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ABSTRACT
Tigilanol tiglate is an oncolytic small molecule that is undergoing clinical trials. A recent study revealed the 
capacity of this pyroptosis inducer to elicit hallmarks of immunogenic cell death. In addition, intratumoral 
injection of tigilanol tiglate can sensitize subcutaneous cancers to subsequent immune checkpoint 
inhibitors targeting CTLA-4 alone or in combination with PD-1.
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Main text

In the ever-evolving landscape of cancer therapy, the pursuit of 
interventions that amplify cancer immunosurveillance stands 
as a cornerstone in the quest for enhanced efficacy. Among 
these strategies, the induction of immunogenic cell death 
(ICD) emerges as a promising avenue. ICD, characterized by 
the release of danger signals from dying cancer cells, serves as 
a potent stimulant for the immune system, triggering a cascade 
of events that culminate in the recognition and elimination of 
tumor cells by effector/cytotoxic lymphocytes.1

The concept of ICD encompasses a spectrum of cellular 
demise pathways endowed with immunostimulatory proper-
ties. Apoptosis, the most well-characterized form of pro-
grammed cell death, has long been recognized for its 
immunologically silent nature. However, accumulated evi-
dence unveiled the immunogenic potential of apoptotic cell 
death when accompanied by the exposure or release of danger- 
associated molecular patterns (DAMPs) such as calreticulin, 
annexin A1, ATP, and high mobility group box 1 (HMGB1). 
Similarly, necroptosis, ferroptosis, or pyroptosis, have emerged 
as alternative immunogenic cell demises, offering novel targets 
for therapeutic intervention.2,3

Intratumoral injection of immunostimulatory factors has 
gained considerable attention in recent years to reach 
improved tumor debulking together with limited systemic 
adverse events. Such local therapies are attempted with 
a wide range of agents, including adopted immune cells, anti-
bodies, cytokines, pattern recognition receptor (PRR) agonists, 
vaccines, as well as ICD-inducing oncolytic viruses, peptides, 
and small molecules.4–7

Along this line, tigilanol tiglate (TT) is a natural activator of 
the protein kinase C (PKC) family members that is approved 
for intratumoral treatment of cutaneous cancers in dogs and 

currently under investigation in humans. Mechanistically, pre-
clinical studies have shown that intralesional administration of 
TT triggers tumor ablation by disrupting local vasculature and 
promoting hemorrhagic necrosis. Yet, its local administration 
has been associated with antitumor effects of distant untreated 
(“abscopal”) lesions in a Phase I clinical trial, thus indicating 
that TT has immunosurveillance-enhancing potential.8

In a recent study published in the Journal for the 
Immunotherapy of Cancer, Cullen and colleagues investigated 
the immunogenic properties of tigilanol tiglate (TT).9 In 
squamous cell carcinoma and melanoma cell lines, TT suc-
cessively promoted dissipation of the mitochondrial mem-
brane potential, mitochondrial swelling, outer mitochondrial 
membrane permeabilization, mitochondrial degradation, 
cytoplasmic vacuolization, and cellular swelling prior to cell 
death. At the molecular level, the in vitro TT treatment 
triggered proteolytic activation of caspases, Bid, poly [ADP- 
ribose] polymerase (PARP) as well as of gasdermin 
E (GSDME). Thus, TT apparently induces caspase- 
dependent GSDME-mediated pyroptosis. Of note, this effect 
seemed largely PKC-independent. Cellular assimilation of TT 
was accompanied by the phosphorylation of Ire1α and eiF2α, 
indicating the activation of the endoplasmic reticulum (ER)/ 
mitochondrial unfolded and integrated stress responses. 
Importantly, treatment with TT stimulated ROS production, 
release of ATP and HMGB1 into the extracellular milieu, and 
externalization of the ER chaperone calreticulin. Moreover, 
whereas type I interferon (IFN-I) secretion was not detected, 
production of pro-inflammatory cytokines like interleukin 
(IL)6, IL8, C-X-C motif chemokine ligand (CXCL)9, and 
CXCL10 was detected. In vivo, mouse vaccination with can-
cer cells treated with a high (but not low) dose of TT 
protected against rechallenge with live malignant cells. 
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Collectively, these data supported the immunogenicity of TT- 
induced pyroptotic cell death. Accordingly, in the therapeutic 
B16-F10 melanoma model, intratumoral delivery of TT sti-
mulated infiltration by T lymphocytes of this otherwise 
immune cold tumor. Furthermore, such intervention 
reverted resistance to dual immunotherapy blocking the 
immune checkpoint cytotoxic T lymphocyte-associated pro-
tein 4 (CTLA-4), alone or in combination with programmed 
cell death protein 1 (PDCD1, best known as PD-1) 
(Figure 1).9

In conclusion, the induction of ICD through intratumoral 
delivery of TT or other oncolytic agents presents a promising 
avenue for cancer treatments. This approach holds the poten-
tial to invigorate cancer immunosurveillance, particularly in 
immune cold tumors, which typically exhibit resistance to 
conventional immunotherapies. By triggering ICD, TT may 
effectively convert immune cold into hot tumors, thereby 
restoring their responsiveness to systemic immune checkpoint 
blockers that are widely used in clinical practice.5,10 Thus, TT 
enters a competitive space in which a number of oncolytic 
agents are being compared for their capacity to elicit clinically 

relevant anticancer immune responses that can be amplified by 
blockade of immune checkpoints.
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inflammatory cytokines (e.g., IL6, IL8, CXCL9, CXCL10). This cascade of events triggers a tumor-specific T cell response which can be enhanced by systemic 
immunotherapy with inhibitors of the CTLA-4 and PD-1 immune checkpoints. CTLA-4, cytotoxic T lymphocyte associated protein 4; CXCL, chemokine (C-X-C motif) 
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