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Abstract
Ovarian cancer is the deadliest of all gynecologic cancers. Recent evidence demonstrates

an association between enzymatic activity altering single nucleotide polymorphisms (SNP)

with human cancer susceptibility. We sought to evaluate the association of SNPs in key oxi-

dant and antioxidant enzymes with increased risk and survival in epithelial ovarian cancer.

Individuals (n = 143) recruited were divided into controls, (n = 94): healthy volunteers, (n =

18), high-risk BRCA1/2 negative (n = 53), high-risk BRCA1/2 positive (n = 23) and ovarian

cancer cases (n = 49). DNA was subjected to TaqMan SNP genotype analysis for selected

oxidant and antioxidant enzymes. Of the seven selected SNP studied, no association with

ovarian cancer risk (Pearson Chi-square) was found. However, a catalase SNP was identi-

fied as a predictor of ovarian cancer survival by the Cox regression model. The presence of

this SNP was associated with a higher likelihood of death (hazard ratio (HR) of 3.68 (95%

confidence interval (CI): 1.149–11.836)) for ovarian cancer patients. Kaplan-Meier survival

analysis demonstrated a significant median overall survival difference (108 versus 60

months, p<0.05) for those without the catalase SNP as compared to those with the SNP.

Additionally, age at diagnosis greater than the median was found to be a significant predic-

tor of death (HR of 2.78 (95% CI: 1.022–7.578)). This study indicates a strong association

with the catalase SNP and survival of ovarian cancer patients, and thus may serve as a

prognosticator.

Introduction
Epithelial ovarian cancer (EOC) accounts for 85 to 90% of all cancers of the ovaries, fallopian
tubes and primary peritoneum; and displays various histologies such as serous, mucinous, or
endometrioid [1]. Ovarian cancer is the deadliest of all gynecologic cancers with an estimated
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22,980 new cases and 14,270 deaths expected in 2014 in the US alone [1,2]. Typically, treatment
of ovarian cancer is performed with either cytoreductive surgery (CRS) followed by platinum/
taxane combination chemotherapy or neoadjuvant chemotherapy with interval CRS [3,4].
Generally, a 50–80% complete clinical response can be achieved in patients with advanced dis-
ease. Unfortunately, most treated patients will relapse within 18 months with chemoresistant
disease [5]. While the chances of long-term patient survival are significantly increased when
the cancer is detected at its early stage, to date, there is no reliable method available for early
detection of this disease [5].

Epidemiologic studies have clearly established the role of family history as an important risk
factor for both breast and ovarian cancers [6]. Mutations in BRCA are currently utilized to eval-
uate risk for breast and ovarian cancer, however, this method is not ideal because the mutations
are so rare (1 out of 500 individuals), leading to a small overall impact on mortality rate [7].
Genomic variations between individuals have been increasingly used in the practice of medi-
cine [8–12]. A single nucleotide polymorphism (SNP) occurs because of point mutations that
are selectively maintained in populations and are distributed throughout the human genome at
an estimated overall frequency of at least one in every 1000 base pairs [13]. Non-synonymous
SNPs substitute encoded amino acids in proteins, and are more likely to alter the structure,
function, and interaction of the protein [14]. Recent evidence demonstrates an association
between enzymatic activity altering SNPs in oxidative DNA repair genes and antioxidant genes
with human cancer susceptibility [15]. Additionally, a pro-oxidant state has been implicated in
the pathogenesis of several malignancies, including ovarian cancer [16,17]. The current study
is based on the fact that certain SNPs present in key oxidants and antioxidants enzymes result
in altered enzymatic activity, as well as our previously published work delineating the role of
oxidative stress in ovarian cancer. The goal of this study was to determine whether specific
SNP in key oxidant and antioxidant enzymes are associated with the increased risk as well as
overall survival of ovarian cancer patients.

Materials and Methods

Study design
We performed a case-control study comparing female subjects with and without EOC and
determined whether there is an association with several selected SNPs in established redox
genes. Eligible women were 19 to 80 years of age and were previously recruited through the
Karmanos Cancer Institute’s Genetic Registry (KCIGR), Detroit, MI. Research activities and
method of consent were conducted with the approval of Wayne State University Institutional
Review Board (IRB#024199MP2F(5R)). Informed written consent forms were utilized and per-
mission was granted for the collection of blood samples and for access to medical records for
all subjects.

Patient Population. Recruited individuals (n = 143) were divided into controls (94),
healthy volunteers (n = 18), high-risk BRCA1/2 negative (n = 53), high-risk BRCA1/2 positive
(n = 23) and ovarian cancer cases (n = 49). Controls were selected primarily from research sub-
jects, considered high-risk for breast and ovarian cancers, without ovarian cancer that under-
went genetic screening for BRCA1/2 carrier status. Of note, the criteria used for screening
included personal history of breast and ovarian cancers, family histories of breast and ovarian
cancers, and BRCA1/2mutations. Additionally, healthy volunteers were also recruited as con-
trols from the metropolitan Detroit area with no such histories. Cases were selected based on
histopathology-confirmed primary diagnosis of EOC. All participants, except healthy volun-
teers, had previously undergone BRCA1/2 testing and the results were made available to us.
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Samples used for this study were collected from participants recruited between 1999 and
2012. DNA samples were utilized to determine the presence of polymorphisms in the genes
described in Table 1. The SNPs were chosen based on previously reported associations with
several cancers [18–26]. Of the 143 subjects, 49 (34.3%) had a primary diagnosis of ovarian
cancer while 94 (65.7%) without cancer served as controls. For the ovarian cancer cohort: 13
(26.5%) were BRCA1/2 positive as compared to 34 (69.4%) BRCA1/2 negative; 2 (4.1%) cases
were missing. The data is normally distributed with the age of enrollment ranged from 18 to 90
with a mean of 52 ± 15 and a median age of 52. The age at diagnosis ranged from 23 to 77, with
a mean of 52 ± 11 and a median age of 52. The racial distribution was 88.8% (Caucasian), 8.4%
(African-American) and 2.8% (Other). Personal and family histories of breast cancer, ovarian
cancer, other cancers, and BRCA1/2 were quantified. The frequencies of the presence of the
SNP (heterozygous plus homozygous mutant) compared to homozygous wild type were deter-
mined for each gene studied.

Purification of DNA and the TaqMan SNP Genotyping Assay for SNPs
DNA, from blood samples, was isolated by the Applied Genomics Technology Center (AGTC,
Detroit, MI). DNA was extracted with QIAamp DNAmini kit per the manufacturer’s protocol
(Qiagen, Valencia, CA) [27]. The TaqMan SNP Genotyping Assay Sets (Applied Biosystems,
Carlsbad, CA) (NCBI dbSNP genome build 37, MAF source 1000 genomes) were used to geno-
type selected SNPs described in Table 1. The AGTC performed this assay and analysis was
done utilizing the QuantStudio 12K Flex Real-Time PCR System (Applied Biosystems).

Statistical analysis
Data were analyzed using SPSS (IBM, Armonk, New York) for Mac V.22. The variables
selected for the analyses include genotypes, age at diagnosis, and age at enrolment, personal
and family histories of breast, ovarian, and BRCA1/2mutations, in addition to other malignan-
cies. Using the median age at diagnosis/enrolment as a cut point, we dichotomized the “age at
diagnosis” variable. The “race” variable was categorized as: Caucasian, African-American or
Other. We consolidated the following tumor and clinical variables into binary categorical
schemes: International Federation of Gynecology and Obstetrics (FIGO) stages into early
(IIA-IIIB) and advanced (IIIC-IV); FIGO grades (G1/2) and (G3); histology (serous and
other). For all the genes studied, the “genotype” variable was dichotomized using the following
scheme: homozygous wild type versus homozygous mutant plus heterozygous mutant. To

Table 1. Characteristics of single nucleotide polymorphisms examined for genotyping.

Gene (RS) SNP NCBI MAF Chromosomal location Known AA Switch Effect on activity

CAT (rs1001179) C-262T 0.123 11p13 Unknown Decrease

CYBA (rs4673) C242T 0.303 16q24.3 Tyr to His Increase

GPX1 (rs3448) C-1040T 0.176 3p21.31 Unknown Unknown

GSR (rs1002149) G201T 0.191 8p12 Unknown Unknown

MnSOD (rs4880) T47C 0.371 6q25.3 Ala to Val Decrease

MPO (rs2243828) T-764C 0.23 17q22 Unknown Decrease

NOS2 (rs2297518) C2087T 0.173 17q11.2 Ser to Leu Increase

AA; amino acid, Ala; alanine, CAT; catalase, CYBA; NAD(P)H oxidase subunit (NOX4), GSR; glutathione reductase, GPX; glutathione peroxidase, His;

histidine, Leu; leucine, MAF; minor allele frequency, MnSOD; manganese superoxide dismutase, MPO; myeloperoxidase, NCBI; National Center for

Biotechnology Information, NOS2; nitric oxide synthase, Ser; serine, SNP; single nucleotide polymorphism, Tyr; tyrosine, Val; valine.

doi:10.1371/journal.pone.0135739.t001
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compare cases to controls on the selected demographic, clinical, and genotypic characteristics,
we performed Pearson Chi-square analysis. The recurrence rate was determined as the percent-
age of patients that have gone into remission, but the disease has returned months or years
later, based on physical examination, radiological studies and serum CA-125 levels.

Cox regression and Kaplan-Meier analyses of variables as a predictor of overall sur-
vival. To study the impact of the SNPs on overall survival, Cox regression analyses were per-
formed using the above-listed variables and classification schemes, using the likelihood ratio
forward stepwise method. Several method simulations were performed such as: forced entry
(ENTER), forward LR (likelihood ratio), etc. The forward LR was chosen for the final analysis.
This method is a stringent model that selects the strongest predictors of the outcome to be
included in the final model. Table 2 includes the strongest predictors kept by the model as well
as variables rejected by the model. All patients received the standard of care after tumor board
discussion. Details on treatment characteristics were not available. Additionally, Kaplan-Meier
survival curves were generated for the variables selected by the model. We conducted all analy-
ses at p-value< 0.05 for statistical significance.

Results
We performed side-by-side comparison between ovarian cancer cases and controls using Pear-
son chi-square analysis. Racial distribution was statistically similar between the groups
(p>0.05). As expected, “personal or family history of ovarian cancer”, “personal or family his-
tory of other cancers” and “advanced age” were significantly different between the groups and

Table 2. Cox regression analysis for selected SNPs in key oxidants and antioxidants genes in ovarian cancer.

Variables in the Equation

95% CI for HR

Significance HR Lower Upper

Age at Diagnosis > Mean .045* 2.782* 1.022 7.578

CAT (CT+TT) .028* 3.688* 1.149 11.836

Variables Analyzed by Cox Regression but Rejected by the Model.

Score Significance

Race (Caucasian) .580 .446

Stage (III-IV) .708 .400

Grade (High) .708 .400

GSR (CT+TT) .411 .522

GPX (CT+TT) .000 .988

MnSOD (CT+TT) 1.020 .312

NOS2 (CT+TT) 2.084 .149

CYBA (CT+TT) 1.229 .268

MPO (CT+TT) .178 .673

Histology (Serous) 1.016 .314

Adjusted Hazard Ratio (HR) for the variables included in the model.

* p<0.05, degrees of freedom = 1 for all analyses. CYBA; NAD(P)H oxidase subunit (NOX4), GPX; glutathione peroxidase, GSR; glutathione reductase,

MnSOD; manganese superoxide dismutase, MPO; myeloperoxidase, NOS2; inducible nitric oxide synthase. For this analysis, several

“Method”simulations were performed such as: forced entry (ENTER), forward LR (likelihood ratio), etc. The forward LR was chosen for the final analysis.

Table 4 includes the strongest predictors kept by the model as well as those rejected by the model. The Cox regression model generated the scores in the

table. The P-values are noted in the column significance; *p<0.05, is considered statistically significant.

doi:10.1371/journal.pone.0135739.t002
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are known ovarian cancer risk factors (p<0.05, Table 3). Comparative analyses for manganese
superoxide dismutase (MnSOD, rs4880), NAD(P)H oxidase (CYBA, rs4673), glutathione per-
oxidase (GPX1, rs3448), inducible nitric oxide synthase (NOS2, rs2297518), myeloperoxidase
(MPO, rs2243828), glutathione reductase (GSR, rs1002149), and catalase (CAT, rs1001179) did
not find a significant difference between the cases and controls (Table 3). Out of the 49 ovarian
cancer cases, 38 (77.5%) were further analyzed by the Cox regression method, and 11 (22.5%)
were dropped due to missing data. The majority of the cases were serous histology, advanced
stage, and high-grade tumors (Table 4). The recurrence rate was found to be 60.5%.

The CAT SNP is a predictor of shorter survival
At the time of these analyses, there were 26 deaths (18.2%) and 117 (81.8%) subjects alive.
Among the SNPs examined, only CAT (rs1001179) was identified as a predictor of shorter sur-
vival by the Cox regression model with a hazard ratio (HR) of 3.68 (95% CI: 1.149–11.836,
p = 0.028) (Table 4A). As expected, “age at diagnosis” greater than the median (52) was found
to be a significant predictor of death with an HR of 2.78 (95% CI: 1.022–7.578, p = 0.045)
(Table 4). The variables selected for the analyses, but rejected by the model are listed in
Table 4. Kaplan-Meier (K-M) survival analysis factored by CAT genotype, which used 84.6% of
the deaths, demonstrated a statistically significant median overall survival difference (108 [95%
CI: 79–137] versus 60 [95% CI: 40–80] months, p<0.05) and a mean overall survival difference
(182 [95% CI: 75.5–288] versus 47 months [95% CI: 31–60], p<0.05) for subjects with the nor-
mal genotype as compared to the CAT SNP genotype (Fig 1).

Table 3. Comparison of cases and controls based on demographic, personal or family history of cancer, and genotypic characteristics.

Controls (%) Ovarian Cancer (%) P-value (Pearson Chi-square, 2-tailed)

Age at enrolment (n = 125) n (76) n (49) <0.001*

< Median 51 (67.1) 8 (16.3)

> Median 25 (32.9) 41 (83.7)

Race (n = 143) n (94) n (49)

Caucasian 81 (86.2) 46 (93.9)

African-American 10 (10.6) 2 (4.1)

Other 3 (3.2) 1 (2.0)

Personal / Family History of Cancer (Yes) n (94) n (49)

Breast (n = 105) 67 (71.3) 38 (77.6) .480

Ovarian (n = 81) 33 (35.1) 48 (98.0) <0.001*

BRCA1/2 (n = 23) 18 (19.1) 5 (10.2) .168

Other Cancer (n = 69) 39 (44.3) 30 (62.5) .043*

SNP (Yes)

NOS2 (n = 49) 34 (37.4) 15 (30.6) .424

CYBA (n = 92) 57 (60.6) 35 (71.4) .201

MPO (n = 56) 36 (39.1) 20 (41.7) .771

GSR (n = 36) 27 (30.3) 9 (19.6) .180

GPX (n = 61) 40 (43.5) 21 (42.9) .943

CAT (n = 49) 30 (31.9) 19 (38.8) .412

MnSOD (n = 103) 66 (72.5) 37 (75.5) .703

*p< 0.05, CAT; catalase, CYBA; NAD(P)H oxidase subunit (NOX4), GPX; glutathione peroxidase, GSR; glutathione reductase, MnSOD; manganese

superoxide dismutase, MPO; myeloperoxidase, NOS2; inducible nitric oxide synthase.

doi:10.1371/journal.pone.0135739.t003
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Discussion
A large body of evidence suggests that ovarian cancer patients have decreased levels of circulat-
ing antioxidants and higher levels of oxidative stress [16,17,28–32]. We have reported the exis-
tence of a persistent pro-oxidant state in EOC that included increased expression of key pro-
oxidant enzymes such as inducible nitric oxide synthase (iNOS), NAD(P)H oxidase, and MPO
[16,32,33]. Interestingly, the expression of MPO in EOC cells and tissues came as a surprise as
it is an oxidant-generating enzyme typically found in cells of myeloid origin [34]. We have also
determined that MPO can produce the nitrosonium cation (NO+) utilizing NO produced by
iNOS. This is important because NO+ causes s-nitrosylation of caspase-3, and inhibition of its
activity, resulting in a decrease in apoptosis [32]. This mechanism further explains the observa-
tion that EOC cells manifest significantly decreased apoptosis and increased survival
[32,33,35,36]. Interestingly, the evaluation of mutations in the various redox enzymes in the
form of SNPs is an active area of scientific research [37–45]. Genetic polymorphisms are
known to be associated with cancer susceptibility and can be determined by studying func-
tional polymorphisms in genes that control the levels of cellular reactive oxygen species and
oxidative damage, including SNPs for genes involved in carcinogen metabolism (detoxification
and/or activation), antioxidants, and DNA repair pathways [46]. For example, germline muta-
tions in BRCA1 or BRCA2 are associated with ovarian cancer at a rate of only 20–40%, suggest-
ing the presence of other unidentified mutations in other genes as an etiology [14,47,48].
Additional genetic variations, many of which have been identified in recent genome-wide asso-
ciation studies (GWAS), have been hypothesized to act as low to moderate penetrant alleles,
which contribute to ovarian cancer risk, as well as other diseases [14,49]. In support of this,
recent studies have also associated genetic polymorphisms in genes involved in suppression of
tumorigenicity as well as those involved in cell cycle with ovarian cancer [50,51].

For this study, we sought to evaluate the association of specific SNPs in key oxidant and
antioxidant enzymes with increased risk and overall survival of ovarian cancer. The analysis of
the patient population revealed that the average age at diagnosis and racial distribution of
those diagnosed with ovarian cancer were consistent with known risk factors for ovarian can-
cer, specifically, women of North American decent and those over 50 years old. Currently we
demonstrated that there is no association between the selected SNPs and risk of developing
ovarian cancer (Table 2). It is important to emphasize the fact that although the selected SNPs

Table 4. Stage, grade and pathologic characteristics of the cancer cases.

Tumor Characteristics Number (%)

Stage (n = 38)

IA-IIIB 10 (26.3)

IIIC-IV 28 (73.7)

Total 38 (100)

Grade (n = 38)

G1/2 6 (15.8)

G3 32 (84.2)

Total 38 (100)

Histology (n = 38)

Serous 34 (89.5)

Clear Cell 1 (2.6)

Endometrioid 1 (2.6)

Total 38 (100)

doi:10.1371/journal.pone.0135739.t004
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for this study were not found to be associated with ovarian cancer risk, additional change of
function SNPs for these enzymes exist and should be explored further. Of the SNPs studied
when examining survival, we found the CAT SNP (rs1001179) to be a significant predictor of
death when present in ovarian cancer patients as illustrated by the Cox regression and K-M
survival analyses (Table 3 and Fig 1). Specifically, ovarian cancer patients with the CAT SNP
died significantly sooner than those without it (Fig 1). The CAT SNP (rs1001179) is found in
the promoter region of the CAT gene, substituting allele C with T at position -262 in the 5’
region of chromosome 11 and is correlated with decreased enzyme activity level [52]. Catalase
is a very important and ubiquitous enzyme involved in the degradation of two molecules of
hydrogen peroxide (H2O2) to water and oxygen. The current findings are consistent with sev-
eral other studies, which linked this specific SNP with risk, response to adjuvant treatment and
survival of cancer patients [18,19,24,53]. Specifically, low serum CAT levels were associated
with adverse prognosis for ovarian cancer [21]. Our data provides a possible explanation for
low serum CAT levels, which may be a result of a CAT SNP that lowers enzymatic activity.
Moreover, mechanistic studies have identified H2O2, a result of oxidative stress, enhance angio-
genesis and tumor invasiveness through several pathways including: hypoxia inducible factor
1-alpha, p38 MAPK and snail [54,55]. It appears that the final common pathway culminates to
epidermal growth factor (EGF)-induced down-regulation of epithelial cadherin expression that
can be inhibited by exogenous CAT [54]. Epithelial-cadherin is a cell-cell adhesion glycopro-
tein encoded by the CDH1 gene in humans, which has been characterized as a tumor suppres-
sor [56,57]. Its loss of function is correlated with several solid tumors including ovarian and
thought to contribute to tumor progression and metastasis [58].

Fig 1. Kaplan-Meier overall survival curves for in ovarian cancer utilizing a specific catalase SNP. The
solid curve represents cases with (CC) homozygous wild-type genotype as compared to the dashed curve,
which represents cases with homozygous mutant plus heterozygous mutant (CT+TT) genotypes. The X-axis
represents patient survival in months; the Y-axis represents cumulative survival percentage. Chi-square p-
value 0<0.05 is considered statistically significant.

doi:10.1371/journal.pone.0135739.g001
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It is important to emphasize that the lack of association between the selected SNPs in this
study with ovarian cancer risk does not definitively answer this important question because addi-
tional change-of-function SNPs for these enzymes exist and should be explored further. Recent
genetic studies have linkedMPO to lung and ovarian cancers by demonstrating a striking corre-
lation between the relative risk for development of the disease and the incidence of functionally
distinctMPO polymorphisms [59]. Additionally, a SNP in NAD(P)H oxidase (rs4673) has been
associated with increased risk of ovarian cancer [60]. In breast cancer, the presence of the CAT
SNP (rs1001179), was shown to confer increased risk [24]. We have selected numerous addi-
tional SNPs based on their effect on enzyme activities or association with cancer. Several SNPs in
NOS2 have been associated with gastric, esophageal, skin and urogenital cancers [20,22]. Also,
SNPs inMnSOD, GPX1, GPX4, CAT were found to be associated with prostate cancer [24].

Other studies have found a SNP inMnSOD (rs4880) and a SNP inMPO (rs2333227) to be
associated with increased risk for ovarian cancer [34]. TheMPO SNP we have analyzed in this
study is in 100% concordance with SNP rs2333227 [61]. Thus, in addition to examining other
changes of functional SNPs, increasing the size of our cohort may be sufficient to reach statisti-
cal significance in several of the SNPs chosen for this study. The strength of our study includes
the comprehensive nature of redox genes studied and the translational aspect of our approach
by assessing simultaneously clinical and genotypic characteristics of the population. We believe
the fact that our control cohort is heterogeneous represents strength, because it includes patients
considered at high risk for BRCA1/2mutation and those without any established risk factors for
ovarian cancer, reflecting the baseline risk group (general population). Interestingly, patients
who tested negative for BRCA1/2mutations, as well as, those with family history of BRCA1/2
mutations but also tested negative for BRCA1/2 should be considered at a higher risk profile
than the general population. More importantly, to our knowledge, we are the first to report an
association between the presence of this specific CAT SNP and ovarian cancer survival. The
study has several limitations such as small sample size, the retrospective nature inherent to case-
control studies, and the geographic restriction of the population. In our patient population, the
recurrence rate was found to be 60.5%; however, the exact date of recurrence was not established
making the computation of progression-free survival (PFS) impossible. We acknowledge that
the determination of PFS would have strengthened our findings as PFS has often been used as a
primary endpoint or a surrogate to overall survival in clinical trials [62–67].

It is now evident that oxidative stress plays a major role in the pathogenesis of cancer
including ovarian cancer, however the exact mechanisms remain to be clarified. In this prelimi-
nary study we were able to show that a specific CAT SNP is associated with poor survival in
ovarian cancer patients. Further studies examining other SNPs in key oxidants and antioxidant
enzymes with higher number of patients will be needed to establish this link. SNPs in these
enzymes may serve as potential markers for ovarian cancer, which are urgently needed. Our
study indicates a strong association with the CAT SNP and survival of ovarian cancer patients,
and thus may serve as a prognosticator.
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