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Viruses have been implicated in the initiation, progression, and exacerbation of several human

autoimmune diseases. Evidence also exists that viruses can protect against autoimmune disease. Several

proposed mechanisms explain the viral effects. One mechanism is ‘‘molecular mimicry’’ which

represents a shared immunologic epitope with a microbe and the host. We consider, using a simple

mathematical model, whether and how a viral infection with molecular mimicry can be beneficial or

detrimental for autoimmune disease. Furthermore, we consider the possibility of development of a

vector therapeutic vaccine that can relieve autoimmune disease symptoms. Our findings demonstrate

that vaccine therapy success necessitates (i) appropriate immune response function, (ii) appropriate

affinities with self and non-self antigen, and (iii) a replicative vector vaccine. Moreover, the model

shows that the viral infection can cause autoimmune relapses.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The concept of autoimmunity was first predicted by Nobel
Laureate Paul Ehrlich at the start of the twentieth century: he
described it as ‘‘horror autotoxicus’’ (Janewa et al., 2004). His
experiments led him to conclude that the immune system is
normally focused on responding to foreign materials; it has an
inherent tendency to avoid attacking self tissues. Nevertheless,
when this process goes wrong, the immune system can attack self
tissues, resulting in autoimmune disease (Bell and Bird, 2005).
Autoimmune diseases, such as rheumatoid arthritis and multiple
sclerosis (MS), can create life-long disability and increased
mortality.

Even in 2008, we do not completely understand the primary
initiators or causes of many of these autoimmune diseases. No
single theory or mechanism can adequately explain all features or
pathogeneses of autoimmune diseases. The clinically wide
spectrum of autoimmune diseases is best considered as the
mosaic of autoimmunity. The many factors involved are genetic,
hormonal, immunological, and environmental (Deodhar, 1992). In
particular, virus infections have long been associated with
autoimmune diseases, whether MS, diabetes, or myocarditis
ll rights reserved.

ami).
(Fujinami, 2004; Fujinami et al., 2006; Horwitz and Sarvetnick,
1999; von Herrath and Oldstone, 1996). Several mechanisms have
been proposed to explain virus triggers of autoimmune diseases.
One mechanism is ‘‘molecular mimicry’’ (Fujinami, 2001; Fujina-
mi et al., 2006; Libbey and Fujinami, 2002), which represents a
shared immunologic epitope with a microbe and the host. For
example, molecular mimicry has been assigned a presumptive
role in the pathogenesis of several human diseases, including
insulin-dependent diabetes mellitus type-1 (IDDM), ankylosing
spondylitis, Guillain-Barre syndrome, primary biliary cirrhosis,
and MS (Fujinami, 2001; Horwitz and Sarvetnick, 1999; Janewa
et al., 2004). The immune response to the virus cross-reacts with
self because of molecular mimicry, which engenders autoimmu-
nity as follows (Fujinami et al., 2006); virus-infected-antigen
presenting cells (APCs) present viral peptides in the contexts of
MHC class I and II, respectively, to naive CD8þ T cells and CD4þ T
cells. Activation of T cells engenders IFN-g production, which
further activates APCs, leading to production of IL-12, a potent T-
cell-differentiating cytokine. Effector CD4þ T cells release proin-
flammatory cytokines such as IFN-g and IL-2, thereby stimulating
T cells to differentiate into effector T cells. Activated T cells can
also secrete IFN-g and TNF, which can engender macrophage
activation. The activated macrophages in turn release TNF, nitric
oxide, and reactive oxygen intermediates, which can kill infected
cells and uninfected cells. Dead and dying cells are then
phagocytosed by macrophages and dendritic cells (DCs), which
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can present self antigens to autoreactive CD4þ T cells. Similarly,
effector CD8þ T cells can kill infected cells via perforin and
granzyme granules. Cell debris is taken up by APCs, which can
present self antigens to autoreactive CD8þ T cells. The generation
of such cells can engender autoimmune responses with enhanced
inflammation if not modulated by regulatory T cells releasing IL-
10 and/or TGF-g. Consequently, patients can develop autoimmune
disease through virus-induced autoimmunity.

Although some viruses can modulate the development of
autoimmune disease as discussed above, interestingly, some
experimental evidence exists for experimental allergic encepha-
lomyelitis (EAE) (Barnett et al., 1996; Fujinami et al., 2006), which
is an experimental model of MS, that viruses can protect against
autoimmune disease. Possible mechanisms of protecting against
autoimmune disease are considered as ‘‘altered peptide ligand’’,
which activates regulatory cells that modulate the disease
(Barnett et al., 1996; Fujinami et al., 2006), and ‘‘activation-
induced cell death’’ (AICD) which engenders anergy or unrespon-
siveness of T cells (Fujinami, 2001). These imply that viruses
having molecular mimicry with self proteins are useful to
vaccinate against autoimmune disease. Using molecular biology
and DNA manipulation methods, it has also been possible to
express mimic proteins in adequate live vectors (Arnon and Ben-
Yedidia, 2003) and thereby design transgenic vector vaccines
(Janewa et al., 2004; Roitt et al., 1998) against autoimmune
disease. The development of vaccines has been an important
contribution of autoimmune disease therapy and public health.

Herein, we construct a simple mathematical model based on
the autoimmune disease model proposed in Iwami et al. (2007a)
and Iwami (2007). We consider a viral infection that can induce
cross-reactive immune responses with self antigen caused by
molecular mimicry. Our model suggests that the viral infection
can induce various symptoms of autoimmune disease such as
relapse. Furthermore, we propose that a form of immune response
function determines whether a viral infection can be beneficial or
detrimental. Using the model, we consider the possibility of
development of a vector vaccine that can relieve autoimmune
disease symptoms.
Immune cell
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Fig. 1. Vicious cycle of autoimmunity induced by a viral infection with molecular mimic

a lymphoid organ. Subsequently, these T cells are activated and secrete further activat

produced by plasma cells: I) attack infected cells (virus with molecular mimicry, V) and

cells (damaged cells: D) are then phagocytosed by APCs, which can present a self antigen

similarly enhanced and attack infected cells and uninfected cells.
2. Mathematical model

The breaking of tolerance or unresponsiveness to self antigens,
involving the activation of autoreactive lymphocytes, is a critical
event in the pathogenesis of autoimmune disease (von Herrath
and Oldstone, 1996). The molecular mimicry theory has become
an important paradigm to explain the triggering of autoaggressive
T lymphocytes (Anderton, 2006). Viruses and microbial agents
might possess protein structures or shapes that mimic normal
host self proteins. An immune response elicited against the
pathogen will eliminate it and will cross-react with one or more
self antigens that share determinants with the agent (von Herrath
and Oldstone, 1996). The cross-reactive immune response can
break a tolerance for self antigens and might engender auto-
immune disease. We consider a viral infection that can induce
cross-reactive immune responses with a self antigen caused by
molecular mimicry (see Fig. 1). To explore effects of the viral
infection and dynamical behavior of the vicious cycle of
autoimmunity, we propose the following mathematical model
based on the autoimmune disease model proposed in Iwami et al.
(2007a) and Iwami (2007);

T 0 ¼ gðTÞ � b̂1TI,

D0 ¼ b̂1TI � aD,

I0 ¼ f ðD;VÞ � gI,

V 0 ¼ ðk� u� b2IÞV .

Variables T , D, I, and V , respectively, signify the number of
target (uninfected) cells, damaged cells (which implies a con-
centration of self antigen), cross-reactive immune cells, and
viral agents with molecular mimicry. The immune responses
eliminate target cells and viral agents at a rate of b̂1 and b2,
respectively. We assume a ‘‘Malthusian growth rate’’ k in viral
agents, which decay at a rate u as considered in Nowak et al.
(1991). The parameters a and g represent the decay rate of
damaged and cross-reactive immune cells, respectively. The
function gðTÞ is the ‘‘target cell growth function’’. In Iwami et al.
(2007a), we consider two target cell growth functions
ntigen

Lymphoid organ

Non-self
antigen

V

Viral agent

ry: (virus-infected) APCs present a viral antigen (non-self antigen) to naive T cells at

ion signals to T cells or B cells. These activated immune cells (CTL and antibodies

uninfected cells (target cells, T) because of the molecular mimicry. Dead and dying

to autoreactive T cells. Subsequently, further cross-reactive immune responses are
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g1ðTÞ ¼ l� mT, which means a constant growth and g2ðTÞ ¼ l�
mT þ pTð1� T=LÞ which means a logistic growth. A form of this
function considerably affects the dynamics of autoimmune
disease (Iwami et al., 2007a; Iwami, 2007). However, to examine
the effect of viral infection with molecular mimicry specifi-
cally, we consider that target cells are always constant T ¼ T�

(we omit target cell dynamics). This assumption is justified by
some homeostatic ability of organs, which exactly balances the
growth of target cells with the damage. A modeling approach
of this kind is used in Nowak and May (1994). On the other hand,
the assumption is not biologically unnatural if the target cells are
abundant in the organ. We leave the inclusion of target cell
dynamics as a subject for future work. We can model the vicious
cycle in the following form:

D0 ¼ b1I � aD,

I0 ¼ f ðD;VÞ � gI,

V 0 ¼ ðk� u� b2IÞV , (1)

where b1 ¼ b̂1T�. Therein, b1 and b2, respectively, represent a
degree of affinity to self and viral antigens (non-self antigen).
A property of molecular mimicry can be described using these
parameters. The function f ðD;VÞ is the ‘‘immune response
function’’ (see Iwami et al., 2007a). In general, the proliferation
ability is saturated for a sufficiently large amount of antigens
(Borghans and de Boer, 1995; Borghans et al., 1998; De Boer and
Perelson, 1995). We consider that the proliferation of immune
response is dependent on the total number of self and viral
antigens as

f 1ðD;VÞ ¼
mðDþ VÞ

hþ Dþ V
; f 2ðD;VÞ ¼

mðDþ VÞ2

h2
þ ðDþ VÞ2

.

The forms of f 1 and f 2 can be regarded, respectively, as functional
responses of Holling types II and III. Parameters m and h,
respectively, signify the maximum proliferation rate and the
efficiency of the proliferation.
3. Results

The mechanism of immune proliferation remains unclear.
However, using mathematical and experimental models, many
theoretical immunologists study the proliferation function to
obtain better knowledge related to immune response (Borghans et
al., 1999; Wodarz and Jansen, 2001; Wodarz and Thomsen, 2005).
The function might depend on the immune cell type, genetic and
physiological factors, and so on. As described herein, we
investigate two immune response functions f 1 and f 2 which are
not biologically unnatural. The difference of the immune response
function strongly affects dynamic behaviors of model (1), as
discussed below.

3.1. Convex immune response function

We consider in the context that immune response function is
convex form f 1. Therefore, our mathematical model is the
following:

D0 ¼ b1I � aD,

I0 ¼
mðDþ VÞ

hþ Dþ V
� gI,

V 0 ¼ ðk� u� b2IÞV . (2)

We must consider two different situations for model (2): (i) k�

uo0 and (ii) k� u40. If (i) holds, then limt!1 VðtÞ ¼ 0, which
implies that the virus cannot maintain its replication in the host.
Then the system has two possible equilibria:

Eh ¼ ð0;0;0Þ; Ea ¼ ðDa; Ia;0Þ.

Equilibria Eh and Ea, respectively, represent the ‘‘healthy state’’
and the ‘‘autoimmune disease state’’. If (ii) holds, then the virus
can persist in the host and we have one more equilibrium,

Ec ¼ ðDc ; Ic ;VcÞ,

which represents the ‘‘complication state’’ (i.e., the patient
develops autoimmune disease with the viral infection). Further-
more, the number of viral agents can explode ðlimt!1 VðtÞ ¼ 1Þ

under (ii) and the dynamics of model (2) converges to some
steady state

E1 ¼ ðD1; I1;1Þ,

which represents the ‘‘infection state’’ (see Appendix C). The exact
expressions for equilibria are referred to Appendix A. Fig. 2
portrays the existence and stability conditions of these equilibria
in model (2). For detailed mathematical analysis of the equilibria,
see Appendix A.

3.1.1. Symptoms of autoimmune disease in model (2)

We consider that the number of damaged cells, such as Da or
Dc , represents the level of autoimmune disease progression.
A strong immune affinity with self antigen (large b1) engenders
the development of autoimmune disease Ea (see Fig. 2(c))
when the virus cannot establish the persistence infection
ðk� uo0Þ. Because dDa=db140, an increase of the affinity with
self antigen deteriorates autoimmune disease (which means that
autoimmune disease is worsening; so is the patient’s condition).
In other words, if we can appropriately reduce the immune
affinity with self antigen using some drugs or therapies, we can
delay autoimmune disease progression (a marked decrease of the
affinity with self antigen ðb1oahg=mÞ can engender immune
tolerance Eh).

On the other hand, when the virus can maintain its replications
ðk� u40Þ, strong immune affinities with self and viral antigen
(large b1 and b2) also engender the development of autoimmune
disease without viral replication (see Fig. 2(d)). However, if the
immune affinity with self antigen is weak, the patient develops
autoimmune disease with viral infection Ec. Because dDa=db140
and dDc=db140, a decrease of the affinity with self antigen also
reduces autoimmune disease progression. The immune tolerance
cannot occur under viral persistence (the viral infection initiates
autoimmune disease) even if we can reduce the immune affinity
with the self antigen. A decrease of the affinity with viral antigen
engenders deterioration of autoimmune disease progression
because dDc=db2o0 whenever the patient is in a complication
state. Furthermore, a decrease of the affinity with viral antigen
engenders unlimited replications of viral agents and a deteriora-
tion E1 (note that D14Da).

3.2. Sigmoid immune response function

We consider in the context that immune response function is
sigmoid form f 2. Therefore, our mathematical model is the
following:

D0 ¼ b1I � aD,

I0 ¼
mðDþ VÞ2

h2
þ ðDþ VÞ2

� gI,

V 0 ¼ ðk� u� b2IÞV . (3)

We must also consider two different situations for model (3):
(i) k� uo0 and (ii) k� u40. The virus cannot maintain its
replication in the host under (i). Then the system has three
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possible equilibria:

Eh ¼ ð0;0;0Þ; Eþa ¼ ðD
þ
a ; I
þ
a ;0Þ; E�a ¼ ðD

�
a ; I
�
a ;0Þ,

but E�a is not biologically appropriate because the equilibrium is
always unstable even if it exists (see Appendix B). The equilibria
Eh and Eþa also, respectively, represent the ‘‘healthy state’’ and the
‘‘autoimmune disease state’’. On the other hand, if the virus can
persist in the host ((ii)), then we have one more equilibrium,

E�c ¼ ðD
�
c ; I
�
c ;V
�
c Þ,

which also represents the ‘‘complication state’’. Furthermore, the
number of viral agents can explode under (ii). The dynamics of
model (3) converges to the infection state E1. The exact
expressions for the equilibria are referred from Appendix B.
Fig. 3 depicts the existence and stability conditions of these
equilibria in model (3).

If k� u40, then model (3) represents various dynamical
behaviors (see Fig. 4, which corresponds to Fig. 3(d)). The
parameter region (I) represents that Eþa is stable; the region (V)
represents that E�c is stable. In addition, Eþa and E�c are stable
simultaneously (bistability) in region (III). Therefore, the orbit
converges to Eþa or E�c according to its initial values. In parameter
region (IV), we can observe periodic behavior by Hopf bifurcation
of E�c (all orbits except E�c converge to the limit cycle). Furthermore,
the limit cycle and Eþa are stable simultaneously in region (II); the
orbit also converges to the limit cycle or Eþa according to its initial
values (see Fig. 5). However, if we choose a parameter set near
Gðb2Þ in (II), we can numerically confirm that almost all orbits
converge to Eþa because the amplitude of the periodic orbit
increases as a parameter set approaches Gðb2Þ, the orbit crosses
the stable manifold of Eþa , the periodic orbit vanishes and the orbit
converges to Eþa . This phenomenon is also observed and
particularly explained in Iwami (2007). Therefore, we can classify
the dynamical behavior of model (3) under k� u40. For detailed
mathematical analysis of the equilibria, see Appendix B.
3.2.1. Symptoms of autoimmune disease in model (3)

We also consider that the number of damaged cells, such as Dþa
or D�c, represents a level of autoimmune disease progression. A
strong immune affinity with self antigen ðb1Þ tends to develop into
autoimmune disease Eþa according to initial values (see Fig. 3(c))
when the virus cannot establish persistent infection ðk� uo0Þ.
The healthy state Eh is always stable, which implies that the
immune tolerance can occur after development of autoimmune
disease if we can remove the damaged cells and the immune
responses (simulations not shown). Furthermore, because
dDþa =db140, an appropriate decrease of the immune affinity
with self antigen can delay autoimmune disease progression
(a considerable decrease of the affinity with self antigen
ðb1o2ahg=mÞ can engender the immune tolerance Eh).

On the other hand, when the virus can maintain its replications
ðk� u40Þ, strong immune affinities with self and viral antigen
(large b1 and b2) also engender the development of autoimmune
disease without viral infection (Fig. 4(I)). However, if the immune
affinity with self antigen is weak, the patient develops auto-
immune disease with a viral infection (Fig. 4(V)). Because
dDþa =db140 and dD�c=db140, a decrease of the affinity with self
antigen also reduces autoimmune disease progression in regions
(I) and (V). A decrease of the affinity with viral antigen engenders
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deterioration of autoimmune disease progression because
dD�c=db2o0 in region (V) (a marked decrease of affinity with viral
antigen engenders unlimited viral replications). Interestingly,
because Eþa and E�c are stable simultaneously in region (III), the
symptoms of autoimmune disease depend on the patients’ states.
Furthermore, in regions (II) and (IV), the relapse of autoimmune
disease, which is a common symptom of autoimmune disease, can
occur. Actually, the symptoms of autoimmune disease also depend
on the patients’ states in (II) (patients with affinities near Gðb2Þ in
(II) tend not to represent relapse symptoms, as discussed above).
Consequently, the viral infection prevents immune tolerance and
engenders the relapse pattern of autoimmune disease.
4. Vector vaccine against autoimmune disease

Virus infection can initiate or accelerate autoimmune disease
via epitope spreading (Libbey and Fujinami, 2002; Miller et al.,
1995) and molecular mimicry, thereby engendering the develop-
ment of an inflammatory region with activated APCs and possible
presentation of a self antigen (Fujinami et al., 2006; von Herrath
and Oldstone, 1996; von Herrath et al., 2003). However, several
interesting experimental examples exist for prevention of auto-
immune disease caused by viral infections. Possible mechanisms
of prevention caused by viral infections are immunosuppression,
chemokine gradients, apoptosis of autoaggressive lymphocytes,
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and so on (Fujinami et al., 2006). Furthermore, experimental
evidence indicates that a viral infection with molecular mimicry
can provide protection from EAE (Fujinami, 2001; Fujinami et al.,
2006). Reasons for the protection are said to be altered peptide
ligand, AICD, and so on, which implies that viruses having
molecular mimicry with self proteins are useful for vaccination
against autoimmune disease.
4.1. Detrimental or beneficial viral infection

We consider whether infection by a virus having molecular
mimicry with a self antigen that can replicate itself ðk� u40Þ is
beneficial or detrimental for autoimmune disease. First we
assume that autoimmune disease has already developed before
the patient is infected with the virus having molecular mimicry
with self proteins ðVð0Þ ¼ 0Þ. In model (2), we assume that Ea is
stable ðb14agh=mÞ with Vð0Þ ¼ 0, which corresponds to Fig. 2(c),
irrespective of the sign of k� u (we remark that the infection with
k� u40 persists and initiates autoimmune disease even if
b1oagh=m). Furthermore, to avoid the obvious result, we assume
that the immune affinity with viral antigen is high
ðb24gðk� uÞ=mÞ. Actually, if the affinity with viral antigen is
low ðb2ogðk� uÞ=mÞ, then the viral population explodes (see
Appendix C) and the number of damaged cells ðD1Þ represents its
maximum value, which implies that the viral infection detri-
mental affects the patients. We also exclude the high affinity with
self antigen ðb14Hðb2ÞÞ because the viral infection cannot affect
the disease progression. Consequently, we assume the following
conditions:

k� u40;
agh

m
ob1oHðb2Þ; b24

gðk� uÞ

m
.

We evaluate the effect of viral infection as follows. Let Vð0Þ40;
then the stable equilibrium changes from Ea to Ec (the patients get
the viral infection). We then have the following relations:

b1oHðb2Þ ) DaoDc ; IaoIc .

They imply that the viral infection always imparts a detri-
mental effect on patients and accelerates autoimmune disease
on the region because the viral infection increases damaged
cells ðDaoDcÞ and cross-reactive immune responses ðIaoIcÞ

(see Fig. 6).
On the other hand, in model (3), we assume that Eþa is stable

ðb142agh=mÞ with Vð0Þ ¼ 0, which fundamentally corresponds to
Fig. 3(c), irrespective of a sign of k� u. Furthermore, let the
immune affinity with viral antigen be high ðb24gðk� uÞ=mÞ. We
also exclude high affinity with self antigen ðb14Gðb2ÞÞ because of
a neutral effect of the infection. To avoid a bad prognosis such as a
relapse of autoimmune disease, we also exclude the possibility of
the relapse caused by viral infection (b242gðk� uÞ=m and
Fðb2Þob1oGðb2Þ; (II)(IV) in Fig. 4). Consequently, we assume the
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following conditions:

k� u40;
2agh

m
ob1ominfFðb2Þ;Gðb2Þg; b24

gðk� uÞ

m
.

Let Vð0Þ40 and then the convergence equilibrium changes from
Eþa to E�c (the patients get the viral infection) or it does not change
because the region (III) in Fig. 4 represents bistability of Eþa and E�c .
When the viral infection changes the convergence equilibrium, we
evaluate the effect of viral infection as shown below.

b24
2gðk� uÞ

m
) Dþa 4D�c ; Iþa 4I�c ;

b2o
2gðk� uÞ

m
; b1oG ðb2Þ ) Dþa oD�c Iþa oI�c :

8>><
>>:
The expressions presented above imply that the viral infection can
give patients a beneficial effect and relieve autoimmune disease
symptoms for the former case because the viral infection
engenders a decrease of damaged cells and cross-reactive immune
responses (Fig. 6).

4.2. Mathematical design of the vector vaccine

Vaccines are, by definition, prophylactic, but in recent years we
saw an interest in developing therapeutic vaccines, in infectious
diseases (for diseases such as AIDS, tuberculosis, and peptic ulcer),
in cancer (a variety of approaches to combat different kinds of
cancer), and in autoimmune diseases (a definite success in
developing a drug/vaccine against MS and hopes for myasthenia
gravis, lupus and diabetes) (Arnon and Ben-Yedidia, 2003). Using
molecular biology and DNA manipulation methods, it is possible
to produce a therapeutic vaccine against autoimmune disease.

We consider the possibility of development of a vector vaccine
having molecular mimicry with self proteins. After emergence of
autoimmunity, the vector vaccine can reproduce itself, induce a
cross-reactive immune response, and be removed by the immune
response in patients as a similar mechanism for viral infection
with molecular mimicry (see Fig. 7). Therefore, we can consider
that the vaccine can be described similarly as the viral infection in
terms of the mathematical model. Fujinami (2001) and Fujinami
et al. (2006), explained that a possible mechanism of protection
from EAE by the viral infection might be suppression of
autoreactive immune cells caused by regulatory cells, AICD, and
D
Damaged cell

Self antigen

APC

Lymphoid organ

Non-self
antigen

V

Transgenic vector

�2
Immune cell

CD8

CD8

�1

Non-pathogenesis virus

Antigen protein

I

Fig. 7. A transgenic vector vaccine having molecular mimicry with self proteins;

after emergence of autoimmunity, the vaccine can induce a cross-reactive immune

response as a similar mechanism for viral infection with molecular mimicry.
so on. However, our results demonstrate that a viral infection in
model (3) can be effective for autoimmune disease without
involving these suppressive effects. This shows that, when the
immune response function is f 2, the vector vaccine can reduce the
cross-reactive immune response ðIþa 4I�c Þ and relieve symptoms of
autoimmune disease ðDþa 4D�c Þ, which implies that the vector
vaccine can be effective by itself even if we consider no additional
suppressive abilities in our immune system.

Therefore, to make the vector vaccine effective, we at least
require that the immune proliferation be a sigmoid function such
as f 2 (we explain the immune response function in Discussion).
The affinities with self and non-self antigen are in the beneficial
region, as shown in Fig. 6. Actually, our immune system has high
affinity with non-self antigen and low affinity with self antigen
because, in the process of differentiation thymic, lymphocytes
undergo positive and negative selection. Positive selection gen-
erates a functional T cell repertoire restricted to self MHC
expressed on the epithelial cells of the thymic cortex. Negative
selection eliminates T cells that are aggressively reactive to self
antigen (Goldrath and Bevan, 1999; Janewa et al., 2004).
Consequently, the beneficial region, which has high affinity with
non-self antigen and low affinity with self antigen, is biologically
realistic. Furthermore, the vector vaccine must replicate effec-
tively in autoimmune disease patients, which means that the orbit
converges to E�c . We remark that the vaccine might be unable to
replicate (the orbit converges to Eþa ) according to patients’ states
because of bistability. Therefore, the vector vaccine might have to
be used with other immunosuppressive drugs to switch the
patient state from Eþa to E�c . Although many restrictions discussed
above exist for the success of therapeutic vaccine, we can
theoretically design the transgenic vector vaccine (because of
these stringent restrictions, it is also true that the transgenic
vector vaccine might only be effective to certain specific patient
states). Moreover, if we consider the additional effects for
suppression of autoreactive immune cells, these restrictions can
be relaxed. However, we leave the inclusion of additional effects
as a subject for future work.
5. Discussion

Increasing evidence exists that infectious agents play an
important role in autoimmune disease (Janewa et al., 2004; Roitt
et al., 1998). Viruses are an important factor that can precipitate
autoimmune disease by various mechanisms (Fujinami, 2004;
Pender, 2004; von Herrath et al., 2003). For example, viruses that
stimulate the production of IL-12, such as herpes simplex virus,
human herpesvirus, influenza virus, and coronavirus, have been
isolated from or have been associated with exacerbation of MS
(Fujinami, 2001; Libbey and Fujinami, 2002; Monteiro et al., 1998;
Whitton and Fujinami, 1999). On the other hand, viruses can
abrogate an ongoing autoimmune reaction by inducing apoptosis
of autoreactive cells, by secreting various cytokines, or by immune
suppression (Fujinami, 2001). Nevertheless, it is difficult to obtain
direct evidence for virus-induced initiation of autoimmune
disease or protection from autoimmune disease because we are
all infected by multiple viruses (Fujinami et al., 2006).

Using the simple mathematical model, we analyzed
whether and how a viral infection having molecular mimicry
with self proteins can impart a detrimental or beneficial effect
to autoimmune disease patients (see Fig. 6). Furthermore,
we consider the possibility of development of a therapeutic
vaccine against autoimmune disease. Our findings suggest
that the success of therapeutic vaccine necessitates the following:
(i) patients have an appropriate immune response function,
such as f 2; (ii) affinities with self and non-self antigen are in
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the beneficial region shown in Fig. 6; (iii) the vector vaccine
replicates in vivo. Although these restrictions can be relaxed if we
consider additional immunological effects such as immune
suppression, memory response, and exhaustion of effector cells,
we found the distinct possibility of designing a therapeutic
vaccine.

In Iwami et al. (2007a) and Iwami (2007), we investigated
the influence of functional form of immune proliferation on
autoimmune disease symptoms. We demonstrated that sigmoid
function such as f 2 can induce a bistable structure and periodic
behavior. As described in this paper, we omit the target cell
dynamics and add the viral replication cycle compared with
the model considered in Iwami et al. (2007a). The difference
of immune response functions also strongly affects the auto-
immune disease symptoms. If the virus cannot establish
a persistent infection ðk� uo0Þ, then f 2 induces bistability
(Fig. 3(c)) but f 1 does not, then (Fig. 2(c)). On the other hand, if
the virus can replicate itself ðk� u40Þ, then f 2 induces bistability
and a periodic orbit (Fig. 3(d)), but f 1 does not, then (Fig. 2(d)).
Consequently, the sigmoid function f 2, which is biologically
more reasonable (because APCs only slightly induce immune
cells when only a few antigens exist, Iwami et al., 2007a) than
the convex function f 1 represents various symptoms such as
relapse in autoimmune disease. That slight inducement
implies that the various symptoms of autoimmune disease
might be related with the function. However, the results might
not be sufficiently robust to the form of immune prolifera-
tion function. We need to know an appropriate proliferation
function that has biological relevance. For example, APCs are
known to induce immune cells only slightly when many antigens
exist (high zone tolerance) (Janewa et al., 2004). For that reason,
we might have to use a bell-shaped proliferation function to
consider high zone tolerance instead of the proliferation as an
increasing function of antigen load (De Boer et al., 1993, 1996).
Consequently, a more complete understanding of immune pro-
liferation must be the foundation for the development of a
therapeutic vaccine.

Viruses trigger autoimmune disease, but they are also likely to
be important for reactivation of autoimmunity (viruses can
behave as reactivators of autoimmune disease) (Horwitz and
Sarvetnick, 1999). Some clinical data show that viral infections
trigger MS relapse (Andersen et al., 1993). It has been suggested
that a determinant spreading (self-antigen diversification) is a
relapse mechanism (Lehmann et al., 1993). Furthermore, in
Borghans et al. (1998), they showed that T cell regulatory circuitry
induces autoimmune relapse using a simple mathematical model.
Another possible mechanism of the relapse is considered as cross-
reactive immune responses through a process of molecular
mimicry. In our model, relapses can also occur under the viral
infection with molecular mimicry (in the absence of determinant
spreading). The immune response function f 2 can induce a limit
cycle that corresponds to relapse of autoimmune disease only
when the virus can replicate itself (see Fig. 4). This implies that
the viral infection engenders the relapse. Therefore, our model
supports that the cross-reactive immune response is also a relapse
mechanism.

This study highlights the immune response functions and
molecular mimicry with the self antigen to investigate the
possibility of vector vaccine development. Although our model
might over-simplify complex interactions in autoimmune disease,
its simplicity illustrates the general and qualitative properties of
viral infection with molecular mimicry. This prediction should be
verified using actual experiments. Our model is a starting point,
but must include more immunological factors such as immuno-
suppression and apoptosis to merit further theoretical and
mathematical investigation.
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Appendix A

We analyze the existence and stability conditions of the
equilibria in (2). The model has three possible equilibria:

Eh ¼ ð0;0;0Þ,

Ea ¼ ðDa; Ia;0Þ; Da ¼
mb1

ag � h; Ia ¼
a
b1

Da,

Ec ¼ ðDc; Ic ;VcÞ; Dc ¼
b1

b2

k� u

a
; Ic ¼

k� u

b2

,

Vc ¼
ghðk� uÞ

mb2 � gðk� uÞ
�
b1

b2

k� u

a
.

It might be readily apparent that Eh always exists. The existence
conditions of Ea and Ec are as follows:

Ea 2 R
3
þ 3 b14

agh

m
,

Ec 2 R
3
þ 3 k� u40; b24

gðk� uÞ

m
,

b1o
agh

m

b2

b2 � gðk� uÞ=m
.

It is noteworthy that Ec cannot exist in R3
þ if k� uo0. In Fig. 2(a)

and (b), we summarize these conditions in the b12b2 plane.
Hereinafter we explain the stability of these equilibria in detail.

The Jacobian matrix of (2) at Eh is

JðEhÞ ¼

�a b1 0
m

h
�g m

h
0 0 k� u

2
664

3
775.

The characteristic equation of JðEhÞ is

ðp� kþ uÞ p2 þ ðaþ gÞpþ ag�mb1

h

� �
¼ 0.

Therein, p denotes the indeterminate of the polynomial. Therefore,
from the Routh–Hurwitz criterion, all eigenvalues of JðEhÞ have
negative real parts if and only if

k� uo0; b1o
agh

m
.

That is, if the above conditions hold, then Eh is locally

asymptotically stable (LAS); otherwise Eh is unstable. We can show
that Eh is globally asymptotically stable (GAS) using similar
methods to those described in Iwami et al. (2007b).

The Jacobian matrix of (2) at Ea is

JðEaÞ ¼

�a b1 0

mh

ðhþ DaÞ
2
�g mh

ðhþ DaÞ
2

0 0 k� u� b2Ia

2
6664

3
7775.

The characteristic equation of JðEaÞ is

ðp� kþ uþ b2IaÞ p2 þ ðaþ gÞpþ ag� mhb1

ðhþ DaÞ
2

( )
¼ 0.
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Therefore, all eigenvalues of JðEaÞ have negative real parts if and
only if

b14
agh

m
; b14

agh

m

b2

b2 � ðk� uÞg=m
.

We remark that the above second condition holds with k� uo0 if
the first is satisfied, which implies that Ea is always LAS if it exists.
Let

Hðb2Þ ¼
agh

m

b2

b2 � ðk� uÞg=m
.

It is clear that Hðb2Þ4agh=m when k� u40. Consequently, Ea is
LAS if b14Hðb2Þ. We can show that Ea is GAS under k� uo0 using
similar methods to those explained in Iwami et al. (2007b).

The Jacobian matrix of (2) at Ec is

JðEcÞ ¼

�a b1 0

mh

ðhþ Dc þ VcÞ
2

�g mh

ðhþ Dc þ VcÞ
2

0 �b2Vc 0

2
6664

3
7775.

The characteristic equation of JðEcÞ is

p3 þ a1p2 þ a2pþ a3 ¼ 0,

where

a1 ¼ aþ g; a2 ¼
mhðb2Vc � b1Þ

ðhþ Dc þ VcÞ
2
þ ag,

a3 ¼
ab2mhVc

ðhþ Dc þ VcÞ
2
.

Therefore, from the Routh–Hurwitz criterion, the stability of Ec is
determined by the sign of a1a2 � a3. Because the following
relation holds:

Dc þ Vc ¼
ghðk� uÞ

mb2 � gðk� uÞ
; Dc þ Vc þ h ¼

b2mh

mb2 � gðk� uÞ
,

we can obtain

a1a2 � a3 ¼
mhfgb2Vc � ðaþ gÞb1g

ðhþ Dc þ VcÞ
2

þ ðaþ gÞag

¼
g2ðk� uÞ

m

mb2 � gðk� uÞ

b2

�
b1

mh

mb2 � gðk� uÞ

b2

� �2

�
gðk� uÞ

a þ aþ g
� �

þ ðaþ gÞag.

Direct but tedious calculations yield

a1a2 � a340

3b1o

g2ðk� uÞ

m

mb2 � gðk� uÞ

b2

þ ðaþ gÞag

1

mh

mb2 � gðk� uÞ

b2

� �2 gðk� uÞ

a
þ aþ g

� �

3b1o
agh

m

b2

b2 � gðk� uÞ=m

� �2

1�
1

mb2

g2ðk� uÞ2

gðk� uÞ þ aðaþ gÞ

( )

3b1o
agh

m

b2

b2 � gðk� uÞ=m

�
gðk� uÞ

gðk� uÞ þ aðaþ gÞ
þ

b2

b2 � gðk� uÞ=m

aðaþ gÞ
gðk� uÞ þ aðaþ gÞ

� �
.

It is noteworthy that

gðk� uÞ

gðk� uÞ þ aðaþ gÞ
þ

b2

b2 � gðk� uÞ=m

a ðaþ gÞ
gðk� uÞ þ aðaþ gÞ

41.

That relation implies that

a1a2 � a340( b1o
agh

m

b2

b2 � gðk� uÞ=m
.

Therefore, we can conclude that Ec is always LAS whenever it
exists. In Fig. 2(c) and (d), we present these conditions in the
b12b2 plane.
Appendix B

We also analyze the existence and stability conditions of the
equilibria in (3). The model has four possible equilibria as follows:

Eh ¼ ð0;0;0Þ,

E�a ¼ ðD
�
a ; I
�
a ;0Þ; D�a ¼

mb1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2b2

1 � 4a2g2h2
q

2ag
,

I�a ¼
a
b1

D�a ,

E�c ¼ ðD
�
c ; I
�
c ;V
�
c Þ; D�c ¼

b1

b2

k� u

a
,

I�c ¼
k� u

b2

; V�c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðk� uÞh2

mb2 � gðk� uÞ

s
�
b1

b2

k� u

a .

Clearly, Eh always exists. The existence condition of E�a and E�c are
as follows:

E�a 2 R
3
þ 3 b14

2agh

m
,

E�c 2 R
3
þ 3 k� u40; b24

gðk� uÞ

m
,

b1o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g
mðk� uÞ

r
ab2hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � gðk� uÞ=m
p .

It might be readily apparent that E�c cannot exist in R3
þ if k� uo0.

In Fig. 3(a) and (b), we present these conditions in the b12b2

plane.
Hereinafter, we explain the stability of these equilibria in

detail. From a direct calculation, the eigenvalues of JðEhÞ are �a,
�g, and k� u, where J is the Jacobian matrix of (3). Those results
imply that if k� uo0, then Eh is always LAS; otherwise, Eh is
unstable.

The Jacobian matrix of (2) at E�a is

JðE�a Þ ¼

�a b1 0

2mh2D�a

ðh2
þ D�2

a Þ
2
�g 2mh2D�a

ðh2
þ D�2

a Þ
2

0 0 k� u� b2I�a

2
66664

3
77775.

The characteristic equation of JðE�a Þ is

ðp� kþ uþ b2I�a Þ p2 þ ðaþ gÞpþ ag� 2mb1h2D�a

ðh2
þ D�2

a Þ
2

( )
¼ 0.

As a result of tedious but straightforward calculations, we can
show that ag� 2mb1h2D�a =ðh

2
þ D�a Þ

2o0 and ag� 2mb1h2Dþa =

ðh2
þ Dþa Þ

240. That relation implies that E�a is always unstable if it
exists. Consequently, the stability of Eþa is determined by a sign of
k� u� b2Iþa , which is an eigenvalue of JðEþa Þ. If k� uo0, then Eþa is
LAS. On the other hand, if k� u40, then we have

k� u� b2Iþa o0 3
k� u

b2

�
m

2go

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2b2

1 � 4a2g2h2
q

2gb1

.

Therefore, if ðk� uÞ=b2 �m=2go0, then Eþa is LAS. Although, if
ðk� uÞ=b2 �m=2g40, then the following relations hold:

k� u

b2

�
m

2g
o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2b2

1 � 4a2g2h2
q

2gb1

(4)

3
ga2b2

2h2

m
ob2

1 ðk� uÞ b2 �
gðk� uÞ

m

� �
. (5)
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Here we assume that b24gðk� uÞ=m; otherwise the above
condition does not hold. Therefore, if the following conditions
hold,

b14
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g
mðk� uÞ

r
ab2hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � gðk� uÞ=m
p ,

gðk� uÞ

m
ob2o

2gðk� uÞ

m
,

then Eþa is LAS. Consequently, we can infer the stability conditions
of Eþa as

k� uo0 or

k� u40; b24
2gðk� uÞ

m
or

k� u40; b14
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffig
mðk� uÞ

r ab2hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � gðk� uÞ=m

p ;

gðk� uÞ

m
ob2o

2gðk� uÞ

m
:

8>>>>>>>>><
>>>>>>>>>:

The Jacobian matrix of (2) at E�c is

JðE�c Þ ¼

�a b1 0

2mh2
ðD�c þ V�c Þ

fh2
þ ðD�c þ V�c Þ

2
g2

�g 2mh2
ðD�c þ V�c Þ

fh2
þ ðD�c þ V�c Þ

2
g2

0 �b2V�c 0

2
66664

3
77775.

The characteristic equation of JðE�c Þ is

p3 þ a1p2 þ a2pþ a3 ¼ 0,

where

a1 ¼ aþ g,

a2 ¼ agþ 2b2mh2
ðD�c þ V�c ÞV

�
c

fh2
þ ðD�c þ V�c Þ

2
g2
�

2b1mh2
ðD�c þ V�c Þ

fh2
þ ðD�c þ V�c Þ

2
g2

,

a3 ¼
2ab2mh2

ðD�c þ V�c ÞV
�
c

fh2
þ ðD�c þ V�c Þ

2
g2

.

Therefore, from the Routh–Hurwitz criterion, the stability of E�c is
determined by the sign of a1a2 � a3. Because the following
relation holds:

2mh2
ðD�c þ V�c Þ

fh2
þ ðD�c þ V�c Þ

2
g2
¼

2ðm� gI�c Þ
ffiffiffiffiffiffiffi
gI�c

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m� gI�c

p
mh

,

we can obtain

a1a2 � a3

¼ agðaþ gÞ þ 2g2fmb2 � gðk� uÞgðk� uÞ

mb2

�
gðk� uÞ þ aðaþ gÞ

a
2b1fmb2 � gðk� uÞg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðk� uÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mb2 � gðk� uÞ

p
mhb2

2

.

Therefore, if the following conditions hold,

b1o
ab2gh½mab2ðaþ gÞ þ 2gðk� uÞfmb2 � gðk� uÞg�

2faðaþ gÞ þ gðk� uÞg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðk� uÞ

p
fmb2 � gðk� uÞg3=2

,

then E�c is LAS. We define the following functions.

Fðb2Þ ¼
ab2gh½mab2ðaþ gÞ þ 2gðk� uÞfmb2 � gðk� uÞg�

2faðaþ gÞ þ gðk� uÞg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðk� uÞ

p
fmb2 � gðk� uÞg3=2

,

Gðb2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

mðk� uÞ

r
ab2hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � gðk� uÞ=m
p .

Because we have

Gðb2Þ � Fðb2Þ ¼
ab2h

2fmb2 � gðk� uÞg3=2

ffiffiffiffiffiffiffiffiffiffiffiffi
g

k� u

r
aðaþ gÞfmb2 � 2gðk� uÞg

aðaþ gÞ þ gðk� uÞ
,

the stability conditions of E�c are

k� u40; b1oGðb2Þ;
gðk� uÞ

m
ob2o

2gðk� uÞ

m
or

k� u40; b1oFðb2Þ; b24
2gðk� uÞ

m
:

8>><
>>:
In Fig. 3(c) and (d), we present these conditions in the b12b2

plane.
Appendix C

We show that VðtÞ in (1) blows up for sufficiently large t if
b2ogðk� uÞ=m and k� u40. Because maxff 1; f 2gpm, we have the
following inequality:

I0 ¼ f ðD;VÞ � gIpm� gI.

Using a comparison theorem for ordinary differential equations,
we can obtain

IðtÞp Ið0Þ �
m

g

� �
e�gt þ

m

g .

Therefore, we can evaluate

V 0 ¼ ðk� u� b2IÞVX k� u� b2 Ið0Þ �
m

g

� �
e�gt �

mb2

g

� �
V .

Because b2ogðk� uÞ=m and k� u40, there exist some T such as
k� u� b2ðIð0Þ �m=gÞe�gt �mb2=g40 for any t4T, which implies
that limt!1 VðtÞ ¼ 1. Consequently, we can show that
limt!1 IðtÞ ¼ m=g and limt!1 DðtÞ ¼ mb1=ag. All orbits in (1)
converge to E1 if b2ogðk� uÞ=m and k� u40.
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