05

3.35E-
06

13.07–16.29 Increased Modifies chromatin structure for regulation of
transcription and histone compaction

Isoform 1 of DNA-dependent protein
kinase catalytic subunit

2.396E-
05

0.006 24.14–14.04 Increased Binds chromatin and is required for NHEJ
pathway of DNA damage

Core histone macro-H2A2 0.007 0.006 6.63–6.71 Increased Histone variant of H2A, represses transcription

Zinc finger protein 22 0.11 0.0003 6.4–5.22 Increased Binds DNA to regulate transcription

U4/U6. U5 tri-snRNP-associated protein 1 0.02 0.02 8.24–6.58 Increased Binds DNA and regulates RNA splicing

High mobility group protein 0.01 0.05 0.07–0.17 Decreased Transcriptional regulator, chromatin condensation

Isoform 1 of Methyl-CpG-binding protein 3 0.001 0.001 0.18–0.18 Decreased Recruits histone deacetylases and DNA
methyltransferases

Isoform 2 of sister chromatid cohesion
PDS5

0.001 0.001 0.23–0.23 Decreased Involved in chromosome cohesion and DNA
replication

Eukaryotic translation initiation factor 4E-
binding protein 1

0.004 0.009 0.38–0.38 Decreased Represses protein translation, involved in response to
UV/IR

Isoform 1 of Nucleophosmin 0.0008 0.0006 0.49–0.53 Decreased Histone assembly, cell proliferation

Fold change �1.5 is considered increased expression and between 0.2 and 0.6 is decreased expression.

doi:10.1371/journal.pone.0127943.t001
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serine 2056 to stabilize DNA binding and promote DSB repair via phosphorylation of H2AX.
[17–19]. Previous work has demonstrated that mutation of the s2056 cluster significantly im-
pairs NHEJ activity and increases radiosensitivity [20]. In addition, chemical inhibition of
DNA-PKcs in breast and colon cancer cell lines increased chemosensitivity and reduced tumor
growth in vivo [21]. Given the increased levels of DNA-PKcs associated with chromatin in our
proteomic screen, we hypothesized that RET signaling promotes chemoresistance by inducing
phosphorylation and activation of DNA-PKcs leading to a subsequent increase in the capaci-
tance of cells to handle genotoxic stress. This hypothesis is further supported by data put forth
by Rodemann and Chen labs and their work on the EGF receptor [22, 23].

Phosphorylation of DNA-PKcs at s2056 is elevated in RET expressing
cells and can be reduced by RET inhibition
To investigate this hypothesis we analyzed the level of total DNA-PKcs and s2056 phosphory-
lated DNA-PKcs in our three cells lines (EV, RET9, RET51) grown under normal growth con-
ditions. As expected, there was no significant difference in the total levels of DNA-PKcs in
whole cell lysate preps. Given that DNA-PKcs is a ubiquitously expressed protein we did not
anticipate detecting changes in total levels, however upon probing for the activated form of
DNA-PKcs phosphorylated at s2056 which is highly localized to the nucleus, we discovered
that the levels were indeed increased in our RET expressing cell lines there-bye further con-
firming what we observed by mass spectrometry analysis (Fig 2A). Immunocytochemistry of
this phosphorylated form of DNA-PKcs demonstrated that it was indeed present at increased
levels in the nuclei of cells with activated RET signaling (Fig 2B and 2C).

After validating our mass spectrometric data we next questioned whether chemical inhibi-
tion of RET signaling would reduce phosphorylation of DNA-PKcs. Cells were grown in the

Fig 2. Phosphorylation of DNA-PKcs at s2056 is elevated in RET 9 and RET 51 cells. A) Western blot analysis shows phospho-s2056 (ps2056) (460
Kda) to be elevated in RET9 and RET 51 cell lysates. Total DNA-PKcs was used as loading control. B) Immunocytochemistry of cells plated in chamber
slides and stained for ps2056 (red) and Dapi as counterstain (blue). C) ICC revealed a significant increase in ps2056 located in the nuclei of RET 9 and RET
51 cells compared to EV. * p� 0.05, error bars = s.d.

doi:10.1371/journal.pone.0127943.g002
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presence or absence of RPI-1, a specific RET inhibitor [24]. In the absence of the chimeric on-
cogene (EV cells) or via chemical inhibition of RET activity we were able to significantly reduce
phosphorylation of DNA-PKcs at s2056 further validating DNA-PKcs as a target of the RET
signaling pathway (Fig 3).

Inhibition of DNA-PKcs partially restores the chemosensitivity of RET
expressing cells
Nu7441, a specific DNA-PKcs inhibitor developed from the wortmannin lead compound, has
100-fold specificity over other PI3 kinases and is effective in cell culture at low micromolar
concentrations [25]. We hypothesized that treatment of these cells with this inhibitor should
render cells with active RET signaling sensitive to chemotherapy. SK-N-MC cells grown in the
presence of Nu7441 proliferated at similar rates to untreated cells as demonstrated in Fig 4A.
Treatment with Nu7441 restored chemosensitivity to doxorubicin in the RET expressing cells.
As expected due to the fact that this protein is critical for DNA damage response, this com-
pound increased sensitivity of our control EV cell line to doxorubicin.

A primary target of DNA-PKcs enzymatic activity is AKT. Specifically it has been demon-
strated that DNA-PKcs phosphorylates AKT at serine 473 [26]. This phosphorylation event is
well documented as being important to cell survival [26]. Likewise, AKT is well known to be
phosphorylated in response to RET activation at serine 473. Interestingly, inhibition of
DNA-PKcs significantly reduced phosphorylation of AKT in our model system (Fig 4B) con-
firming effective inhibition of DNA-PKcs by Nu7441.

Phosphorylation of DNA-PKcs at s2056 in human medullary thyroid
cancer cells is affected by RET signaling and is important for
chemosensitivity
In order to further confirm that DNA-PKcs is involved in the RET signaling pathway and not a
phenomena unique to our screening system, our next set of experiments were moved into a
more physiologically relevant system, MTC derived human TT cells. TT cells are ideal for
studying components of the RET pathway because they harbor a MEN2A-like mutation in
RET causing the pathway to be constitutively active [27]. We verify this by showing high levels
of RET and pERK in TT cell lysates by western blot analysis (S1 Fig). Further analysis of nucle-
ar extracts in human TT cells revealed as expected that DNA-PKcs is present, active, and phos-
phorylated at s2056 (Fig 5A). Importantly, the phosphorylation of DNA-PKcs at s2056 is
blocked by inhibiting RET with the RPI-1 inhibitor (Fig 5A). Likewise, inhibition of

Fig 3. RET inhibition reduces phosphorylation of DNA-PKcs. EV, RET 9 and RET 51 cells were treated
with the RET inhibitor RPI-1 for 24 hours before cells were harvested and analyzed by western blot. RPI-1
treatment significantly reduced phosphorylation of DNA-PKcs at site s2056 according to Image J analysis.
GAPDHwas used as loading control. **p� 0.005, error bars = s.d.

doi:10.1371/journal.pone.0127943.g003
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DNA-PKcs with Nu7441 significantly increased TT cell sensitivity to doxorubicin indicated by
a decrease in TT cell viability as compared to doxorubicin alone (Fig 5B). This data indicates
that inhibition of DNA-PKcs may serve as an effective option for treatment of MTC and war-
rants further investigation.

Phosphorylated DNA-PKcs is present in human medullary thyroid
cancer
With any potential drug target in the lab it is essential to verify at the outset that the target is
present in human tumor samples. In order to validate DNA-PKcs as a potential target we ob-
tained commercially available tissue microarrays of multiple MTC samples with normal thy-
roid controls. We were blinded to the genotype and patient outcomes of these samples. Of the

Fig 4. Inhibition of DNA-PKcs reduces chemoresistance in RET 9 and RET 51 cells. EV, RET 9 and RET 51 cells were treated with the DNA-PKcs
inhibitor Nu7441 (NU) alone or with doxorubicin (DOX). EV proliferation was set at 100 and the % of EV for 9 and 51 were plotted. NU increased sensitivity to
DOX in both the RET 9 and 51 cells. *p� 0.05, **p� 0.01, error bars = s.d. B) Western blot analysis of the DNA-PKcs target gene AKT showed decreased
AKT phosphorylation with NU treatment indicating inhibition of DNA-PKcs activity.

doi:10.1371/journal.pone.0127943.g004
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MTC samples analyzed, 80% stained positive for phosphorylated RET, indicating activity of
the RET signaling pathway (Fig 6). All samples that demonstrated RET activity also stained for
phosphorylated DNA-PKcs at s2056. Notably, 0/16 control samples demonstrated expression
of the phosphorylated form of DNA-PKcs. Fig 7 demonstrates staining of several components
of the RET signaling pathway including phospho-ERK and phospho-AKT. This representative
staining reveals a similar staining pattern for all four components including DNA-PKcs in
these Stage II MTC tumor sample.

Discussion
Despite a recent emphasis on the development of targeted therapy, the vast majority of cancer
seen in the clinic is treated with genotoxic agents. As a result, chemoresistance remains the big-
gest challenge in cancer therapy. Identifying proteins that promote it is critical and could dra-
matically improve patient survival. Like most tumors with an activated RET proto-oncogene,
medullary thyroid cancer is largely resistant to standard chemotherapy and radiation regimens.
One hypothesis is that cells expressing the RET program are better equipped to process geno-
toxic stress. However, treatment of medullary thyroid cancer with RET inhibitors has shown
modest efficacy to date in clinical trials for reasons not well understood [28]. It is believed that
one of the main causes is simply that tumors are not homogenous and rely on multiple differ-
ent proteins for survival. Although RET is a major player in the development of MTC, studies
using targeted therapy have shown that it is not the only. This observation is therefore motiva-
tion to search for additional drug targets within oncogenic signaling pathways. In this study,
we identify an unknown component of the RET signaling pathway which is critically involved
in the repair of DNA damage, DNA-PKcs. Although the total amount of DNA-PKcs was not
different in whole cell extracts of our control versus the RET expressing cell lines, the phos-
phorylated form of the protein which is highly associated with chromatin and active was signif-
icantly elevated. Activation of RET raised the levels of phosphorylated s2056 DNA-PKcs while
inhibition of RET significantly reduced DNA-PKcs phosphorylation. Previous research has
demonstrated that other receptor tyrosine kinase pathways are capable of activating
DNA-PKcs, therefore; it is perhaps not surprising that our research has demonstrated this

Fig 5. Inhibition of RET reduces phosphorylation of DNA-PKcs s2056 and blocking DNA-PKcs activity increases chemosensitivity. A) TT cells were
treated with RPI-1 (5 μM) to inhibit RET for 24 hrs prior to nuclei isolation. Western blot analysis indicated that RET inhibition reduces DNA-PKcs s2056
phosphorylation. Total DNA-PKcs and Lamin B1 were used as loading controls. B) TT cells treated with Nu7441 (NU) (1 μM) to inhibit DNA-PKcs had a
greater decrease in cell viability than DOX alone. *p� 0.05, error bars = s.d.

doi:10.1371/journal.pone.0127943.g005
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phenomena to occur in the RET signaling pathway in MTC as well [29]. This finding is signifi-
cant because recent studies have highlighted the involvement of DNA-PKcs in chemoresistance
and would therefore provide one mechanism by which RET and drives resistance [20–23].
Most importantly, our data shows that inhibition of DNA-PKcs restores chemosensitivity to
our RET expressing cells. In order to demonstrate that activated DNA-PKcs is in fact a legiti-
mate drug target we validated our results in human TT cells and probed tissue microarrays of
medullary thyroid cancer for the presence of DNA-PKcs phosphorylated at s2056. We demon-
strated the presence of the target in 95% of the tumor samples and 100% of those tumors with
an active RET signaling pathway. These results suggest that DNA-PKcs would be an interesting
drug target for medullary thyroid cancer and perhaps RET expressing tumors in general [30,
31]. By targeting multiple sites along the RET pathway, we may better be able to treat advanced
MTC. Currently in the United States there are three phase I clinical trials testing DNA-PKcs in-
hibition in the treatment of advance solid tumors. (clinicaltrials.gov, 2014)

Fig 6. DNA-PKcs ps2056 is present in humanmedullary thyroid cancer and correlates with RET signaling. Immunohistochemistry analysis of tissue
microarrays containing normal and MTC samples for phospho-s2056 (ps2056) and phospho-RET (pRET). Each tissue sample was given a score of 0 (no
signal), 1 (weak), 2 (moderate), 3 (high) for ps2056 levels. Images represent a score of 3. *chi test p� 0.01 for normal vs tumor ps2056, ** p� 0.01 for
normal vs. tumor +ps2056 +RET.

doi:10.1371/journal.pone.0127943.g006
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