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Considering that traditional biological experiments are expensive and time consuming, it is
important to develop effective computational models to infer potential essential proteins. In
this manuscript, a novel collaborative filtering model-based method called CFMM was
proposed, in which, an updated protein–domain interaction (PDI) network was
constructed first by applying collaborative filtering algorithm on the original PDI
network, and then, through integrating topological features of PDI networks with
biological features of proteins, a calculative method was designed to infer potential
essential proteins based on an improved PageRank algorithm. The novelties of CFMM
lie in construction of an updated PDI network, application of the commodity-customer-
based collaborative filtering algorithm, and introduction of the calculationmethod based on
an improved PageRank algorithm, which ensured that CFMM can be applied to predict
essential proteins without relying entirely on known protein–domain associations.
Simulation results showed that CFMM can achieve reliable prediction accuracies of
92.16, 83.14, 71.37, 63.87, 55.84, and 52.43% in the top 1, 5, 10, 15, 20, and 25%
predicted candidate key proteins based on the DIP database, which are remarkably higher
than 14 competitive state-of-the-art predictive models as a whole, and in addition, CFMM
can achieve satisfactory predictive performances based on different databases with
various evaluation measurements, which further indicated that CFMM may be a useful
tool for the identification of essential proteins in the future.
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INTRODUCTION

Researches show that essential proteins are not only important for survival of organisms but also play
critical roles in the development of life processes. Hence, it is of practical significance to identify
potential essential proteins (Meng et al., 2021). With the development of biotechnologies, some
essential proteins have been identified successively by traditional biological experiments such as
single gene knockouts (Giaever et al., 2002), RNA interference (Cullen and Arndt, 2005), and so on.
However, since these traditional biological experiments are quite time consuming and expensive, it
has become a hot topic to predict essential proteins by developing computational models (Wang
et al., 2013). Up to now, a large number of computational models have been developed to detect
essential proteins based on protein–protein interaction (PPI) networks, which can be roughly
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classified into two major categories. Among them, the first
category of models focuses on adopting only topological
features of PPI networks to predict essential proteins. For
instance, based on the rule of centrality–lethality proposed
(Jeong et al., 2001), a series of models, such as DC (Degree
Centrality) (Hahn and Kern, 2005), SC (Subgraph Centrality)
(Estrada and Rodríguez-Velázquez, 2005), BC (Betweenness
Centrality) (Joy et al., 2005), EC (Eigenvector Centrality)
(Bonacich, 1987), IC (Information Centrality) (Stephenson and
Zelen, 1989), CC (Closeness Centrality) (Wuchty and Stadler,
2003), and NC (Neighbor Centrality) (J. Wang et al., 2012), have
been designed in succession for inferring essential proteins based
on topological features of PPI networks. Except for these models,
Li et al., 2011) proposed a novel model called LAC to predict
potential essential proteins based on neighborhoods of protein
nodes in PPI networks. B. Xu et al. (2019) developed a model to
detect essential proteins by applying random walks on PPI
networks. Wang et al. (2011) presented a model called SoECC
based on edge clustering coefficients to infer essential proteins.
Qin et al. (2016) designed a method called LBCC based on
characteristics of PPI networks to predict essential proteins.
However, due to the incompleteness of PPI networks, all these
first category of models cannot achieve satisfactory prediction
accuracies of potential essential proteins.

In order to overcome the incompleteness of PPI networks, in
recent years, another category of models have been proposed by
integrating topological features of PPI networks and some
biological information of proteins to infer essential proteins.
For example, Chen et al. (2017) developed a computational
model to infer essential proteins by combining PPI networks
with gene ontology and KEGG pathway. Zhang X. et al. (2018)
presented a prediction model by combing gene expression data
with PPI networks to predict essential proteins. W. Peng et al.
(2015a) proposed a prediction model called UDoNC by
integrating protein domains with PPI networks to infer
essential proteins. Jiang et al. (2015) developed a method
called IEW to detect key essentials by combining domain
interactions and topological features of PPI networks. Zhao
et al. (2019) put forward a prediction model called RWHN to
infer key proteins by integrating PPI networks with protein
domains and some other biological information. Lei et al.
(2018) put forward a prediction model named RSG by
integrating subcellular localization and GO data of proteins
with PPI networks to infer key proteins. Y. Fan et al. (2016)
proposed a novel prediction model by adopting Pearson
correlation coefficients and subcellular localization to update
the PPI network Qin et al. (2017) put forward a method for
recognizing essential proteins based on the topological
information of PPI networks and orthologous information of
proteins. Peng et al. (2012) proposed an advanced iterative
algorithm named ION for identifying key proteins based on
the topological information of PPI networks and homologous
information of proteins. Li et al. (2012) put forward a novel
prediction method called Pec through integrating the PPI
network with the gene expression of proteins to improve the
accuracy of the prediction model. Zhang et al. (2013) presented a
novel calculation model named CoEWC by combining PPI

networks with the gene expression profiles of proteins to
recognize potential key proteins. Liu et al. (2020) proposed a
novel prediction model named DEP-MSB by integrating
biological features of proteins and topological features of PPI
networks. Zhao et al. (2014) put forward an advanced iterative
algorithm named POEM for detecting key proteins through
combining gene expression data of proteins and topological
properties of PPI networks to infer key proteins. Fang et al.
(2018) proposed a novel feature selection model named ESFPA
by adopting improved swarm intelligence to identify key proteins.
Liu et al. (2018) developed an advanced model named EPPSO to
recognize key proteins through utilizing improved particle swarm
optimization. Zhang W. et al. (2018) presented a computational
model called TEGS to recognize key proteins by combining
biological information of proteins and topological features of
PPI networks. S. Li et al. (2020) developed a novel prediction
model called CVIM by combining PPI networks and orthologous
information of proteins for inferring essential proteins. Z. Chen
et al. (2020) presented a novel strategy named NPRI by
combining various biological data of proteins and the
topological features of PPI networks to infer key proteins.
Although the second category of methods can greatly improve
the predictive accuracy of potential essential proteins, it remains
to be a challenging work to scientifically integrate topological
features of PPI networks and biological features of proteins to
effectively improve the accuracy of essential protein prediction.

Inspired by the above methods, in this paper, a novel
Collaborative Filtering Model-based Method (CFMM) was
proposed to predict potential essential proteins, in which, an
original protein–domain interaction (PDI) network was
constructed first, and then, considering that the number of
known interactions between domains and proteins was quite
limited, an updated PDI network was built by applying the
collaborative filtering algorithm on the original PDI network.
Next, based on the updated PDI network, some key topological
features and biological features of proteins were extracted, which
would be further integrated together to infer potential essential
proteins based on an improved PageRank algorithm. Finally, in
order to estimate the performance of CFMM, it was compared
with 14 competitive prediction models such as DC (Hahn and
Kern, 2005), SC (Estrada and Rodríguez-Velázquez, 2005), BC
(Joy et al., 2005), EC (Bonacich, 1987), IC (Stephenson and Zelen,
1989), CC (Wuchty and Stadler, 2003), NC (J. Wang et al., 2012),
ION (Peng et al., 2012), Pec (Li et al., 2012), CoEWC (Zhang
et al., 2013), POEM ((Zhao et al., 2014), TEGS (Zhang W. et al.,
2018), CVIM (S. Li et al., 2020), and NPRI (Z. Chen et al., 2020)
based on three kinds of well-known public databases. And as a
result, CFMM can achieve better prediction accuracies than all
these competing methods.

MATERIALS

In this section, in order to construct the original PPI network, we
first downloaded known PPI data from the DIP database
(Xenarios et al., 2002), the Krogan database (Krogan et al.,
2006) and the Gavin database (Gavin et al., 2006) separately.
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After removing self-interactions and repeated interactions, we
finally obtained 1,167 essential proteins, 3,926 nonessential
proteins, and 24,743 known interactions between 5,093
proteins from the DIP database, 14,317 known interactions
between 3,672 proteins from the Krogan database, and 7,669
known interactions between 1855 proteins from the Gavin
database, respectively. Moreover, we downloaded the dataset of
1,107 different domains from the Pfam database (Bateman et al.,
2004). The subcellular localization data from the
COMPARTMENTS databases (X. Peng et al., 2015b), (Binder
et al., 2014), which consists of 4,865 proteins involved in 11 kinds
of subcellular localizations, including the cytoskeleton,
mitochondrion, nucleus, peroxisome, plasma, extracellular,
endosome, vacuole, endoplasmic, cytosol, and Golgi.
Additionally, The gene expression data were provided by Tu
et al. (2005), which include 6,777 gene expressions products and
36 samples. The dataset of orthologous information of proteins
are from the InParanoid database (Östlund et al., 2010), which
includes a collection of pairwise comparisons between 100 whole
genomes. Finally, in order to verify the accuracy of CFMM, we
further downloaded a set of 1,293 essential genes from four
diverse databases such as MIPS (Mewes et al., 2004), DEG

(Zhang and Lin, 2009), SGD (Cherry et al., 1998), and SGDP
(SaccharomycesGenome Deletion Project, 2012) separately. The
detailed information of datasets downloaded from the DIP,
Krogan, and Gavin databases are shown in the following
Table 1.

3 METHOD

As illustrated in Figure 1, CFMM consists of the following three
major steps:

Step 1: First, an original PDI network will be constructed
based on known protein–domain interactions downloaded from
given public databases, and then, a recommendation matrix will
be obtained by applying the collaborative filtering algorithm on
the original PDI network.

Step 2: Next, based on known PPI data and biological
information of proteins downloaded from public databases,
key topological features and biological features of proteins
will be extracted separately, and then, an improved entropy
weight method will be applied to effectively integrate all these
features.

TABLE 1 | Detailed information of datasets downloaded from the DIP, Krogan, and Gavin databases.

database Proteins Interactions Essential proteins Gene expression

DIP 5,093 24,743 1,167 4,981
Krogan 3,672 14,317 929 3,610
Gavin 1,855 7,669 714 1,827

FIGURE 1 | Flowchart of collaborative filtering model-based method (CFMM).

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 7631533

Zhu et al. Collaborative Filtering Model-Based Method

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Step 3: Finally, based on a newly designed distribution rate
matrix, an iterative algorithm will be proposed to infer
potential essential proteins based on an improved PageRank
algorithm.

Construction of Protein–Domain Interaction
Based on known protein–domain interactions downloaded
above, we can first construct an original network PDI as
follows: for any given protein node pi and domain node
dj, if and only if there is a known interaction between
them, there is an edge between pi and dj in PDI. Then we
can further obtain an adjacency matrix AMpd as follows:
for any given protein pi and domain dj, if and only if there
is a known interaction between pi and dj, there is
AMpd(pi, dj) � 1; otherwise, there is AMpd(pi, dj) � 0.
Due to limited known PDI, obviously, AMpd is a sparse
matrix. Hence, in order to improve the density of AMpd,
we will apply the collaborative filtering algorithm on AMpd

according to the following steps:
Step 1: Applying the protein-based collaborative filtering

algorithm on PDI as follows:
First, based on AMpd and PDI, we will construct a novel co-

occurrence matrix CMPP as follows: for any two given proteins pi

and pj, there is CMPP(pi, pj) � 1, if and only if there is at least
one common domain node existing between them; otherwise,
there is CMPP(pi, pj) � 0. Hence, a similarity matrix SMPP
between protein and protein can be calculated after normalizing
CMPP as follows:

SMPP(pi, pj) �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∣∣∣∣∣N(pi) ∩ N(pj)∣∣∣∣∣���������������∣∣∣∣N(pi)∣∣∣∣ × ∣∣∣∣∣N(pj)∣∣∣∣∣√ : if i≠ j

0: Otherwise

(1)

Here,
∣∣∣∣N(pi)∣∣∣∣ denotes the number of known domains associated

to pi in PDI; in other words, it denotes the sum of elements
equaling to one in the ith row of AMpd.

∣∣∣∣∣N(pi) ∩ N(pj)∣∣∣∣∣
represents the number of known domains related to both pi

and pj simultaneously.
Based on matrices AMpd and SMPP, we can further obtain a

novel recommendation matrix RMPD as follows:

RMPD � SMPP × AMpd (2)

Next, for any given protein node pi and domain node dj in
PDI, if the interaction between pi and dj is associated already,
then for a protein node pk other than pi, it is no doubt that the
higher the similarity between pk and pi, the more possibility
that there may exist a potential association between pk and dj.
Thereafter, we can define the recommendation standard
between protein pk and dj based on the similarities
between proteins as follows:

Stdpk dj � 1
N

×∑N

i�1 RMPD(pi, dj) (3)

Here, N denotes the number of proteins in PDI. Based on the
above Eq. 3, for any given domain node dj, if there is a protein

node pk satisfying RMPD( pk, dj)> Std pk dj, then we will
further recommend the protein pk to the domain dj.
Thereafter, we will add a new association edge between pk and
dj in AMpd and obtain an update protein–domain adjacency
matrix UAMpd.

Step 2: Applying the domain-based collaborative filtering
algorithm

Similarly, we can also obtain an original adjacency matrix
AMdp and a co-occurrence matrix CMdd. Obviously, as for the
matrix AMdp, there is AMdp � AMT

pd. However, as for the
matrix CMdd, for any two given domains di and dj, there is
CMdd(di, dj) � 1, if and only if there is at least one common
protein node existing between them; otherwise, there is
CMdd(di, dj) � 0. After normalizing CMdd, we can calculate
the similarity between di and dj as follows:

SMDD(di , dj) �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∣∣∣∣∣N(di) ∩ N(dj)∣∣∣∣∣���������������
|N(di)| ×

∣∣∣∣∣N(dj)∣∣∣∣∣√ , if k≠ r

0, Otherwise

, (4)

where |N(di)| represents the number of known proteins
associated with di in PDI, and

∣∣∣∣∣N(di) ∩ N(dj)∣∣∣∣∣ represents
the number of known proteins related to di and dj
simultaneously.

We can as well define the recommended standard and
recommendation matrix as follows:

RMDP � SMDD × AMdp (5)

Stddkpj � 1
M

×∑M

i�1 RMDP(di, pj) (6)

Here, Mmeans the number of domains in PDI. In particular, if
there exists a domain node dk in the ith column of RMDP
satisfying RMDP(dk, pj)> Stddk pj, then we further
recommend the protein dk to domain pj. Thereafter, we also
add a new association edge between dk and pj in AMdp and
obtain an update association UAMdp.

Step 3: Mutual recommendation between proteins and
domains

Based on the updated matrix UAMpd and UAMdp,
theUAMpd is N ×M dimension matrix, and UAMdp is M ×
N matrix. By transposing the matrix AMdp, it is obvious that we
can construct the mutual recommendation matrix MRM as
follows:

MRM(pi , dj) �⎧⎪⎨⎪⎩ UAMpd(pi , dj) + UAMT
dp(pi , dj), otherwise

1, if UAMpd(pi , dj) � 1 and UAMT
dp(pi , dj) � 1

(7)

For instance, according to Figure 1 and the given matrix

AMpd �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 1
1 0

0 0
1 0

0 1
0
0

1
0

0 0
0
0

1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, we can obtain its corresponding

matrices CMPP, SMPP, and RMPD as follows:
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CMPP �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 1

0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

SMPP �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.5 0.71 0.5 0

0.5 0 0 0 0

0.71 0 0 1 0

0.5 0 0.71 0 0.71

0 0 0 0.71 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

RMPD �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5 1.21 0.5 0.5

0.5 0.5 0 0

0.71 1.41 0 0.71

0.5 1.21 0 0.71

0 0.71 0 0.71

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
To be specific, as illustrated in Figure 1, if tanking the domain

node d1 as an instance, then it is obvious that there are two protein
nodes p1 and p2 associated with d1 from the matrix AMpd. In
addition, according to Eq. 2, we can as well obtain the
recommended standard RMPD (p3, d1) � 0.71 > Stdp3 d1 � 0.44.
Hence, we will recommend the protein node p3 to d1. In the
same way, the protein node p4 will be recommended to d1 as
well. On the contrary, RMPD (p2, d2) � 0.5 and
RMPD (p5, d2) � 0.5 are less than the recommended
standard Stdp2 d2 � Stdp5 d2 � 1.01. So there is no need to
recommend the protein node p2 and p5 to d2. In addition,
according to a previous description, it is obvious that these novel
edges between p3 and d1, p4 and d1, p1 and d3, p3 and d4 will be
added to the original protein–domain association matrix AMpd

in the same time. Similarly, we can apply the domain-based
collaborative filtering algorithm. Thereafter, we can obtain a
recommendation protein–domain adjacency matrix based
on PDI. Finally, as shown in Figure 2. We can get the
mutual recommendation matrix MRM.

Construction of the Weighted
Protein–Protein Interaction Network
For any two given protein pi and pj, we estimate the relationship
between pi and pj by applying the Gaussian kernel interaction
profile (van Laarhoven et al., 2011) and further obtain an N ×N
dimensional weight matrix between proteins WBP based on the
mutual recommendation matrix MRM. WBP(pi , pj) represents
the relationship between protein pi and pj, and it can be defined as
follows:

WBP(pi, pj) � exp( − δp
�����IP(di) − IP(dj)�����)2 (8)

where

δp � δp′
1
N ∑N

i�1
����IP(di)‖2

(9)

Here, IP(di) and IP(dj) represents the vector at the ith and
jthcolumn of the mutual recommendation matrix MRM
separately. δp is an adjustment coefficient, which controls
kernel bandwidth based on normalizing the new bandwidth
parameter δp′ .

Calculate the Score of Multiple Features of
Protein
Previous research has indicated that with similar functions, co-
expressed and complex topologies are more likely to be essential
proteins. Inspired by them, in this paper, we combine biological
and topological features to detect potential proteins by subcellular
localizations, gene expression data, and orthologous information
and PPI networks.

It is obvious that the location information of a protein in a
cell is an important characteristic of essential proteins. First, we
analyze the 11 kinds of subcellular location relationship between
the known essential proteins, and the Figure 3 statistical
distribution of each subcellular location is shown in
Figure 4. We can find that essential proteins are not
randomly distributed in different subcellular locations, and
essential proteins appear more often in the nucleus and

FIGURE 2 | Flowchart of mutual recommendation.
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mitochondrion, which means that proteins in the nucleus and
mitochondrion are more possible to be essential proteins. What
is more, from Figure 4, there are more essential proteins in the
nucleus and mitochondrion and a few essential proteins in the
peroxisome and extracellular, which provides us with
convenience.

In order to distinguish the importance of different
subcellular locations, let Nsub means the number of all
subcellular localizations and Nsub(i) represent the number
of proteins associated with the ith subcellular localization.
Then Avesub denotes the average number of proteins
related to each subcellular localization. The score of the
ith subcellular localization Evesub(i) can be expressed as
follows:

Avesub � ∑Nsub
i�1 Nsub(i)
Nsub

(10)

Evesub(i) � Nsub(i)
Avesub

(11)

Let Sub(pk) represent the set of subcellular localizations
associated with the protein pk. Therefore, for a given protein
pk, its subcellular localization score Prosub(pk) is computed as
the sum of the scores of all subcellular locations where it
appears.

ProSub(pk) � ∑
iεSub(pk)

Evesub(i) (12)

Similar to describing subcellular scores, for any given protein pk,
let Proort(pk) mean the score of orthologous information. Hence,
we can define its feature of orthology information score for pk as
follows:

ProOrt(pk) � Ort(pk)
maxpiεPPI{Ort(pi)} (13)

We use the Pearson correlation coefficient (Priness et al., 2007)
as a similarity measure of gene expression profiles to calculate the
expression intensity of two genes.

FIGURE 3 | Statics of localization for known key proteins.

FIGURE 4 | The number of proteins in each subcellular locations based on the DIP and Krogan protein databases.
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PCC(pk, pr) � 1
n − 1

∑n
i�1
⎛⎜⎜⎜⎝Exp(pk, i) − �Exp(pk)

σ(pk) ⎞⎟⎟⎟⎠

×⎛⎜⎜⎜⎝Exp(pr, i) − �Exp(pr)
σ(pr) ⎞⎟⎟⎟⎠ (14)

Here Exp(pk, i) represents the expression level of pk at the ith

time node. �Exp( pk) is the average gene expression value of
protein pk, and σ(pk) is the standard deviation of protein pk.
Thereafter, let NG(pk) denote the set of neighbors of protein pk.
So we can compute its new functional score of protein pk as
follows:

ProExp(pk) � exp(pk)
maxpiεPPI{exp(pi)} (15)

where

exp(pk) � ∑
prεNG(pk)

PCC(pk, pr) (16)

It is a fact that essential proteins are more likely products of
complex functions (Dezso et al., 2003). In addition, it is
obvious that triangles have stable characteristics. Inspired
by this, we further utilize the major triangle topological
feature calculated by the original PPI network for obtaining
each protein topological feature score. Therefore, for a given
protein pk, we can calculate the topological feature score as
follows:

ProTri(pk) � ∑prεNG(pk)NG(pk) ∩ NG(pr)
NG(pk) (17)

Based on the above formulas for any given protein pk, we can
obtain the main topological and biological feature scores.

In order to effectively solve the problem of multifeature
integration, we apply an improved entropy weight method
(Dastbaz et al., 2018) to automatically generate the best
parameters to integrate biological features. Based on the
protein characteristics we have normalized, let
{BFi1, BFi2, ...BFiM} represent all features; then we can further
construct an N ×M dimensional matrix BF and an M × 1
dimensional matrix PM as follows:

BF � ⎡⎢⎢⎢⎢⎢⎣BF11 / BF1M

« 1 «
BFN1 / BFNM

⎤⎥⎥⎥⎥⎥⎦ (18)

PM � ⎡⎢⎢⎢⎢⎢⎣p1

«
pM

⎤⎥⎥⎥⎥⎥⎦ (19)

Next, based on our normalized biological features, we can
obtain the entropy value of each feature separately as follows:

ei � − 1
lnN

∑N

i�1 BFij.ln(BFij) (20)

Therefore, for the ith protein biological feature, we can
calculate the entropy weight of each feature by the following
formula:

wj � (1 − ei)∑M
i�1(1 − ei)

(21)

Based on the above formula, for a given protein pk , we can
further calculate its integrated biological score as follows:

proBio(pk) � ∑M

k�1 wjBFkj (22)

Finally, according to the above Eq. 18, for any given protein pk,
we can further obtain its initial score as follows.

proscore(pk) � λ × proBio(pk) + (1 − λ) × ProTri(pk) (23)

Here, λ is a proportion parameter with a value between 0
and 1.

Construction of the Prediction Model
Collaborative Filtering Model-Based
Method
According toWBP, our prediction model CFMM can apply
improved PageRank to identify potential proteins. Let
WP(pk , pr) � WBP(pk , pr)(1+max(WBP(pk , pr)))2, and for any two given

proteins pk and pr, we can define the distribution rate
possibility matrix as follows:

DRPM(pk , pr) �
⎧⎪⎪⎨⎪⎪⎩

WP(pk , pr) × proscore(pr)∑
piεNG(pk)proscore(pi) ifWP(pk , pr)≠ 0

0, Otherwise

(24)

Based on the above distribution rate matrix DRPM, let a
possibility vector proScore(t), proScore(t + 1) mean the score
vector of protein at the tth and t + 1th time separately;
therefore, we can iteratively compute the protein ranks as follows:

proScore(t + 1) � α × proScore(t) ×DRPM + (1 − α) × proScore(0)
(25)

Here the parameter α ∈ (0, 1) in order to adjust the proportion
proscore(t) and initial score proscore(0).

Based on the above descriptions, our prediction method
CFMM can be concisely described as follows.

PERFORMANCE EVALUATION

Comparison Between Collaborative
Filtering Model-Based Method and 14
Representative Methods
In order to further evaluate the performance of CFMM in
this section, two different datasets, the DIP database and the
Krogan database, are adopted to compare CFMM with 14
competitive detection models, which include DC (Hahn and
Kern, 2005), SC (Estrada and Rodríguez-Velázquez, 2005),
BC (Joy et al., 2005), EC (Bonacich, 1987), IC (Stephenson
and Zelen, 1989), CC (Wuchty and Stadler, 2003), NC
(J. Wang et al., 2012), ION (Peng et al., 2012), Pec (Li
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et al., 2012), CoEWC (Zhang et al., 2013), POEM ((Zhao
et al., 2014), TEGS (Zhang W. et al., 2018), CVIM (S. Li et al.,
2020), and NPRI (Z. Chen et al., 2020). For the purpose of
observing the accuracy of the experiment more intuitively,
we chose to use a bar graph to compare the 1, 5, 10, 15, 20,
and top 25% of each method. Figure 5 shows that the
comparison of the identifying results of different
algorithms on the DIP and Krogan database separately.
From Figure 5A, the newly put forward CFMM method
detected a larger number of essential proteins in the top
1–25% compared with 14 other competitive methods. It is
obvious that CFMM can reach the accuracy of 92.16, 83.14,
71.37, 63.87, 55.84, and 52.43% in the top 1, 5, 10, 15, 20, and
25% predicted candidate key proteins based on the DIP
database. Among the top 25% proteins predicted by the
CFMM method, there are 668 proteins correctly detected,
which indicates that the CFMM method has superior
advantages over other methods. From Figure 5B, we can
see that CFMM can reach the accuracy of 94.59, 75.54, 70.03,
65.34, 60.08, and 54.68% in the top 1, 5, 10, 15, 20, and 25%,
which are superior to all 14 advanced methods, except that in
the top 10% CFMM-predicted 257 proteins, they are a little
lower than NPRI. Therefore, we can make a conclusion that

CFMM always obtains the better prediction accuracy from
the top 1% to the top 25%.

Validated by Jackknife Methodology
Due to the jackknife methodology (Holman et al., 2009) that can
evaluate the advantages and disadvantages of the prediction
model, in this section, we will apply the jackknife method to
assess the predictive effect of our proposed mode CFMM. Figures
6, 7 show the experimental comparisons between CFMM and 14
advanced competitive methods based on the first 1,000 candidate
proteins. By observing Figure 6A, it is obvious that CFMM can
achieve better performance than the seven network topology-
based methods including DC, SC, BC, EC, IC, CC, and NC. What
is more, Figure 6B shows that the performance of CFMM is
better than the other seven methods that are based on the
combination of biological information of proteins and PPI
networks including Pec, CoEWC, POEM, ION, TEGS, CVIM,
and NPRI. From Figure 7A, we can easily conclude that the
CFMM is advanced than these centrality-based methods
including DC, IC, EC, BC, CC, SC, and NC. Although the
performance curves of CFFM and NPRI overlap partially, as
the number of candidate proteins increases to 450, the predictive
performance of CFMM will be significantly higher than that of

Algorithm CFMM

Input: original protein–domain network, original PPI network subcellular data, orthologous data, expression data, the iteration termination condition ε, and adjustment
parameter α.
Output: the final score of proteins.
Step 1: Apply the protein-based collaborative filtering algorithm by Eqs 1–3.
Step 2: Apply the domain-based collaborative filtering algorithm by Eqs 4–6.
Step 3: Calculate the weights between proteins based on the MRM based on Eqs 7–9.
Step 4: Compute the protein feature score based on Eqs 10–23.
Step 5: Establishing distribution network based on Eq. 24.
Step 6: Let t � t + 1, calculate proscore(t + 1) according to Eq 26.
Step 7: Repeat step6 until proscore(t + 1) − proscore(t)2 < ε.
Step 8: Sorting the proteins scores proscore(t + 1) through descending order.

FIGURE 5 | (A) Performances achieved by CFMM and other candidate methods under the DIP database. (B) Performances achieved by CFMM and other
candidate methods under the Krogan database.
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NPRI. Therefore, based on the above description, we can make a
conclusion that the performance of CFMM is not only superior to
the first category of methods, such as DC, SC, BC, EC, IC, CC, and
NC, but also better than these multiple biological data methods
including Pec, CoEWC, POEM, ION, TEGS, CVIM, and NPRI.

Differences Between Collaborative Filtering
Model-Based Method and Competitive
Methods
In order to further prove the accuracy of the CFMM model, we
will analyze the differences between CFMM and other models
based on the top 100 predicted proteins under the DIP database
and the Krogan database separately, and comparison results are
shown in Tables 2, 3, respectively. Here ME denotes one of the 14
competitive methods. |CFMM ∩ ME| represents the number of
essential proteins predicted by both CFMM and ME.

|CFMM −ME| denotes the number of essential proteins
recognized by the CFMM but not by ME, and |ME−CFMM|
means the number of key proteins predicted by ME but ignored
by CFMM. In addition, {CFMM −ME} represents the set of key
proteins recognized by CFMM but not by ME. {ME − CFMM}
means the set of essential proteins predicted by ME but not by
CFMM. Hence, Tables 2, 3 show the difference between the 14
competitive methods and CFMM under the DIP and Krogan
datasets separately. Figure 8 indicates that CFMM can achieve
much better predictive performance than all these competing
methods as a whole.

Validation by Receiver Operating
Characteristic Curve
The receiver operating characteristic (ROC) curve and precision recall
curve (PR) are used to scientifically prove the performance of the

FIGURE 6 | Comparison of jackknife curves of CFMM and 14 other methods under the DIP database. (A) Comparison between CFMM and DC, IC, EC, SC, BC,
CC, and NC. (B) Comparison between CFMM and Pec, CoEWC, POEM, ION, TEGS, CVIM, and NPRI.

FIGURE 7 | Comparison of jackknife curves of CFMM and 14 other methods under the Krogan database. (A) Comparison between CFMM and DC, IC, EC, SC,
BC, CC, and NC. (B) Comparison between CFMM and Pec, CoEWC, POEM, ION, TEGS, CVIM, and NPRI.
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TABLE 2 | The connection and difference between CFMM and 14 competing methods based on the top 100 ranked proteins in the DIP database.

Different methods (ME) |CFMM ∩ ME| |CFMM −ME| Percentage of key
proteins in (%){CFMM −ME}

Percentage of key
proteins in (%){ME − CFMM}

DC 6 94 88.30 42.55
IC 6 94 88.30 40.43
EC 6 94 88.30 32.98
SC 6 94 88.30 32.98
BC 5 95 88.42 41.05
CC 5 95 88.42 37.89
NC 35 65 89.23 36.92
Pec 46 54 87.04 59.26
CoEWC 47 53 84.91 54.72
POEM 56 44 84.09 65.91
ION 38 62 88.71 70.97
TEGS 58 42 80.95 64.29
CVIM 44 56 85.71 83.93
NPRI 76 24 91.67 87.50

TABLE 3 | The connection and difference between CFMM and 14 competing methods based on the top 100 ranked proteins in the Krogan database.

Different methods (ME) |CFMM ∩ ​ ME| |CFMM −ME| Percentage of key
proteins in (%){CFMM −ME}

Percentage of key
proteins in (%){ME − CFMM}

DC 17 83 84.34 42.17
IC 12 88 85.23 44.32
EC 5 95 86.32 38.95
SC 5 95 86.32 38.95
BC 8 92 85.87 40.22
CC 5 95 86.32 43.16
NC 48 52 88.46 50.00
Pec 43 57 77.19 56.14
CoEWC 41 59 77.97 52.54
POEM 45 55 85.45 58.18
ION 30 70 82.86 65.71
TEGS 58 42 80.95 52.38
CVIM 67 33 75.76 72.73
NPRI 61 39 76.92 53.85

FIGURE 8 | The X-axis represents different protein predicted methods. The Y-axis represents the proportion of essential proteins in {ME−CFMM} or {CFMM−ME}.
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prediction model. The area under the curve (AUC) is used to
evaluate the performance of the prediction method. The closer
the AUC value is to 1, the better the prediction performance of
the method. The curve can be plotted by the ratio of true
positive rate (TPR) to false positive rate (FPR) according to
different thresholds (Peng et al., 2020). Hence, we will further
utilize the ROC curves to compare CFMMwith other advanced
models. Figures 9, 10 indicate that the ROC curves and PR
curves of CFMM and other competitive models are based on
the DIP and Krogan databases separately. It is obvious that
CFMM has a higher AUC curve than other competitive
models. Although we can see that the ROC curve of CFMM
and the NPRI ROC curves overlap slightly, the AUC value of
CFMM is higher than NPRI. Finally, in order to prove the
applicability of CFMM, we will further test it in the Gavin
database and compare with other methods. The experimental
results are shown in Tables 4, 5.

The Analysis of Parameter
In this section, we discuss the effect of the two self-defined parameters
α and λ on the prediction results of CFMM.We set the parameter α to
vary from 0.1 to 0.9, then the CFMMalgorithm is ran nine times from
α � 0.1 to α � 0.9 separately. Finally, the number of true essential
proteins identified by CFMMbased on the DIP and Krogan databases
are shown inTables 6, 7 separately. Here we select from the top 1% to
the top 25% of the proteins identified by CFMM. The prediction
accuracy is based on the number of essential proteins that are truly
identified. It is obvious that the closer α value is to 1, the higher the
prediction accuracy CFMM can achieve. So, we consider that the
parameter α on all the databases is 0.9, which can achieve the best
performance. When α is set to 0.9, and λ is set to 0.65, the amount
of true essential protein is closest to its average level. Therefore, as a
result, we will set α and λ on the DIP and Krogan databases to 0.9
and 0.65 separately, while for the Gavin database, the optimum
parameters α and λ will be set to 0.9 and 0.8, respectively.

FIGURE 9 | The precision recall (PR) curves and receiver operating characteristic (ROC) curves between CFMM and other advanced methods based on the DIP
database. (A) The PR curves and the ROC curves of DC, BC, SC, NC, EC, IC, and CC. (B) The PR curves and the ROC curves of Pec, CoEWC, POEM, ION, TEGS,
CVIM, and NPRI.
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DISCUSSION

Accumulating evidence have shown that prediction of essential
proteins is important for the development of an organism in
biological process, complex disease diagnoses, and drug design.
However, the requirement of identifying key protein prediction
accuracy is not satisfied only through biological experiments and
relying on the topological characteristics of the PPI network. In
this manuscript, we constructed an original protein–domain
network by combining protein and domain associations first.
Then we formulated the prediction of potential essential proteins
as a problem of the recommendation system and obtained an
updated recommendation network through applying a novel
mutual recommendation between protein and domain to the
original association network. Next, after we integrate the
biological features, we combine with the major topological
features to obtain the initial protein score. Finally, we design a

FIGURE 10 | The PR curves and ROC curves between CFMM and other advanced methods based on the Krogan database. (A) The PR curves and the ROC
curves of DC, BC, SC, NC, EC, IC, and CC. (B) The PR curves and the ROC curves of Pec, CoEWC, POEM, ION, TEGS, CVIM, and NPRI.

TABLE 4 | The area under the curve (AUC) value of each method under the DIP
and Krogan databases.

Method AUC (DIP) AUC (Krogan)

CFMM 0.7854 0.7877
NPRI 0.7683 0.7768
CVIM 0.7559 0.7458
TEGS 0.7386 0.7287
ION 0.7522 0.7413
POEM 0.6662 0.6726
CoEWC 0.6513 0.6404
Pec 0.6329 0.6316
CC 0.6291 0.6114
IC 0.6657 0.6573
EC 0.6384 0.6167
NC 0.6879 0.6584
SC 0.6384 0.6167
BC 0.625 0.6248
DC 0.6704 0.6583
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novel distribution rate matrix and apply an iterative algorithm
based on the improved PageRank algorithm to calculate protein
scores iteratively. In addition, we apply the CFMMmethod on the
DIP database, Krogan database, and Gavin database to testify the
performance, respectively. Experiments show that CFMM can
achieve better performance than other advanced methods. In
future work, we will use multi-information fusion method to
integrate various information related to proteins and machine
learning methods to further improve the prediction performance
(Peng et al., 2017; Zhou et al., 2019).
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TABLE 5 | The number of key proteins recognized by CFMM and other methods based on the Gavin database.

Methods Top 1%
(19)

Top 5%
(93)

Top 10%
(196)

Top 15%
(279)

Top 20%
(371)

Top 25%
(464)

DC 7 36 101 158 222 264
IC 16 55 119 163 213 254
CC 11 45 93 135 180 221
BC 9 40 85 122 162 201
SC 0 17 87 130 190 240
EC 0 38 94 134 166 209
NC 11 51 123 170 213 259
CoEWC 16 69 136 190 237 275
Pec 15 69 142 193 238 285
ION 17 73 150 207 263 312
POEM 17 74 148 199 249 296
CVIM 16 80 160 219 271 322
NPRI 16 75 153 221 278 323
CFMM 19 84 162 222 280 332

TABLE 6 | Effects of the parameter α to CFMM based on the DIP database.

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Rank

Top 1% (51) 47 47 47 47 47 47 47 47 47
Top 5% (255) 206 208 207 208 209 209 210 213 212
Top 10% (510) 357 357 358 361 361 359 358 360 364
Top 15% (764) 469 473 474 476 480 483 485 485 488
Top 20% (1,019) 572 574 573 573 571 575 576 573 569
Top 25% (1,274) 650 653 657 656 658 661 665 667 668

TABLE 7 | Effects of the parameter α to CFMM based on the Krogan database.

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Rank

Top 1% (51) 36 36 36 36 36 36 35 35 35
Top 5% (255) 141 140 140 139 140 140 140 138 139
Top 10% (510) 255 255 253 254 256 254 256 256 257
Top 15% (764) 369 366 364 365 365 363 360 360 360
Top 20% (1,019) 442 443 442 444 444 443 441 441 441
Top 25% (1,274) 497 496 497 496 498 499 499 501 502
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